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Abstract

 

This paper investigates the genetic control of the resistance of goats to nematode parasites, and relationships
between resistance and production traits. The data set comprised faecal egg counts (FECs) measured on 830
naturally challenged (predominant species 

 

Teladorsagia circumcincta

 

), crossbred cashmere-producing goats over
5 years (1993-1997) and production traits (fibre traits and live weight) on 3100 goats from the same population in
Scotland, over 11 years (1987-1997). Egg counts comprised repeated measurements (4 to 11) taken at 12 to 18
months of age and production traits, i.e.

 

 

 

live weight and fibre traits, were measured at approximately 5 months of
age. The goats for which FECs were available were subdivided into a line selected for decreased FECs, using the
geometric mean FEC across the measurement period and goats not selected on the basis of FECs, acting as controls.
The selected line had significantly lower FECs, compared with the control, in 4 out of 5 years (back transformed
average proportional difference of 0·23). The heritability of a single FEC measurement (after cubic root
transformation) was 0·17 and the heritability of the mean FEC was 0·32. The heritabilities of the fibre traits were
moderate to high with the majority in excess of 0·5. The heritability of live weight was 0·22. Genetic correlations
between FECs and production traits were slightly positive but not significantly different from zero. Phenotypic and
environmental correlations were very close to zero with the environmental correlations always being negative. It is
concluded that selection for reduced FEC is possible for goats. Benefits of such selection will be seen when animals
are kept for more than 1 year of productive life. 

 

Keywords:

 

 

 

cashmere, genetic parameters, goats, nematoda, selection. 

 

Introduction

 

Goats and sheep are normally managed under
conditions which expose them to gastro-intestinal
parasites, often leading to chronic subclinical
infection and to loss of production of the host.
Growth rate in lambs has been estimated to be
reduced by up to, or even in excess of 25% in UK
conditions (Coop 

 

et al.,

 

 1985), where 

 

Teladorsagia
circumcincta

 

 is the predominant parasite species. 

Parasite control is normally achieved by a
combination of anthelmintic treatment and pasture
management. However, in recent decades there has

been increasing concern about the development of
anthelmintic resistance in parasite populations
(Jackson and Coop, 2000). It has been demonstrated
that parasites harboured by goats develop resistance
more quickly to anthelmintics than parasites
harboured by sheep (Jackson and Coop, 2000).
Control strategies, which are complementary to the
use of anthelmintics and grazing management, are
sought. Selection of sheep and goats for enhanced
resistance to nematode infections is such an option. 

Growing evidence now suggests that there is
considerable variation between individual sheep in
resistance to nematode parasites, as assessed by
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Table 1 Number of goats with production trait measurements

Year of birth Kids Sires Dams

1987 99 4 55
1988 110 11 74
1989 100 19 58
1990 275 26 168
1991 239 44 162
1992 358 15 311
1993 388 16 336
1994 374 16 316
1995 403 15 371
1996 299 17 263
1997 455 15 404

 

faecal egg count (FEC), with heritabilities for FEC
typically between 0·2–0·3 (Raadsma 

 

et al.,

 

 1997;
Morris, 1998). These heritabilities suggest that
selection for resistance is feasible, and successful
selection has been demonstrated in long-term
experiments in New Zealand and Australia (Windon,
1990; Woolaston and Piper, 1996; Morris 

 

et al.,

 

 1997a
and

 

 

 

2000). 

There have been fewer studies on goats than sheep
and current knowledge is not as comprehensive.
There is evidence that goats are more susceptible
than sheep to gastro-intestinal nematode parasites
(Le Jambre, 1984; Pomroy 

 

et al., 

 

1986; Huntley 

 

et al.,

 

1995). Therefore, it might be expected that the
reduction in productivity and financial losses would
be higher in goats than in sheep. However, compared
with sheep, the heritabilities for FEC in goats are
typically low (R. L. Baker, personal communication;
Woolaston 

 

et al.,

 

 1992; Morris 

 

et al.,

 

 1997b;
Mandonnet 

 

et al.,

 

 2001). 

Effective inclusion of resistance to gastro-intestinal
parasites should be beneficial — improving
resistance will help to alleviate concerns over
treatment strategies and may also help to improve
productivity. However, effective inclusion of
resistance traits into breeding schemes requires
knowledge of the genetic relationships between
resistance and productivity. These relationships in
sheep are currently contentious, because no clear
pattern has emerged from research undertaken on
Scottish Blackface sheep under upland conditions,
Australian Merinos or New Zealand dual-purpose
sheep. For goats there have been fewer studies and
therefore the information available is much more
limited. As goats are more susceptible to parasites
and the parasites harboured by goats develop
resistance to anthelmintics more quickly than the
parasites harboured by sheep, the option of selecting
goats resistant to gastro-intestinal parasites needs to
be explored and estimates of the heritability of
resistance and the relationship between resistance
and production traits need to be investigated. 

To investigate the potential of breeding cashmere-
producing goats for resistance to gastro-intestinal
nematode parasites, a study was initiated in Scotland
in 1993 in which goats were selected for increased
resistance, using FEC as the indicator trait. The study
was prompted by the development of multiple
anthelmintic resistance in the herd (Jackson 

 

et al.,

 

1992). The aims of this paper are threefold: firstly to
estimate responses to selection for higher levels of
resistance to gastro-intestinal parasites, secondly to
estimate genetic and phenotypic parameters for
faecal egg counts and thirdly to estimate correlations

with production traits. The production traits
considered were live weight and traits related to fibre
production and quality. 

 

Material and methods

 

Goat population

 

The population studied has been described
previously by Bishop and Russel (1994 and 1996).
The goats were derived from Scottish feral goats and
the importation of animals, embryos and semen from
Iceland, Tasmania, New Zealand and the Gorno Altai
region of Siberia between 1986 and 1988. A
crossbreeding programme amongst the strains of
goats produced a variety of purebred, two- and
three-way crosses, distributed across a total of 18
commercial farms, including the Macaulay Land Use
Research Institute’s Sourhope Research Station,
which served as a nucleus herd. The does gave birth
to their first kids when they were approximately two
years of age and were retained for 3 to 5 parities. The
number of kids evaluated each year for production
traits (see below) and included in the dataset is
shown in Table 1, as are the number of sires and
dams contributing to this dataset. From 1992
onwards only kids born in the nucleus herd were
evaluated. 

Selection as described below, was initiated for fibre
traits in 1991 and nematode resistance in 1992. The
nucleus was initially divided into three lines: a line
selected on an index to improve the value of
cashmere produced (190 does), a line selected for
decreased fibre diameter (95 does) and an unselected
control line (70 does). In 1992 another line was
created, selected for resistance to gastrointestinal
nematodes (helminth line, 95 does). 

 

Parasitological measurements and selection procedure

 

The measurement criterion to assess the degree of
parasite infection was FEC, i.e.

 

 

 

the number of
parasite eggs per gram of faeces. The method used
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Table 2 Number of kids with faecal egg counts, number of sires
they represent and total number of faecal egg counts

No. of kids† No. of sires
Year No. of
of birth Selected Control Selected Control counts

1993 57 61 2 14 675
1994 74 76 4 11 984
1995 74 76 3 9 1034
1996 69 50 3 13 644
1997 75 83 3 6 877

† An additional 135 kids in 1996 that were not in the
selection or ‘control’ lines had a single faecal egg count.

for determining FEC was a saturated salt flotation
technique, modified from the method described by
Christie and Jackson (1982). Apart from the initial
screening described below, faecal egg counts were
measured on goats of both sexes during their second
grazing season when they were 12 to 18 months old,
as previous experimental evidence suggested that
kids in their first grazing season showed little
resistance to parasites, and received suppressive
anthelmintic treatment. The number of FEC
measurements taken from an individual varied
between years, from four to eleven. 

One hundred mixed-age, adult male goats, from
several herds were used in an initial screening in
1992 in which they were exposed to both artificial
and natural 

 

T. circumcincta

 

 challenge. At the end of
the challenge the two males with the lowest
geometric mean FEC were bred with 95 unselected
does to create the helminth line. The following year
the same two males plus an additional two males
with low FEC were used as sires (Jackson 

 

et al., 

 

1995).
In subsequent years three males were selected each
year from within the selection line, again using the
geometric mean FEC as the selection criterion. To
reduce potential inbreeding, selection was practised
within family, i.e.

 

 

 

the cohort of selected bucks each
year did not include full- or half-sibs. Female
replacements were chosen at random. 

Responses in the helminth line were compared with
goats that were unselected for nematode parasite
resistance (control line). These goats generally
corresponded to the goats used as the control for the
fibre lines, but some additional goats from the ‘value’
and ‘fine’ lines were included to increase numbers.
Selection line and control goats of the same sex were
grazed together and thus faced the same parasite
challenge. Additionally in 1996 a single FEC
measurement was collected from all yearling goats
on the farm not participating in the selection line 

 

v.

 

control comparison. The structure of the population
with parasitological measurements is given in Table
2. 

The male yearlings were treated with anthelmintic at
each sampling time for the first 2 years, but from
year 3 were only treated at turn-out onto pasture in
spring following an exposure to artificial challenge
during winter housing. The female yearlings were
always challenged during winter housing and then
treated at turn-out on to pasture, and thereafter
treated on each sampling occasion. Goats in this
study seldom showed clinical signs of nematode
infection. FEC from the artificial challenges are not
included in this paper. 

 

Production traits

 

Kids were evaluated for fibre characteristics on the
basis of a 10-cm

 

2

 

 mid-side patch of fleece sample
taken at about 5 months of age. The sampling site
was over the last rib half way up the side of the
animal, as this site is considered to be representative
of the fleece as a whole (Pattie 

 

et al.,

 

 1989). Each year
kids were sampled and recorded from all available
lines. 

The traits measured were as follows: live weight at 5
months of age (LW), cashmere weight in the 10-cm

 

2

 

patch sample (P_Cash), mean cashmere fibre
diameter (Diam) and the standard deviation of fibre
diameters in each sample (Diam_sd) and cashmere
yield (Yield). Yield is cashmere weight as a
proportion of total fibre weight. Until 1996, fibre
diameter was measured following manual separation
and weighing of guard hair and cashmere fibres, by
projection microscopy using standard procedures
(International Wool Textile Organisation (IWTO),
1989). In 1997, fibre diameter was determined by
optical fibre diameter analyser (OFDA) according to
specification IWTO-47-95 (IWTO, 1995). In the first 2
years of the trial, fibre length was measured directly
on the animal at the time of sampling, however this
measurement was subsequently discontinued. From
1992 onwards, staple length was measured on the
laboratory samples, and for the purpose of analyses
this is treated as the same trait as fibre length. Live
weight was also recorded at the time of fibre
sampling. 

 

Data analysis
Distributions. 

 

The FEC measurements and cashmere
traits were generally not normally distributed. It has
been reported many times that FEC measurements
often fit the negative binomial distribution. This
distribution describes traits which show
overdispersion in comparison with the normal
distribution, with a small number of animals
contributing a large proportion of the larvae to the
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pasture (Barger, 1985; Stear 

 

et al.,

 

 1995 and 1998). For
example, in New Zealand studies it has been
estimated that the most susceptible 10% of animals
contribute 50% of the pasture contamination
(McEwan, 1994). In this dataset the negative
binomial distribution was fitted to the faecal egg
count dataset within year, sex and line using the

 

GENSTAT

 

 package (Lawes Agricultural Trust (LAT),
1993). 

Two methods were used to identify the best
transformation that would render faecal egg counts
approximately normally distributed. In the first
method, commonly used transformations (natural
logarithm, square and cubic root) were made to the
trait and they were tested for normality using the

 

GENSTAT

 

 package (LAT, 1993). This algorithm uses a 

 

χ

 

2

 

test of association for testing the goodness of fit of
the data to the defined distribution. The second
method was a Box-Cox transformation using the
equation given by Sokal and Rohlf (1995). The
objective of this method is to find the best
transformation for a given dataset (Y). This is done
by estimating Y’ = (Y

 

λ

 

 – 1)/

 

λ

 

, 

 

for 

 

λ

 

 

 

≠

 

 0

 

, and Y’ = lnY,

 

for 

 

λ

 

 

 

= 0. A log likelihood is then estimated as 

 

L

 

 = –

 

v

 

/2 ln 

 

s

 

2

 

 + (

 

λ

 

 – 1)

 

v

 

/

 

n

 

 

 

Σ

 

 ln 

 

y

 

, where, 

 

v

 

 

 

are degrees of
freedom from analysis of variance and 

 

s

 

2

 

 is the error
mean square based on 

 

n

 

 degrees of freedom. The
value of 

 

λ

 

 which maximizes the log-likelihood
function yields the best transformation to normality.
The best transformation (from both methods) was
found to be the cubic root (see 

 

Results

 

 section). 

 

Statistical model specification. 

 

Least-squares analysis of
variance was undertaken in order to identify
important sources of variation. Fixed effects which
were fitted included year, farm, date of birth, sex, if
the animal was born to its genetic mother or by
MOET (multiple ovulation and embryo transfer)
procedure (practised to spread genotypes across
farms during the initial expansion of the population)
and litter size. The genetic origin of the animals i.e.
proportion of different genotypes, was also fitted.
For the FECs the proportion of Icelandic genotype
was the only genetic group effect found to be
significant and it was fitted as a covariate [regression
coefficient (

 

3

 

√

 

FEC) = 1·70 (s.e.

 

 

 

0·49) 

 

✕ 

 

proportion
(Icelandic)]. All the significant first degree
interactions were fitted as well. 

The same fixed effects described above were used for
analyses of production traits, and the same
procedure for finding the appropriate model was
performed. For the fibre diameter a code for the
operator who performed the measurement was also
available and fitted as a fixed effect. 

The fixed effects which were found to be significant
were fitted in a REML analysis performed in 

 

GENSTAT

 

(LAT, 1993), fitting also sire as a random effect. For
each year the mean FEC of the selected line and
control animals were compared using a 

 

t

 

 test. 

 

Genetic parameter estimation. 

 

An animal model was
fitted, using ASREML (Gilmour 

 

et al.,

 

 1996), for
estimating the additive genetic variance components
for both the FEC measurements and the production
traits, using all known pedigree relationships. For
faecal egg counts (

 

3

 

√

 

FEC), permanent environmental
effects, i.e.

 

 

 

the environment covariance between the
repeated observations on the same animal, and
genetic maternal effects were fitted in turn. The
likelihood ratio test was used to distinguish between
models and select the most parsimonious model. 

The genetic origin of the goat has a large effect on all
production traits (Bishop and Russel, 1994 and 1996).
It was accounted for by regressing the measurement
for each kid on the proportion of each of the five
strains which comprised its own genotype. This
assumes no heterosis effects, which is a reasonable
assumption for the fibre traits (Bishop and Russel,
1994). The resulting heritabilities may be thought of
as within-strain heritabilities. For FEC, as described
above, only the proportion of Icelandic genotype was
fitted as a covariate. 

Bivariate analyses of the production traits with FECs
were performed using the mean of the FEC
measurements for estimating genetic and phenotypic
correlations between traits. All available production
data were used to maximize the precision of the
estimates. Phenotypic correlations for a single FEC
measurement were estimated from the results,
rescaling the environmental variance by the average
number of measurements per animal. 

 

Results

 

Summary of traits and their distribution

 

In Table 3 the mean, minimum and maximum values
for each trait are shown along with the phenotypic
standard deviations. 

For FECs, the cubic root transformation proved
better than the square root or the logarithmic
transformation in making the data approximately
normally distributed. Box-Cox transformation gave a

 

λ

 

 value of 0·33 indicating that the cubic root was the
best transformation for this particular dataset. It
should be noted that the 

 

λ

 

 value is an empirical one,
however there are particular values which point to
commonly used transformations: 1 points to the
linear, 0 to the logarithmic, 0·5 to the square root and
0·3 to the cubic root. For the production traits,
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Table 3 Summary statistic for each trait

Trait Units Min. Mean Max. σp

Faecal egg counts eggs/g 0 268 4410
Cubic root (faecal egg counts + 1) 3√eggs/g 1 6·62 16·4 1·36
Live weight at 5 months of age kg 8·5 16·8 34·5 3·46
Length of fibres mm 10 46·9 80 9·97
Cashmere weight in 10 cm2 patch sample (P_Cash) g 0·06 0·26 1·34 0·12
Yield 100xg/g 3·9 48·2 86·5 12·3
Diameter (Diam) µm 11·1 15·1 24·7 1·42
Diameter standard deviation (Diam_sd) µm 1 2·89 6·5 0·57
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Figure 1 Mean faecal egg count for selected ( ■ ) and
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P_Cash was skewed and not normally distributed
but a logarithmic transformation was used to create
an approximately normally distributed trait. 

The negative binomial distribution was fitted to the
FEC measurements. This distribution is described by
two parameters: 

 

m

 

 and 

 

k

 

. Parameter 

 

m

 

 is the mean
and 

 

k

 

 describes the aggregation of the distribution: as

 

k

 

 

 

→

 

 0 the majority of the parasite population is
concentrated on fewer animals, and as 

 

k

 

 

 

→

 

 

 

∞

 

 the
parasite population is more randomly distributed
(Anderson and May, 1992). As mentioned above, the

 

GENSTAT

 

 statistical package tests the fit of the data to
the specified distribution using a 

 

χ

 

2

 

 test of
association. The data fitted the negative binomial
distribution in only 4 out of 20 year 

 

✕ 

 

line 

 

✕ 

 

sex
cohorts. 

Averaging across the whole data set, the parasite
burden of the 5% of the animals with the highest FEC
contributed 19% of the eggs dropped to the pasture
and the parasite burden of the 10% animals with the
highest FEC contributed 31%. 

 

Selection responses of FEC

 

In Figure 1a the mean of the cubic-root-transformed
faecal egg counts (CFEC) of both the control and the
selected animals are given, along with the standard
errors of the mean. The mean values are not shown
for the pre-screening population of the sires as there
is no valid comparison between those and
subsequent values. Therefore, the results are given
from the first generation of selected animals
onwards. In Figure 1b the back-transformed means
are shown for the cubic root transformation, for both
lines.

 

Heritabilities of FEC

 

For FEC the models which included maternal genetic
effects or permanent environmental effects were
found to fit the data no better than the ones without
them, using the likelihood ratio test. However, fitting
the permanent environmental effects allowed
estimation of the within-season repeatability of FEC.

In Table 4 heritabilities and repeatabilities and their
standard errors are given for FEC, on the cubic root
scale (CFEC) for a single FEC measurement. The
heritability of the mean FEC for each animal was 0·32

Table 4 Heritabilities (h2) and repeatability (re) of faecal egg count
on the cubic root scale (CFEC)

Trait h2† s.e. h2‡ s.e. re s.e.

CFEC 0·17 0·02 0·11 0·03 0·17 0·02

† h2: permanent environmental effects not fitted.
‡ h2: permanent environmental effects fitted.
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Table 5 Heritabilities (h2) and s.e. of cashmere traits

Trait h2 s.e.

Length 0·57 0·05
P_Cash 0·49 0·04
Yield 0·65 0·04
Diam 0·64 0·04
Diam_sd 0·28 0·04
Log(P_Cash) 0·61 0·04
Log(Diam) 0·63 0·04
Live weight 0·22 0·05

Table 6 Genetic (rg), phenotypic (rp) and environmental (re)
correlations of faecal egg count (FEC) (cubic scale, CFEC) with
production traits, both for mean of several FEC measurements and
for single measurements†

CFEC

Trait rg s.e. rp re

Length 0·23 0·15 0·06 –0·08
0·04 –0·04

P_Cash 0·10 0·15 –0·03 –0·10
–0·02 –0·06

Yield 0·16 0·13 0·05 –0·05
0·03 –0·03

Diam 0·19 0·16 –0·01 –0·14
–0·00 –0·08

Diam_sd 0·30 0·19 0·07 –0·02
0·05 –0·01

Log(P_Cash) 0·10 0·14 –0·02 –0·11
–0·01 –0·06

Log(Diam) 0·21 0·16 0·03 –0·08
0·00 –0·05

Live weight 0·00 0·15 –0·01 –0·03
–0·01 –0·01

† The first line for each trait is the correlation with the mean
FEC and the second is the deduced correlation for a single
FEC measurement.

 

(s.e. = 0·09). These parameters were estimated with
the proportion of Icelandic genotype fitted as a
covariate. 

When the proportion of the Icelandic genotype was
not fitted, the heritability on the cubic root scale
increased, slightly, to 0·18 (s.e.

 

 

 

0·02) when permanent
environmental effects were not fitted, but did not
change when they were fitted (0·14, s.e.

 

 

 

0·03). There
was a slight increase in repeatability when the
proportion of Icelandic was not fitted (0·18, s.e.

 

 

 

0·02).
When the mean of repeated measurements was taken
the heritability on the cubic root scale increased to
0·39 (s.e.

 

 

 

0·08). 

 

Heritabilities of production traits

 

Heritabilities with standard errors are given in Table
5 for the cashmere traits both on the logarithmic and
observed scale. It should be noted that the
heritabilities of live weight were estimated with a
model that included maternal genetic effects. Fitting
the covariance between direct genetic and genetic
maternal effects did not improve the model and
therefore the covariance of these effects was not
included in the analysis. The maternal genetic effect
for live weight, as a proportion of phenotypic
variance, was estimated to be 0·28 (s.e.

 

 

 

0·03). When
the maternal genetic effects were not included the
heritability estimate was 0·50 (s.e.

 

 

 

0·05). 

 

Correlations between FECs and production traits

 

In Table 6 the genetic, phenotypic and environmental
correlations of production traits with the mean of
several FEC measurements and with one
measurement are shown. Standard errors are shown
for genetic correlations. As can be seen all the
correlations are small to moderate, and not
significantly different from zero, although the genetic
correlations are always more positive than the
phenotypic and the environmental correlations. The
environmental correlations are all slightly negative. 

 

Discussion

 

The aim of this study has been to explore the
possibility of breeding for resistance to gastro-
intestinal parasites in goats. The indicator trait of
resistance to gastro-intestinal parasites, FEC, was
found to be heritable albeit less heritable than the
same trait in sheep. The fibre related traits were
found to be generally highly heritable traits. Live
weight was the only trait for which maternal effects
were found to be important and this trait was found
to be moderately heritable. The genetic correlations
between production traits and FEC were always
positive, although not significantly different from
zero, whereas the phenotypic and environmental
correlations were clustered around zero. 

Many previous experiments in sheep have shown
that it is possible to breed for reduced FECs. The
mean FEC of the control and the selected lines in this
study were different in the first three years and there
was a tendency in the last 2 years for the two lines to
diverge further apart. The significant difference
between the two lines in conjunction with the fact
that FEC is a heritable trait shows that successful
breeding for reduced FECs is possible in goats as it is
in sheep. 

The heritability of a single FEC measurement was
found to be low compared to the majority of values
published (usual range 0·2 to 0·4) for sheep. The
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heritability of a single FEC measurement when
permanent environmental effects were not fitted was
found to be equal to the repeatability when
permanent environmental effects were fitted. There
are indications from this data set that the
environmental correlation changes between different
measurements. Measurements taken close together
in time tend to have a positive correlation but the
correlation reduces, even becoming negative, as the
time between measurements increases. This
observation and its consequences will be studied in
this dataset in a subsequent analysis. 

Previous studies have suggested that the heritability
of FEC in goats is relatively low. Woolaston 

 

et al.

 

(1992) estimated a heritability of 0·04 (s.e.

 

 

 

0·03) for
weaners and 0·08 (s.e.

 

 

 

0·06) for adults. The
experiment was conducted in Fiji and involved 1513
weaners (defined as <365 days old) and 789 adult
goats (defined as >365 days old). The permanent
environmental effect was 0·00 (0·11) which indicated
that the repeatability is not greater than the
heritability. Morris 

 

et al. 

 

(1997b) in a study of Saanen
does in New Zealand estimated an overall
heritability of FECs of 0·05 (s.e.

 

 

 

0·03). It must be
noted that all the other studies have been performed
in the tropics where 

 

Haemonchus contortus

 

 is the
predominant species. The present study was
performed in a temperate region (Scotland) where
the predominant species is 

 

T. circumcincta. 

 

Heritability estimates presented by Baker (1998) for
goats under African conditions were 0·11 (s.e.

 

 

 

0·11)
for weaners and 0·03 (s.e.

 

 

 

0·03) for kids at 6 months of
age. Assuming that the same, or similar,
immunological mechanisms act in both goats and
sheep, and given the observation (Bishop 

 

et al.,

 

 1996)
that the expression of genetic control in sheep
increases with age, the kids studied by Baker (1998)
may have been too young for their defence
mechanisms to be effective. In a subsequent analysis
of the same data set Baker et al. (2001) estimated
heritabilities of 0·08 (s.e. 0·07) at 2 months of age, 0·26
(s.e. 0·15) at 4·5 months of age and 0·08 (s.e. 0·12) at 14
months of age. The relatively large standard errors
are due to the fact that comparatively small numbers
of animals were measured. 

Mandonnet et al. (2001), in a study in Guadeloupe in
the French West Indies, estimated genetic parameters
for resistance to worms in a population of Creole
goats. Their estimate of heritability was 0·20 at 82
days of age. Post weaning, the estimate of heritability
was 0·14 (s.e. 0·05) at 4 months of age and 0·33 (s.e.
0·06) at 10 months of age. It should be noted that the
heritabilities at the 4 and 10 months of age were
estimated for the mean of two measurements taken 1

week apart. Assuming that they represent the same
infection these heritabilities are higher than the ones
which would have been estimated on the basis of one
measurement. 

Naïve lambs start to mount an immune response,
demonstrated by an increase in the heritability of the
trait, when they come to be challenged by parasites.
Faecal egg counts appear to become a heritable trait
for lambs at approximately 3 months of age (Bishop
et al., 1996). Lloyd (1987) suggested information from
sheep population studies could be used to
extrapolate for goat populations. It could be
suggested that goats develop an immunity response
in a pattern similar to sheep. However, goats are
more susceptible to parasites than sheep (Le Jambre,
1984; Pomroy et al., 1986; Huntley et al., 1995),
although the reasons for this increased susceptibility
are not known. It may be hypothesized that the
feeding behaviour of goats (browsing), which would
result in exposure to lower levels of larval intake
than in sheep (grazing), has led this species to a
different evolutionary pathway where resistance to
parasites was (is) not an important trait because
goats were (are) not exposed to such high levels of
parasites as sheep. This increased susceptibility
might also be accompanied by a late expression of
immunity. Therefore goats might express a
genetically influenced immune response at a later
age than sheep (R. L. Baker, personal
communication). The trend of the Baker et al. (2001)
estimates is a for steady increase in heritability
during the first 4·5 months of an animal’s life, then a
steady flat phase till 10 months of age and then an
equally steady decrease till the 14 months of age (last
data point). Given this observation it could be
suggested that the increase in heritability is
associated with a phase of acquisition of immunity,
which may last longer in goats compared with sheep.
As mentioned before the standard errors of the
estimates of Baker et al. (2001) were large and the
estimates themselves were not significantly different
from each other. 

As mentioned above, the heritability of the mean of
several measurements is higher than that of a single
measurement, as taking the mean of multiple
measurements reduces the variance due to the
reduction of non-permanent environmental effects.
The amount by which it is reduced depends on the
number of measurements taken and the repeatability.
For a trait such as FECs for which the environmental
conditions have a large effect there is, theoretically, a
lot to be gained from multiple measurements
(Falconer and Mackay, 1997). In the present study the
number of measurements taken was approximately 7
in 1993 and 1995, 11 in 1994, 4 in 1996 (some animals
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had one measurement in 1996), and 5 in 1997. The
repeatability of FECs was found to be 0·17 As with all
low heritability and low repeatability traits, more
FEC measurements will result in an increase in the
heritability of the trait and therefore an increase in
the accuracy of the estimate of an individual animal’s
breeding value. In this particular case (h2 = 0·11,
re = 0·17, repeatability model), using quantitative
genetics theory, it can be estimated that the
heritability of the mean of three measurements will
increase to 0·27 and that of five measurements to 0·36
approximately. In practice, the benefit of a more
accurate estimation of an individual’s breeding value
should be weighed against the cost of the extra
measurements. 

Most of the heritabilities found for cashmere traits
are high compared to the estimates for other
production traits, and are in general agreement with
previous studies (Bishop and Russel, 1996; Gifford et
al., 1990; Bigham et al., 1993). Live weight was the
only trait for which significant maternal effects were
found. Fitting maternal effects resulted in a change in
the heritability estimate from 0·50 to 0·22. The
estimated heritability was similar to that of Gifford et
al. (1990) and somewhat lower than that of Bishop
and Russel (1996). As pointed out by Bishop and
Russel (1994) live weight, unlike the fibre traits,
showed heterosis. In this analysis it was assumed
that there was no heterosis. The present dataset is
larger than the one used by Bishop and Russel (1996),
i.e. it is the same dataset augmented by several more
years of data. Therefore there is much more
information and a deeper pedigree, which is
essential for estimating maternal effects. Therefore,
the difference in the estimated heritabilities and
maternal effects are probably due to the extra
information available in this analysis. 

The results of the bivariate analysis indicate that
FECs and cashmere traits are phenotypically
uncorrelated, although there are indications of small
unfavourable genetic correlations. This is in
agreement with most findings for sheep, where wool
production traits have a small or zero correlation
with FEC (Woolaston, 1990; Morris et al., 1997a and
2000; Greef and Karlsson, 1999). Resistance to
gastrointestinal parasites in kids, as results from
studies have so far shown (R. L. Baker, personal
communication; Mandonnet et al., 2001), is not
genetically correlated with live weight. Therefore,
selection for resistance is unlikely to have a
correlated genetic effect on live weight, although it
might influence fibre traits decreasing both fibre
weight and diameter. Economically, however these
two effects on cashmere are in the opposite direction,
and predicted responses in overall fleece value using

the cashmere production index, as described by
Bishop and Russel (1994), are negligible. An
environmental advantage of selection for reduced
FECs will be lowered pasture contamination, with
possible longer-term benefits in reduced parasite
challenge, as described by Bishop and Stear (1997
and 1999). 

The results of this study show that there is potential
for breeding for reduced FECs, an indicator of
resistance to gastro-intestinal parasites, in goats. It is
important to note that with the currently available
information, and if the hypotheses described above
are true, it is more difficult to exploit the heritable
variation in goats than in sheep, as they express
genetic variation in resistance to gastro-intestinal
nematode parasites at an older age. Breeding for
resistance to worms is likely to be beneficial in cases
where the animals are kept for more than one year of
productive life, such as in the case of milk
production or fibre production, assuming that
genetic differences in resistance are expressed in
adult animals. As in the case of sheep there will be a
benefit of multiple measurements and a compromise
should be made between cost and increased
heritability. An aspect which needs to be addressed
in studies investigating the genetic control of
resistance in goats is the age at which the resistant
animals express their superiority. Ward et al. (1999)
has shown that resistant lambs begin to express
resistance earlier than other lines. In goats where
resistance is expressed at comparatively late ages,
this is of considerable importance. 
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