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Abstract. This work describes an adaptive parallel pipeline skeleton
which maps pipeline stages to the best processors available in the system
and clears dynamically emerging performance bottlenecks at run-time
by re-mapping affected stages to other processors. It is implemented
in C and MPI and evaluated on a non-dedicated heterogeneous Linux
cluster. We report upon the skeleton’s ability to respond to an artificially
generated variation in the background load across the cluster.

1 Introduction

Pipelining is the decomposition of a repetitive sequential process into a suc-
cession of distinguishable sub-processes called stages, each of which can be ef-
ficiently executed on a distinct processing element or elements which operate
concurrently.

In software, this approach is widely used to address grand-challenge compu-
tational science problems [1], numerical linear algebra algorithms [2], and signal
processing applications [3]. Pipelines are exploited at fine-grained level in loops
through compiler directives and in operating system file streams, and at coarse-
grained level in parallel applications employing multiple processors. In particular,
coarse-grained pipeline applications refine complex algorithms into a sequence
of independent computational stages where the data is “piped” from one com-
putational stage to another. Each stage is then allocated to a processing element
in order to compose a parallel pipeline. Our pipeline follows this model.

The performance of a pipeline can be characterised in terms of latency, the
time taken for one input to be processed by all stages, and throughput, the
rate at which inputs can be processed when the pipeline reaches a steady state.
Throughput is simply related to the processing time of the slowest stage, or bot-
tleneck. When handling a large number of inputs, it is throughput rather than
latency which constrains overall efficiency. Our system schedules and dynam-
ically reschedules stages to processors, in the face of the dynamically varying
processor capability which is typical of grid systems, with a view to maintaining
high throughput.

The problem addressed in this paper is as follows: given a parallel pipeline
program, find an effective way to improve its performance on a heterogeneous
distributed environment by adapting dynamically to external load variations.

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 916–926, 2006.
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Our adaptive parallel pipeline has two main components: calibration and
feedback. Initially the calibration is used to map stages to the best processors
available in the system. Subsequently, the feedback mechanism clears perfor-
mance bottlenecks at run-time by re-mapping the stages to other processors.
This pipeline is implemented as a stateless skeleton in C and MPI. We present
promising results of parallel executions in a non-dedicated heterogeneous Be-
owulf cluster, using a stage function based on a numerical benchmark.

This paper is structured as follows. First, we provide motivation for this work.
Then we describe the adaptive parallel pipeline algorithm and its implementa-
tion, followed by the experimental evaluation. Finally we discuss some related
approaches and make final remarks.

2 Motivation

2.1 Idealised Pipelines

We must review some generic performance issues in pipelined processing. Sup-
pose that the original sequential process requires time ts to process a single
input. Consider an n-stage pipeline, in which tı is the execution time for the ıth

stage.
In an idealised model, without significant communication costs, the sequential

and parallel (one processor per stage) times to process S inputs are then

Tseq = S × ts

Tpar =
n∑

ı=1

tı + (S − 1) × max(tı)

where max(tı) is the bottleneck stage time

It is well known that perfect pipelined performance is obtained when the stage
times tı are all equal to ts

n , since we can then reduce the expressions to:

Tseq = S × ts

Tpar = ts + (S − 1) × ts
n

so that as S grows large, speed-up asymptotically approaches n.
Outside this perfect situation, it is more important to reduce the bottleneck

time than the latency, since the former affects the multiplicative term in Tpar,
where the former affects only the asymptotically insignificant additive term.

2.2 Pipelines on Dynamically Heterogenous Resources

With the advent of heterogeneous distributed systems, whether geographically-
contiguous (clusters) or in different administrative and geographical domains
(grids [4]), it is widely acknowledged that one of the major challenges in pro-
gramming support is the prediction and improvement of performance [5]. Such
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systems are characterised by the dynamic nature of their heterogeneity, due to
shifting patterns in background load which are not under the control of the
individual application programmer. The challenge is therefore to produce and
support applications which can respond to this variability.

In our current work we focus on the computational aspects of heterogeneity.
In what follows we make assumptions designed to keep the number of exper-
imental variables tractable. Subsequent work will consider relaxation of these
assumptions. Specifically, we assume that

– the computational weight of each stage is identical, in the sense that all
stages would take the same time to process one item if executed on the same
reference processor. In effect, this is to assume that the programmer has
done a good abstract job of balancing stages and reducing the bottleneck.
This allows us to focus on addressing issues which arise when the available
processors vary dynamically in performance with respect to such a reference
processor.

– communication time is not significant. Note that this is not to assume that
communication is negligible, but rather to assume that communication costs
hinder all stages equally.

The challenge can now be stated simply. The application programmer is re-
quired to write sequential code for the body of each pipeline stage and make a
call to our pipeline skeleton to apply these stages to a set of inputs. The “grid”
provides a pool of available processors. Our system maps the stages to (a subset
of) the processors. It may choose to map several stages to the same processor
when this processor is more powerful than the others. Periodically, our system
checks the progress of the computation and may decide to remap some or all
of the stages. In the following section we describe the mechanisms employed to
construct this overall framework.

3 Adaptive Pipeline Parallelism

The core of our system is an algorithm for mapping pipeline stages to proces-
sors. Its main feature is that processors are calibrated at run-time, to provide
the performance information upon which the mapping is based. The mapper is
embedded within an iterative scheduling scheme, allowing the pipeline imple-
mentation to be adapted to prevailing conditions within the pool of available
processors. We will now discuss the mapper and the rescheduler in turn.

3.1 Mapping Stages to Processors

The first step in mapping is to determine the current ‘fitness’ of each available
processor. This is achieved by running, by way of calibration, an instance of
one of the stage functions on each processor, and measuring the execution time.
Any stage will do, since we have assumed that all stages are equally inherently
‘heavy’. This allows us to rank processors by descending fitness (i.e. by increasing
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calibration time). We can immediately discard all but the n fittest processors
from the initial mapping. The mapping is generated by a greedy algorithm, which
computes xi, the number of stages to be executed by processor i.

Algorithm 1 provides a detailed description of the calibration procedure. In
this algorithm, X is the aggregated array containing all xi entries, t records the
aggregated execution time of the stage function in every node, and Chosen
is the array of selected nodes. That is to say, P contains all nodes in the
MPI COMM WORLD, Chosen holds only the processors to be used, and X indicates
the number of processes per node capped by the maximum processes per node.
As per the greedy nature of the algorithm, every entry ti in t takes into account
the workload generated by the increasing number of stage-function instances to
be executed in a given node.

We make an initial mapping in which one stage is assigned to each of the n
fittest processors. We construct a ranking of the chosen processors, according
to the time tı they will take to process an item, given their currently allocated
stages. Initially this is identical to the calibration ranking, but as a processor is
assigned extra stages, its tı will be the product of the number of allocated stages
and its original calibration time.

The initial mapping is iteratively improved by application of the following
step:

Consider the effect of moving one stage from the processor Pb with the
highest processing time (i.e. the current bottleneck) to the processor Pl

with the lowest processing time. If the new resulting processing time at Pl

is smaller than the original processing time at Pb then make the switch.

Iteration proceeds until no further improvement is possible. It is not difficult
to see that such a strategy is optimal.

Suppose there was a better mapping M ′ than the one with which the algorithm
terminates, M . Suppose that the bottleneck processor Pb in M is assigned k
stages. M must assign fewer than k stages to Pb (otherwise it wouldn’t better)
and more stages to at least one other processor Px (because the extra stage must
be assigned somewhere). Then M can be improved by moving one stage from Pb

to Pl (which may or may not be Px, it doesn’t matter), and the greedy algorithm
will do so, thereby contradicting the (premature) assumption of termination. ◦

3.2 Monitoring Performance and Rescheduling

Once the pipeline is in operation, the feedback phase detects performance bottle-
necks by checking whether all processors are functioning according to the initial
calibration. Each stage times itself and propagates its current ti through the
pipeline, piggy backed with the real data. The final stage verifies that the Tpar

is acceptable by comparing with the original calibration times, using a fixed
threshold to determine acceptability. This threshold regulates the margin be-
fore a re-calibration takes place and is expressed as a fraction of the original
value.
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Algorithm 1. Calibration Algorithm
Data: f : Stage Functions;
n: Number of Stages;
P : Nodes;
Result: Chosen: Lookup table of fittest processing elements;
X: Number of processes per Chosen node;

forall nodes in P do
Execute f concurrently ;
Set ti ← execution time(f);

end
if root node then

set X ← 0 ;
collect ti into t;
sort the P nodes ; /* Using t as key */
set ı ← 0 ;
set � ← n ;
while ı < � − 1 do

set flag ← false ;
set k ← ı + 1 ;
while k < � ∧ ¬flag do

set α ← � tk−ti
ti/xi

�;
if α �= 0 then

set ti ← ti + ti/xi ;
set xi ← xi + 1 ;
set � ← � − 1 ;
insert in order (ti, t);
set flag ← true ;

end
if ¬flag then

ı ← ı + 1;
end

end
end
send Chosen and X to other nodes

else
send time from this node to root node;
receive Chosen and X;

end

For example, if a threshold is equal to X , it indicates that if a ti is more
than (1 + X) times slower than the original worst recording, a bottleneck has
been detected and a remapping is scheduled. Similarly, should the worst time be
(1 − X) times faster than the original best, remapping is considered.

It is crucial to note that the threshold is key to the adaptivity mechanism
since a small value may cause too many remappings (thrashing) while a large
one will deactivate the adaptiveness. Once a decision to remap has been made,
the pipeline is allowed to drain before resuming under the new mapping.
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4 Implementation

To facilitate our experiments we have designed an algorithmic skeleton [6], pro-
grammed in ANSI C with MPI to handle internode communication. Its API is

void pipeline(stage t *stages, int no stages,int in data[], MPI Comm comm)

The first parameter stages is an array of pointers to functions which contains
the f stages, no stages is n, in data is the input data stream S (using simple
integers here, but easily generalisable), and comm is a communicator encompass-
ing the processor pool.

Based on previous experiences with skeletons on geographically dispersed
grids [7], where we empirically learned the costly implications of the inherent
synchronisation in collectives, we have based this design on explicit send-receive
pairing. Internally, each stage is composed by a MPI Recv call, the invocation to
the f function, and a MPI Send call.

Internally, the processor pool is represented as a lookup table of active proces-
sors. Each processor uses the table to determine its predecessor and successor.
It is built during the calibration process by simply sorting the processors in the
communicator by execution times. The table is also of particular importance
during process migration since the migration is in essence an exchange of its
entries.

On the infrastructure side, there exist a few libraries which provide MPI
process migration, mainly devoted to preserving index and context variables
in loops. Although they address generic MPI programs, their use requires spe-
cialised underlying distributed filesystems [8] or daemon-based services [9]. Since
a key criterion to the process migration is fast process migration, we opted to
develop a simple process migration mechanism based on the aforementioned
process pool.

It is important to stress the fact that there are not pre-determined processors
required for the execution of the pipeline. That is to say, after calibration not even
the MPI COMM WORLD root process must belong to the set of fittest processes. There-
fore, a re-mapping always implies a process migration with result preservation.

5 Results

The full system has been compiled with gcc 3.4.4 using “-pedantic -ansi -Wall -
O2” flags and employs LAM/MPI 7.1.1. It has been deployed on a non-dedicated
heterogeneous Beowulf cluster, located in the School of Informatics of the Uni-
versity of Edinburgh, and configured as shown in Table 1. The processors have
different frequencies and exhibit different performance as determined by the
BogoMips reading which is the standard Linux benchmark.

For reproducibility purposes, we have employed as stage function the
whetstones procedure from the 1997 version [10] of the Whetstone benchmark
with parameters (256,100,0). It accounts for some 5 seconds of double-precision
floating-point processing on an empty node in the Beowulf cluster.
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Table 1. Beowulf cluster bw240 Configuration

Nodes: 64
CPU: Intel P4
Memory: 1 GB / node
Network: 2x100Mb/s (Shared)
OS: Linux Red Hat FC3 - Kernel 2.6
BogoMips: 3350.52–3555.32
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Fig. 1. Correlation between the size of the data input S and the number of stages n

Thus, all variability in the system is due to external load and, to a lesser
extent, to the difference in performance among processors. All execution times
reported below sum up the average of three measurements, with a standard
deviation of less than 1%.

Figure 1 shows a “sanity-check” initial exploration of the parameter space,
running pipelines with 2, 4, 8 and 16 identical stages, one per processor (note that
a pipeline with more stages is doing more work in absolute terms) on increasingly
large inputs. The execution times are primarily determined by |S|, the input size
of the data stream, and marginally influenced by the number of stages n in the
pipeline.

We have firstly explored the overhead incurred by the calibration phase. Fig-
ure 2 shows that the overhead is minimal and increases at a slow rate (< 1% for
every power-of-two increment in the number of processes).

We then measured the performance impact of our system under different
load conditions. Figure 3(a) depicts the times of different executions using two
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Fig. 3. (a) Comparison of the parallel pipeline using two threshold parameters: Infinite
(non-adaptive) and 0.5. (b) Load generating program (adapted from [11]).

threshold parameters: infinite, which implies a non-adaptive pipeline, and 0.5.
This threshold value was empirically determined using a series of test runs.
Figure 3 (b) shows the actual program employed to generate load.

Taking into account the fair CPU allocation algorithm used in Linux and to
assure the existence of changing load conditions, we have incrementally injected
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load dynamically to the system using a simple load generation program. Each
instance of this program added 1 to the load displayed by the Linux uptime
command in a certain node (“bottleneck node”) until this node became a bot-
tleneck, while the rest of the processors did not experience any significant load
variation. Thus a Load = 0 implies no bottlenecks, Load = 1 an instance of the
load generator was running on the “bottleneck node” and so on. The instances
were triggered after 60 seconds from the start of the program.

Figure 3(a) shows a comparison of the measured execution times with n = 8
and |S| = 128. The x-axis indicates the injected load, i.e. the number of instances
of the load generator running in one processor, which were triggered during the
pipeline operation.

We see that the adaptive methodology has responded well under changing
load conditions, since the execution times in the non-adaptive parametrisation
have increased at a considerably higher rate than the adaptive ones.

6 Related Work

The scheduling problem of the parallel pipeline construct has been previously
studied in the literature.

The LLP system [12] furnishes a conceptual framework for static multi-stage
allocation using algorithmic skeletons. By approaching the problem with a 0/1
knapsack problem methodology, LLP is employed to develop a theoretical solu-
tion to stage scheduling.

Based on direct-acyclic graphs, the macro-pipelining methodology [13] gives a
theoretical framework for scheduling parallel pipelines. While macro-pipelining
provides guidance on the coarse distribution of work to different stages, its ap-
proach is limited to dedicated digital-signal processing systems.

Another approach presents a multi-layer framework for the stage scheduling
in dedicated real-time systems [14]. This work describes a series of steps to cal-
culate end-to-end latencies based on a time-series model for a video-conferencing
application. Unfortunately, it does not address the general case.

Recent work on adaptive systems [15,16] has reinforced the importance of
platform adaptation for optimisation of parallel codes in heterogeneous dis-
tributed systems. While implementation of parallel pipelines can be found in
several established skeletal libraries [17,18], adaptive skeletal constructs have re-
cently started to use resource-aware mechanisms based on process algebra [19]
and statistical methodologies [20], paving the way to the development of a com-
prehensive library of self-adaptive algorithmic skeletons for non-dedicated het-
erogeneous systems.

7 Conclusions

Our methodology is fundamentally different since it provides a generic system

– to pragmatically tune up the pipeline parallelism skeleton regardless of the
complexity of the stage functions (calibration phase); and
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– to dynamically adapt to non-dedicated heterogenous environments once the
pipeline processing is established (feedback).

A close examination of the methodology will show that there is certainly room
for a more instrumented approach to the determination of the re-calibration
threshold. Our work provides evidence that the proposed adaptive methodology
enhances pipeline parallelism performance: execution times are almost an order
of magnitude greater when not using the adaptive pipeline.

It is important to emphasise this work has covered load variations attributable
to different processing capabilities, while maintaining the stage function com-
plexity constant. Although this scenario does not comprehensively address all
possible pipeline applications, it certainly provides guidance on the behaviour of
the general case on distributed systems.

In time, we intend to expand the experiment space by analysing pipelines
with stage functions with distinct complexity and, possibly, including a pipeline-
oriented application such as image processing.

In the same manner, we will study the correlation between the threshold
and the stage functions. Such a study may eventually lead to the automatic
determination of the optimal threshold for a given set of stages.
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