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[1] We present a statistical technique for analyzing longitudinal channel profiles. Our
technique is based on the integral approach to channel analysis: Drainage area is integrated
over flow distance to produce a transformed coordinate, χ, which has dimensions of length.
Assuming that profile geometry is conditioned by the stream power law, defined as
E=KAmSnwhere E is erosion rate, K is erodibility, A is drainage area, S is channel gradient,
and m and n are constants, the slope of a transformed profile in χ-elevation space should
reflect the ratio of erosion rate to channel erodibility raised to a power 1/n; this quantity is
often referred to as the channel steepness and represents channel slope normalized for
drainage area. Our technique tests all possible contiguous segments in the channel network
to identify the most likely locations where channel steepness changes and also identifies the
most likely m/n ratio. The technique identifies locations where either erodibility or erosion
rates are most likely to be changing. Tests on a simulated landscape demonstrate that the
technique can accurately retrieve both the m/n ratio and the correct number and location of
segments eroding at different rates where model assumptions apply. Tests on natural
landscapes illustrate how the method can distinguish between spurious channel convexities
due to incorrect selection of the m/n ratio from those which are candidates for changing
erodibility or erosion rates. We also show how, given erosion or uplift rate constraints, the
method can be used to constrain the slope exponent, n.

Citation: Mudd, S. M., M. Attal, D. T. Milodowski, S. W. D. Grieve, and D. A. Valters (2014), A statistical framework to
quantify spatial variation in channel gradients using the integral method of channel profile analysis, J. Geophys. Res. Earth
Surf., 119, doi:10.1002/2013JF002981.

1. Introduction

[2] Fluvial incision is one of the fundamental geomorphic
processes that drive the evolution of eroding landscapes.
Early geomorphologists recognized that channel gradients
vary systematically with drainage area and reasoned that all
else being equal, steeper channels should erode more rapidly
[e.g., Davis, 1899]. This reasoning has motivated much re-
search into bedrock rivers because it raises the possibility
of using channel gradients to infer erosion rates. Howard
and Kerby [1983] proposed that in bedrock rivers, erosion
should be proportional to the power the river expends on its
bed. Stream power depends on the flux of water in the chan-
nel, which is a function of drainage area, and the channel gra-
dient. Thus, in areas of uniform lithology and climate a
characteristic relationship between slope and drainage area
can be expected for a given erosion rate. Later workers found
that the geometry of bedrock river profiles is broadly consis-
tent with a class of models similar to that first suggested by

Howard and Kerby [1983] and extended by others [e.g.,
Seidl and Dietrich, 1992; Howard, 1994]. Subsequently,
so-called slope-area analysis has frequently been used to re-
veal patterns of erosion and, by inference, tectonic activity
in channel networks [Stock and Montgomery, 1999; Kirby
and Whipple, 2001; Kirby et al., 2003; Snyder et al., 2003;
Wobus et al., 2006; Miller et al., 2007; DiBiase et al.,
2010; Kirby and Ouimet, 2011; Kirby and Whipple, 2012].
[3] Topographic data are, however, inherently noisy. The

noise arises from uncertainties in the data collection [e.g.,
Hodgson and Bresnahan, 2004; Eckert et al., 2005] but also
from the natural heterogeneity that characterizes geomorphic
systems: Channel beds are often uneven and local topo-
graphic features (e.g., steps in a river profile due to fractures
in bedrock; accumulation of boulders at the base of a rock
face) may not reflect regional erosion rates. Because slope
is the spatial derivative of topography, slope data contain
yet more noise, so analysis of channel slopes requires a de-
gree of smoothing and data binning that may reveal broad
patterns in the landscape [e.g., Wobus et al., 2006] but will
fail to identify subtler spatial and/or temporal variations in
erosion rates. Perron and Royden [2013], building on earlier
work by Royden et al. [2000], offered an elegant solution to
this problem by using an integral transformation of the river
profile’s horizontal coordinate into a variable χ (chi), which
has units of distance but accounts for longitudinal variations
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in drainage area. Plots of channel elevations against this
transformed length variable (or “chi plots;” Perron and
Royden [2013]) can be used to reveal the steepness of river
reaches without having to calculate channel slopes. This
form of channel analysis, which Perron and Royden [2013]
have called the integral method, has a number of attractive
features. Critically, as the integral method does not involve
differentiation, there is a significant reduction in noise
relative to slope-area analysis. Consequently, estimates of
channel steepness using the integral method have reduced
uncertainty, and there is no longer a requirement to log-bin
the data, which permits analysis of much finer details in the
channel network (see Perron and Royden [2013] for a full
discussion of the advantages and potential drawbacks of this
method). The integral method has the potential to provide
precise quantitative information about erosion rates and their
spatial and temporal variations over areas for which topo-
graphic data are available, which could then be used to gain
insight into the spatial and temporal variations in the con-
trolling external forces, namely tectonics and climate. To
achieve this, however, a transparent, robust, and objective
method for discriminating between river reaches with differ-
ent normalized steepness values must exist. In the following
sections we (i) outline the theoretical principles of the inte-
gral method and discuss its application in steady state and
transient and/or heterogeneous landscapes, (ii) develop a sta-
tistical framework with which to apply this method, and (iii)
demonstrate the utility of this technique using a series of
examples based on both numerical simulations and analysis
of real landscapes.

2. The Integral Method of Channel
Profile Analysis

[4] The evolution of a channel experiencing uplift and
erosion driven by stream power can be stated as follows
[e.g., Howard and Kerby, 1983;Whipple and Tucker, 1999]:

∂z
∂t

¼ U x; tð Þ þ K x; tð ÞAm ∂z
∂x

����
����
n

; (1)

where z (dimensions length; dimensions are hereafter denoted
in brackets and abbreviated as [L]ength, [M]ass, and [T]ime) is
the elevation of the channel, x [L] is a longitudinal coordinate,
A [L2] is the drainage area, U [L T�1] is the uplift rate, and
K [T�1 L(1�2m)] is an erodibility coefficient which encapsu-
lates the influence of climate, lithology, and other factors.
The exponentsm and n are empirically derived coefficients, al-
though values of n have been proposed based on the mechan-
ics of bedrock incision, ranging between 2/3 and 7/3 [Whipple
et al., 2000]. Both U and K may be functions of space and
time, and K may also be a function of sediment supply [e.g.,
Sklar and Dietrich, 2004; Cowie et al., 2008; Hobley et al.,
2011] and incorporate the influence of an erosion threshold
and channel width adjustment [e.g., Snyder et al., 2003;
Lague, 2010; Attal et al., 2011]. The stream power approach,
its limitations, and alternatives are reviewed by Lague
[2013]. The integral method devised by Perron and Royden
[2013] (see also Royden and Perron [2013]) is based on the
assumption that the evolution of the studied channels can be
described by equation (1).

2.1. Chi Analysis: Steady State Example

[5] To introduce the integral method of channel analysis,
we consider a simplified system in which K and U are con-
stant in space and time, and uplift is balanced by erosion such
that the elevation of the channel does not change in time
(a so-called steady state channel):

dz

dx

����
���� ¼ U

K

� �1=n

A xð Þ�m=n: (2)

[6] Equation (2) implies that plotting slope (|dz/dx|) against
drainage area in log-log space should produce a straight line
with a gradient-m/n (often referred to as the channel concav-
ity or concavity index, e.g., Whipple and Tucker [1999]),
whereas the vertical position of the line in the plot should
be indicative of the ratio of uplift to erodibility (U/K) raised
to the power 1/n. This relationship has been exploited by nu-
merous authors to infer both erodibility [e.g., Stock and
Montgomery, 1999] and tectonic uplift rates (see reviews
by Wobus et al. [2006] and Kirby and Whipple [2012]).
However, the noise inherent in slope data requires smoothing
and averaging of slope-area data before they can be used to
make inferences about erosion or tectonics [Wobus et al.,
2006]. In addition, slope-area data tend to show discontinu-
ities, due to the fact that drainage area does not increase
steadily downstream: Abrupt increases in drainage area at
tributary junctions cause clustering of the data and create
large uncertainties on regressions. An alternative approach
is to avoid differentiation and thus eliminate the main source
of noise [e.g., Royden et al., 2000; Pritchard et al., 2009;
Perron and Royden, 2013]. One means of retaining drainage
area and elevation information is to separate and then inte-
grate equation (2) [e.g., Royden et al., 2000; Harkins et al.,
2007; Perron and Royden, 2013]:

∫dz ¼ ∫
U

KAm

� �1=n

dx: (3)

[7] In a system in which K and U are constant in space and
time, equation (3) may be integrated upstream from some
base level at xb to arrive at

z xð Þ ¼ z xbð Þ þ U

KAm
0

� �1=n

χ; (4a)

where

χ ¼ ∫xxb
A0

A xð Þ
� �m=n

dx; (4b)

and A0 is a reference drainage area, introduced to ensure the
integrand in equation (4b) is dimensionless. The transformed
coordinate, χ, has dimension of length and the elevation, z(x),
is a linear function of χ in this situation (K and U constant in
space and time) according to equation (4a). Thus, a channel
that obeys equation (2) will appear as a straight line in a chi
plot, and the slope of the line will be a function of the uplift
to erodibility ratio (U/K) raised to the power 1/n. Perron
and Royden [2013] pointed out several additional features
that make chi plots an attractive alternative to slope-area
plots. Importantly, the coordinate χ depends on the m/n ratio,
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which is not known a priori but has been fixed in most slope-
area analyses through the use of a reference concavity index:
A value of 0.45–0.5 is frequently used, representing the con-
cavity that river profiles should theoretically achieve should
erosion rates be proportional to the specific stream power or
shear stress [e.g., Wobus et al., 2006]. However, Perron
and Royden [2013] proposed two independent criteria to es-
timate and test the most likely m/n ratio for a steady state
channel experiencing uniform uplift and incising rocks with
uniform erodibility (equation (2)): (i) individual channels in
the network should be linear in χ-elevation space and (ii)
all channels in the network should be collinear in χ-elevation
space (Figure 1). Therefore, the best fitting m/n value can be
found by iterating through a range of m/n values and maxi-
mizing the R2 value of the elevation data in χ space for the
main stem channel and then for its tributaries.

2.2. Chi Plots in Transient and Spatially
Heterogeneous Landscapes

[8] Royden and Perron [2013] demonstrated that chi plots
could be used to analyze steady state channels in landscapes
characterized by uniform uplift and erodibility, both spatially
and temporally. They demonstrated further that the coordi-
nate transformation of equation (4b) can be used to find fam-
ilies of analytical solutions for transient channel behavior.
Using these solutions, Royden and Perron [2013] demon-
strated the presence of what they termed “slope patches,”
which are mathematical entities that migrate upstream
in χ-elevation space. If n= 1, slope patches move upstream
in χ space at a fixed rate, regardless of the uplift rate, and
the χ-elevation plot is composed entirely of linear segments
(Figure 2). If n> 1, slope patches move quicker if they are
generated by an increase in uplift rate; if n< 1 slope patches
generated by a decrease in uplift rate move faster. This
behavior is consistent with theoretical work [Rosenbloom
and Anderson, 1994; Weissel and Seidl, 1998; Tucker and
Whipple, 2002] which showed that in river systems obeying
equation (2), the celerity (C) of perturbations migrating up
the channel is

C ¼ KAmSn�1: (5)

[9] For n = 1, the celerity of perturbation is independent of
slope (and thus of uplift rate); if n> 1, the celerity of the per-
turbation is greater on steeper slopes and vice versa. When
n ≠ 1 there exists a possibility that an upstream slope patch
may move faster than its downstream neighbor, resulting
in nonlinear sections Royden and Perron [2013] termed

“stretch zones.” In addition, when n ≠ 1 downstream patches
may move quicker than upstream patches leading to a loss of
information along the channel network; Royden and Perron
[2013] termed these entities “consuming knickpoints.” In
the case of time invariant but spatially varying uplift,
Royden and Perron [2013] demonstrated that transformed
channel profiles are made up of piecewise linear segments
which reflect local uplift rates.
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Figure 1. Sketch illustrating examples of linearity or nonlinearity of channels in χ-elevation space.
Channel networks with spatially homogenous uplift and erodibility that are at steady state should have
channels that are not just linear but collinear.
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Figure 2. Illustration of upstreammigration of channel seg-
ments in χ-elevation space. Profiles generated using the
CHILD model (see text) with n = 1. A channel in steady state
with an uplift rate of 0.3 mm yr�1 experiences two consecu-
tive step increases in uplift rate 1 Ma apart, to 0.6 and then
0.9 mm yr�1. The black curves show chi profiles at the time
of the second step change and every 0.1 Ma thereafter. The
blue, green, and red lines are parallel to portions of the chan-
nel adjusted to the different uplift rates 0.3, 0.6, and 0.9 mm
yr�1, respectively. The dashed red line is parallel to the solid
red line: It is drawn to illustrate how a line crossing the inter-
section of the segments formed by uplift rates of 0.6 and
0.3 mm yr�1 is parallel to the segment formed by an uplift
rate of 0.9 mm yr�1. This demonstrates that when n = 1, chan-
nel segments representing a given phase during which exter-
nal forcing was constant (or “slope patches,” see schematic
chi plot in inset) maintain a constant length and slope in
χ-elevation space. When n does not equal to 1, information
can be lost as segments consume other segments, but as long
as segments are not “erased,” they will retain some steepness
information that can, in principle, be related to the uplift rates
or climatic conditions under which they formed.
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2.3. Need for a Statistical Approach to Create Chi Plots
From Topographic Data

[10] To construct chi plots, the m/n ratio must be assigned.
Perron and Royden [2013] suggest performing linear regres-
sion for a range of m/n ratios and selecting the ratio with the
minimum value of R2. However, as discussed in the previous
section, the results of Royden and Perron [2013] imply that,
in transient landscapes, spatial or temporal changes in uplift
rates could lead to channel profiles that are piecewise linear.
This hinders attempts to find the most likelym/n value. For ex-
ample, a channel that has undergone stepwise increases in up-
lift rates will be composed of two or more segments and will
thus appear convex up (with a low R2 value) in the chi plot with
the true m/n ratio (Figure 3). Perron and Royden [2013] also
suggested that in simple transient cases the collinearity of trib-
utaries can be used to identify the correct m/n ratio, highlight-
ing the need for statistical tests that go beyond minimization
of an R2 value. Thus, if our aim is to identify slope patches that
are indicative of spatial or temporal changes in boundary con-
ditions (uplift or climate) or rock properties, we need an objec-
tive, statistically robust, and reproducible method for doing so.
In this contribution we present one such method.

3. A Statistical Method to Identify the Most Likely
Combination of Segments in χ- Elevation Space

[11] The method begins with a channel network for which
elevation (z), flow distance (x), and drainage area (A) have
been extracted. Our approach tests every possible combina-
tion of linear channel segments to find the most likelym/n ra-
tio and the most likely piecewise linear fit to channel profile
data in χ-elevation space.

3.1. Integration of the Channel Profile

[12] The first step is to calculate the χ coordinate by integrat-
ing equation (4b) for each node in the channel network. For in-
tegration, we use the rectangle rule because increases in drainage
area are focused at tributary junctions; the rectangle rule better
captures the stepped nature of changes in drainage area along
channels than other methods such as the trapezoid rule.

3.2. Segment Fitting Algorithm

[13] Our method relies on an algorithm that separates data
into the most likely combination of piecewise linear segments.

We favor a technique that uses piecewise fitting over other ap-
proaches such as spline fitting [e.g., Hansen and Kooperberg,
2002], which joins segments that share end nodes, otherwise
called “knots.” We do not tie segments because we want a
technique that can capture the two types of knickpoints de-
scribed by Kirby and Whipple [2012] as “vertical step”
knickpoints, where there is a step between adjacent nodes in
the channel network, as well as those they describe as “slope
break” knickpoints where channel steepness differs above
and below the knickpoint.
3.2.1. Partitioning the Data
[14] The first step in the segment fitting algorithm is to “par-

tition” the data. Partitioning involves finding every combination
of positive integers that sum to some integer N (e.g., 5 can be
partitioned as 5; 4+1; 3+ 2; and 3+1+1). In our application,
N is the number of nodes in χ-elevation space that we use for
a particular channel, channel segment, or channel network.
We use the partitioning algorithm described in Skiena [1990]
and implemented by Frank Ruskey (http://theory.cs.uvic.ca/
inf/nump/NumPartition.html). To allow the user to define a
minimum number of nodes in a segment, we have modified
the Skiena [1990] algorithm to reject partitions that have less
than the minimum number of nodes. The user is allowed to se-
lect a minimum number of nodes in a segment because we rea-
son that allowing segments made up of two nodes, while always
resulting in a perfect fit, will not be useful in reconstructing
channel dynamics. We explore the sensitivity of results to
the minimum segment length in sections 4.1 and 4.3.
[15] The partition function, often denoted by P(N), describes

how many partitions there are for a given integer N. This func-
tion is highly nonlinear. Example values of P(N) are P(10) = 42;
P(100) = 190,569,292; P(200) = 397,299,029,388 [Andrews,
1998]. The nonlinearity of the partition function precludes
analysis of more than a few hundred nodes due to computa-
tional expense. We address this impediment to sampling every
node in the network by using a Monte-Carlo sampling
approach; each iteration samples a subset of nodes at reduced
computational expense. This procedure is repeated until all
nodes are sampled multiple times (section 3.2.2).
[16] Partitioning alone does not sample all possible channel

segments, because segments could be arranged in different or-
ders. Consider a channel with five nodes, further constrained
by a minimum segment length of two; the possible partitions
are therefore 5 and 3+ 2; however, the possible segment

= 0.99213
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= 0.95290

= 0.5
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 =
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Figure 3. (a) Plot shows the R2 values of a linear fit to channel data generated by the transient simulation
described in Figure 2 as a function of the m/n ratio. (b) Plot shows the profile in χ-elevation space with an
m/n ratio of 0.3, which has the highest R2 for a linear fit to the channel data. (c) The true m/n is 0.5, and the
χ- elevation profile for this m/n ratio is shown.
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combinations are 5, 3 + 2, and 2 + 3. We therefore permute all
partitions to sample all possible segment combinations.
[17] A linear regression is performed on each segment. The

slope, intercept, residuals, and R2 of each segment are stored.
Royden and Perron [2013] showed that under certain condi-
tions (e.g., transience caused by changes in uplift rate with
n ≠ 1), linear segments of the channel profile in the chi plot
will be connected by nonlinear segments (or “stretch zones”).
Rather than performing both a linear and nonlinear fit on ev-
ery segment, we perform only a linear fit. The rationale for
this is that (i) we do not wish to overconstrain the fit, (ii)
selecting the incorrect m/n ratio results in nonlinear sections
in χ-elevation space, and we do not wish to “reward”
nonlinearity as this could lead to poor constraints on the
m/n ratio, and (iii) there is a simple relationship between
the linear segments’ slope and erosion rate in χ-elevation
space which does not apply in the stretch zones [see
Royden and Perron, 2013, equation (16)].
[18] As the number of nodes in the channel grows, there is

an ever increasing likelihood that some segments will be
sampled more than once. For example, consider a channel
with nine nodes and a minimum segment length of three.
The partitions would then be 9; 6 + 3; 5 + 4; and 3 + 3 + 3.
The segment starting on the first node and ending on the third
node will be used in the partition 3 + 6 as well as the partition
3 + 3 + 3. To reduce computational expense, we precede
partitioning by regressing all segments and storing the slope,
intercept, R2, and a maximum likelihood estimator (MLE) of
the regressed χ-elevation data in sparse matrices where the
row represents the starting node of the segment and the col-
umn represents the finishing node of the segment.
3.2.2. Determining the Most Likely Combination
of Segments
[19] The partition algorithm finds every possible combina-

tion of segment lengths, and permuting through these segment
lengths results in every possible combination of segments
along a thinned channel network. Because the partition func-
tion is highly nonlinear, it is necessary to limit the number of
nodes considered by the segment fitting algorithm. The algo-
rithm allows the user to select the maximum number of nodes
to be analyzed in any given iteration of the segment fitting al-
gorithm. Whereas partitioning 100 nodes requires 109 linear
regressions, partitioning 200 nodes requires ~1012 regressions.
Beyond 200 nodes the computational expense is prohibitive;
we recommend setting the maximum number of nodes (or
“target nodes”) to 80–150. This creates a problem of resolution
however because, in high-resolution data, channels may be
made of more than 150 nodes; furthermore, we want to avoid
a situation in which the resolution of the analysis depends on
the number of nodes in the channels. We address this through
an iterative approach which, for computational efficiency,
samples a subset of data in each iteration but through iterations
samples every data point in the channel network.
[20] We use what we call a “skipping” algorithm to select a

subset of nodes from a data set. First, the number of nodes in
the data set is compared to the target nodes to determine the
mean number of nodes that must be “skipped” between two
selected nodes to retain the correct number of target nodes
in the thinned data set. For example, if the data set has 300
nodes and target nodes = 100, then for every node retained,
the algorithm will skip two nodes. Skipping of data, how-
ever, is done probabilistically, although the first and last

nodes are always selected. After a node is selected, the code
selects the next number of nodes to skip from a uniform dis-
tribution centered on the mean skip value with a range twice
the mean skip value; for example, if the mean skip value is 2,
skip values will be chosen in the range 0 to 4.
[21] The skip interval is determined by the number of nodes

in the data set, but the user selects a “target skip” value which
is the final resolution of the data at which the user wants to per-
form the analysis. Our iterative approach breaks the data set
into smaller and smaller pieces until the mean skip (deter-
mined by dividing the number of data nodes by the number
of target nodes) matches that of the target skip value.
[22] To iterate to the target skip value, all the data are

thinned using the probabilistic skipping algorithm, and these
data are then passed to the segment fitting algorithm. The
fitting algorithm then determines the most likely segments
for the data and returns the segment number associated with
each node (Figure 4). This is recorded for each node in the
analysis, and the process is repeated. Because the skipping
algorithm is probabilistic, a different subset of nodes is ana-
lyzed in each iteration. After many iterations, each node will
be associated with a data set comprising the number of the
segment to which it will have been attributed in each iteration
(Figure 4). The mean of these numbers is then calculated for
each node. For nodes that lie unambiguously in a particular
segment (for example, the first node is always in the first seg-
ment), the mean segment number will be an integer. Between
unambiguous segments lie noninteger mean segment num-
bers. If the mean skip is greater than the target skip, the data
are “broken” at natural segment breaks at nodes nearest to
half an integer value (i.e., 1.5, 2.5, and 3.5). After breaking
the data, each smaller data set is passed back to the segment
fitting algorithm. This process is repeated until all of the
“breaks” are analyzed at the resolution determined by the
user-defined target skip value.
[23] Because a probabilistic approach is used to select data

nodes repeatedly, each node records the slope and intercept
of the segments in χ-elevation space, as well as the segment
number and R2 value. The mean and standard deviation of
these data for each node is then calculated. Of these, the slope
in χ-elevation space, which we call Mχ, is perhaps the most
useful because it is related to the ratio between erosion rate
(E) and erodibility (K):

M χ ¼ E

KA0
m

� �1=n

: (6)

[24] The intercept in χ-elevation space, which we call Bχ,
can be used to identify steps in the channel network (e.g.,
segments that have the same Mχ but are separated by a verti-
cal waterfall). Thus, by constraining both Mχ and Bχ we are
able to identify two types of knickpoints: a change in Bχ with
no change in Mχ above and below the knickpoint indicates a
vertical step knickpoint, whereas a change in Mχ reveals a
slope break knickpoint.
[25] The next step is to calculate anMLE for each segment:

MLE ¼ ∏
N

i¼1

1ffiffiffiffiffi
2π

p
σ
exp � rið Þ2

2σ2

" #
; (7)

where σ [L] is the standard deviation of the measured
elevations. Many topographic data sets contain metadata
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describing the uncertainty of the elevations, which can guide
the choice of σ. However, we also suggest considering
“geomorphic noise,” that is, variation in the channel profile
due to heterogeneity on scales of meters to tens of meters

(i.e., fracture patterns in rocks, bedrock sedimentary bedding,
and boulders in the channel) that adds roughness to the chan-
nel profile and clouds the landscape-scale geometry of the
river profile which is indicative of regional tectonics, lithol-
ogy, or climate. The choice of σ will therefore depend on
the application, and it is therefore crucial that users of the
software report the value of this parameter. In section 4.1
we report on how much of an impact changing the value of
σ can have on the number of segments selected by the soft-
ware. Note that the MLE is multiplicative so that its value
for a sequence of segments will be the product of the MLE
of the individual segments.
[26] For a fixed number of segments, the most likely

combination of these segments simply has the lowest MLE
value. However, increasing the number of segments always
results in a higher likelihood. Using the MLE alone is thus
insufficient to differentiate models with different numbers
of segments.
[27] An established statistical method for selecting a model

that balances goodness of fit against model complexity is the
Akaike Information Criterion (AIC) [Akaike, 1974]:

AIC ¼ 2k � 2 ln MLEð Þ; (8)

where k is the number of parameters. Each linear segment has
two parameters, the slope of the line and its intercept, so
k = 2s where s is the number of segments. The model with
the minimum value of the AIC is deemed the best model.
Burnham and Anderson [2002] suggest that a correction
should be made to the AIC if there are a finite number of sam-
ples; we therefore employ a corrected AICc [Hurvich and
Tsai, 1989] to select the best model:

AICc ¼ AICþ 2k k þ 1ð Þ
N � k � 1

; (9)

where N is the sample size, or in this case the number of
channel nodes used in the analysis. The AICc penalizes over
fitting in small data sets, and Burnham and Anderson [2002,
p. 445] suggest using AICc when N/k< 40. Because of the
restriction on the number of nodes due to the computational
expense of partitioning, almost any fitting of χ-elevation data
will meet this criterion, and AIC converges to AICc when
N is large so in the rare instances when the criterion fails
(i.e., N/k> 40) AICc and AIC will take similar values.
Thus, there is little reason to risk biasing the result by using
the AIC rather than AICc. Figure 5 illustrates this partitioning
process. We do not penalize segments whose fitted down-
stream node is lower than the elevation of the fitted upstream
node; this is because if sections are connected by stretch
zones, a linear fit to a nonlinear stretch zone can result in seg-
ments that do not always exhibit end nodes of monotonically
increasing elevations.
[28] The choice of standard deviation (σ) in equation (7)

will affect the output of the fitting algorithm. For a fixed
number of segments, the most likely segments will always
be the same, regardless of the value of σ. That is, the numeric
value of the MLE will change but the most likely combina-
tion will not. Modifying the numeric value of the MLE, how-
ever, changes the second term of equation (8) but does not
affect the first term of this equation. The result is that greater
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0 5 10 15 20 25 30

d.
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0 5 10 15 20 25 30

Node number (with equally spaced χ) 
0 5 10 15 20 25 30

Figure 4. Cartoon depicting the skipping process and the
selection of segment numbers. (a) A hypothetical data set
with 31 data points is shown. (b–d) Plots show data after
skipping. In this case the mean skip = 1, so skip values are
randomly selected between 0, 1, and 2. In this hypothetical
example, there are three iterations of the skipping algorithm.
We highlight several nodes with yellow dots. Node 0 and
node 7 are always in the first segment, so the mean segment
number of these nodes will be = 1. The mean segment num-
ber of node 12 will be 1.5 since it is in segment 1 in the first
iteration and segment 2 in the second iteration. Node 17 has
an integer mean segment number, whereas nodes 21, 27,
and 30 all have noninteger mean segment numbers.
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values of σ result in greater “penalties” for extra segments
and in general the lower the value of σ, the more segments
will be selected.

3.3. Selection of the m/n Ratio

[29] To differentiate between profiles generated using dif-
ferent m/n ratios, we use the MLE and AICc information.
Again, the MLE is not sufficient to discriminate fitted chan-
nel segments against each other because different m/n ratios
may generate different numbers of best fit segments. We
therefore store the cumulative AICc values for allm/n values.
The m/n ratio that produces the minimum cumulative AICc
value is considered the most likely. We perform two tests
to determine the most likely m/n ratio: a collinearity test
and a test for individual channels.
[30] In the collinearity test, the data from the entire channel

network are pooled. This pooled data set undergoes the
breaking processes described in section 3.2.2, but the AICc
values reported are cumulative for all the data rather than
on a channel by channel basis. Our testing based on numeri-
cal simulations (see section 4.1) indicates this test can better
identify the m/n ratio when analyzing data based on numeri-
cal simulations. Our tests on channels in natural environ-
ments (e.g., section 4.2) indicate however that there can be
pitfalls to this method. If a tributary is hanging, for example,
the data from this tributary will be lying above the main

stem’s data in χ-elevation space (by definition); because the
algorithm will seek them/n value that best superimposes data
from the tributary and the main stem, the collinearity test may
give spurious results for the best fit m/n ratio.
[31] The second test calculates the cumulative value of the

AICc for each individual channel. In this analysis, all tribu-
taries are extended from their source to the drainage outlet.
The rationale for this is that transient signals of uplift rate
are translated through the channel network with celerity pro-
portional to drainage area (see equation (5)) [Whipple and
Tucker, 1999]. This means that any upstream propagation
of uplift signals will slow down significantly as it enters
small tributaries: steepened reaches in small tributaries will
consequently often have limited spatial extent. The result is
that if tributary channels are extended only to the junction
with the main stem, the algorithm will not be able to find
the short transient segment. The segment can be found, how-
ever, if the analyzed channel data include the tributary data
and the main stem data downstream of the confluence.
[32] As described in section 3.2.2, the mean AICc values are

a result of many iterations of the segment fitting algorithm.
The code also returns the standard deviation of the AICc
values for each m/n ratio, for the cumulative data (used in
the collinearity test), and for each individual channel. The var-
iability is due to the algorithm being performed on a different
subset of data, chosen at random by the skipping algorithm,

Figure 5. Illustration of the partitioning process (minimum partition length = five nodes in this case).
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during individual iterations. The most likely m/n ratio is that
with the minimum AICc value, but the standard deviation of
the AICc values can be used to infer the range of plausible
m/n values for the channel network. We recommend that au-
thors interpret the m/n ratios with AICc values that are within
1 standard deviation of the minimum AICc values as being
“plausible.” Figure 6 shows a flowchart of the segment fitting
algorithm. We have made the code available at the
Community Surface Dynamics Modeling System website:
http://csdms.colorado.edu/wiki/Model:Chi_analysis_tools.

4. Examples

[33] We illustrate the technique using three examples. The
first example uses topography generated from the Channel-
Hillslope Integrated Landscape Development (CHILD)
model [Tucker et al., 2001]. This allows us to test whether
the technique can identify known segments and retrieve a
known m/n ratio. The next two examples are from natural
landscapes. The first is from the Appalachian Plateau in
Pennsylvania, U.S., where the combination of relatively
homogenous sandstone bedrock and tectonic quiescence is
thought to result in steadily eroding channels [Hack, 1960].

The second is from a landscape in the Apennines in Italy that
has been subject to a previously constrained change in tec-
tonic uplift rate [e.g., Whittaker et al., 2008].

4.1. A Numerical Example: A Simulated Three-Stage
Acceleration in Uplift

[34] Our first example deploys our chi analysis method on
a landscape simulated with the CHILD landscape evolution
model. We have chosen to run the method on a numerical
simulation because it allows us to enforce equation (1) and
to prescribe both the uplift history and m/n ratio. Our simula-
tion involves three development stages. The model domain is
a 6 × 6 km2 with an average node spacing of 50 m.
Throughout the simulation, one boundary is set to a fixed el-
evation (defined as z= 0 m), and the other boundaries are no
flux boundaries. We use model parameters adapted from
Attal et al.’s [2011] study of the evolution of catchments
responding to tectonics in the Apennines using the CHILD
model. Erosion is purely detachment limited: Erosion rates
are calculated according to equation (1); furthermore, there is
neither threshold for erosion nor adjustment in channel geom-
etry [Attal et al., 2011]. The parameters used in the model and
the calculation of erosion rates are detailed in the Appendix A.
The hillslope transport coefficient is set to 0.001 m2 yr�1,
channel erodibility (K) is set to 1.67 × 10�6 yr�1, m is set to
0.5 and n is set to 1 (Appendix A). In the first stage, a fixed
uniform uplift rate of 0.3 mm yr�1 is prescribed. This uplift
rate is maintained until the model domain achieves dynamic
steady state, that is, erosion rates match the uplift rate of
0.3 mm yr�1 throughout the entire landscape. At this stage,
rivers are characterized by smooth concave up river profiles.
The uplift rate is then increased to 0.6 mm yr�1 for 1 Ma and
then further increased to 0.9 mm yr�1 for a further 0.5 Ma. In
response to the successive increases in uplift rate, steepened
reaches develop upstream of the base level, separated from
the upstream reaches by profile convexities that migrate
upstream through time, representing the propagation of ero-
sional waves that is diagnostic of detachment-limited systems
[e.g., Whipple and Tucker, 1999; Attal et al., 2011].
[35] The CHILD model runs on a triangulated irregular

network (TIN), and channel profiles are extracted directly
from the TIN. We use equation (1) to calculate erosion rates
along the channels at the end of the run and find three
sections with distinct erosion rates separated by transition
zones (Figure 7a). We infer that these transition zones are
present because CHILD uses an explicit numerical method
(i.e., it uses model topographic parameters to calculate
topographic changes at the following time step; Tucker
et al. [2001]), which is susceptible to numerical dispersion
[e.g., Fagherazzi et al., 2002]. At the end of our simulation,
the main stem river profile features two prominent convexi-
ties delineating three reaches (Figure 7b): upstream of the up-
permost convexity, the river profile is adjusted to the initial
uplift rate of 0.3 mm yr�1 and has not responded to any of
the increases in uplift rate; between the two convexities, the
river profile has adjusted to the uplift rate of 0.6 mm yr�1;
downstream of the lowermost convexity, the steep reach is
in equilibrium with the final uplift rate of 0.9 mm yr�1. The
two convexities are migrating upstream in concert at a celer-
ity given by equation (5). Because n = 1 in the model, the ce-
lerity is independent of slope and thus of uplift rate so the
convexities never meet, and the intermediate segment is

Figure 6. Flowchart for the segment fitting algorithm.
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preserved until the wave of erosion has propagated all the
way to the top of the network.
[36] Results from segment extraction with the best fit m/n

ratio of 0.5 (see next paragraph) demonstrate that the algorithm
is able to detect the sections of the channel network responding
to different uplift rates (Figures 7b–7d). In addition to being
able to identify distinct channel segments, the algorithm is also
able to retrieve Mχ values extremely close to the theoretical
values predicted by equation (6) (Figure 7c).
[37] Our segment fitting algorithm is able to tightly con-

strain the most likely m/n ratio for these simulations.
Figures 8a and 8b show that plausible values of the m/n ratio
(those that have AICc values within 1 standard deviation of
the m/n ratio with the minimum AICc value) clustered tightly
around 0.5 (in Figures 8a and 8b, m/n ratios of 0.475–0.525
are considered plausible). The method correctly identifies
the m/n ratio of 0.5 as the most likely.
4.1.1. Sensitivity Analysis and Recommended
Default Parameters
[38] We performed a sensitivity analysis on the effect of

changing the number of target nodes, the minimum segment
length, the value of σ and the mean skip value using results
from the CHILD simulations. We varied σ from 1 to 9 m,
the mean skip value from 1 to 4, the minimum segment
length from 6 to 20 nodes, and the number of target nodes
from 60 to 100. Parameters generated similar results over a
wide range of values for the main stem. The minimum

segment length and number of target nodes, however, can sig-
nificantly alter computational time. Running the method on
the CHILD data with target nodes = 100 and minimum seg-
ment length= 20 took a few minutes, whereas the run with tar-
get nodes = 100 and minimum segment length= 5 took 4 days
on our Linux servers (i.e., 5–6 orders of magnitude longer).
This strong dependence on computation time is due to the
nonlinearity of the partition function. Sensitivity analysis
shows that (i) increasing σ, the minimum segment length or
the mean skip decreases the number of segments; (ii) one con-
sequence of reducing the number of segments is that tributaries
will be fit with single segment and information about changing
steepness will be lost; and (iii) the number of target nodes can
have a large influence on computational time but does not have
a commensurate effect on the extracted segments. The least
conclusive results were obtained when high values of mean
skip (≥ 3) or minimum segment length were used.
[39] In every analysis performed by the method on the

CHILD model runs, the most likely m/n ratio has been calcu-
lated as 0.5. The best fit m/n ratio has similarly retuned 0.5 as
the most likely m/n ratio for all individual channels except in
the cases where minimum segment length or mean skip pa-
rameters have resulted in <3 segments, which only occurred
in the shortest tributaries.
[40] Our sensitivity analyses on the CHILD runs and in

other landscapes have helped us develop some qualitative
rules of thumb for selecting parameter values. We suggest

Figure 7. Results from CHILD model runs. (a) Erosion rates calculated along the channel (b, c) denoted
by a star using equation (1), which is prescribed in the model. Figure 7b denotes channel longitudinal pro-
files colored by the extractedMχ values. Figure 7c showsMχ values as a function of χ; each tributary is de-
noted by a different color. The tributary depicted in Figure 7a (star in Figure 7b) is plotted in black. (d) Chi
plot of fitted and transformed data of all channels. In Figures 7a, 7c, and 7d the red- and green-shaded bars
denote the transition zones between domains adjusted to the different phases of uplift. The horizontal red,
green, and blue lines in Figure 7c represent the Mχ values corresponding to erosion rates of 0.9 mm yr�1,
0.6 mm yr�1, and 0.3 mm yr�1, respectively, calculated using equation (6). Figures 7b–7d were generated
with a mean skip value of 1, a minimum segment length of 12, 100 target nodes, and a σ value of 3 m.
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minimum segment lengths of 10–15 and a number of target
nodes of 80–100. Increasing the number of target nodes does
not seem to alter results substantially and results in very long
compute times. Standard deviation of elevations (σ) and the
skip value should be selected based on the resolution and
quality of the digital elevation model (DEM). For 30 to
90 m resolution DEMs, we suggest skip values of 0–2 and
σ values on the order of tens of meters. Ten meter resolution
DEMs should have skip values of 1 to 4 and a σ similar to the
reported uncertainty in elevation data, with some additional
uncertainty due to topographic “noise” (i.e., boulders in
channels). For 1 to 2 m resolution data, skip values of 5–10
will be more appropriate, and σ will most likely be on the or-
der of meters. These parameters can be used to rapidly iden-
tify segments in a channel network; however, natural
channels are not all as well behaved as simulated channels
(see section 4.3) so we suggest that a sensitivity analysis is
conducted as part of any analysis of channel steepness.

4.2. Fonner Run in Southwest Pennsylvania, U.S.

[41] Our second example comes from the western flank of
the Appalachians in southwest Pennsylvania. We have se-
lected a small basin called Fonner Run at 39.969391°N,
80.254147°W, for analysis (Figure 9a). This basin is in the
same tectonic and geologic setting as Rush Run, which was
analyzed by Perron and Royden [2013], but lies ~140 km to
the northeast. Rivers here flow through a dendritic channel
network over sandstone bedrock [Miles and Whitfield, 2001].

The site is tectonically quiescent and is to the south of the
southernmost extent of Quaternary glaciations [Peltier, 2004].
[42] Our method finds a best fit m/n ratio of 0.675 based on

the collinearity test, whereas the best fit m/n ratio of the main
stem channel is 0.65 (Figures 8c and 8d). Plots of AICc as a
function of m/n ratio at this site indicate that plausible values
(i.e., those within 1 standard deviation of the minimumAICc,
in this case after 250 iterations of the segment finding algo-
rithm) for the m/n ratio range from 0.6 to 0.7 (Figures 8c
and 8d). For Rush Run, Perron and Royden [2013] found
that, qualitatively, an m/n value of 0.65 best collapses the
tributaries. They note that this m/n ratio leads to a convex
up main stem channel. Our analysis of Fonner Run yields
qualitatively the same result: the m/n ratio that best collapses
the tributaries (as determined in our case by the collinearity
test) leads to a main stem that appears slightly convex
(Figure 9). However, our segment fitting algorithm finds that
the m/n ratio that best describes the main stem channel as a
series of linear segments is similar to the best fit m/n ratio
for collinearity. Because the two analyses yield similar re-
sults, we can have some confidence that the main stem chan-
nel does in fact have different segments, and the apparent
convexity is not simply a by-product of selecting an inappro-
priate m/n ratio. Our segment fitting algorithm finds that the
best explanation for the channel profile is one made up of
two segments, with the downstream segment having a
slightly greater value of Mχ (Figure 9). This downstream
steepening may have multiple causes, including changes in

a.

b.

c.

d.

Figure 8. Plot of AICc values as a function ofm/n ratio for CHILDmodel runs for (a) the main stem chan-
nel and (b) the collinearity test, and for Fonner Run, PA, for (c) the main stem and (d) the collinearity test.
Errors represent 1 standard deviation of the AICc value measured after 250 iterations of the segment finding
algorithm. Dashed line indicates the minimum AICc value plus 1 standard deviation. Red box shows range
of m/n values where the AICc value is within 1 standard deviation of the minimum AICc value. Parameter
values are for CHILD runs, mean skip value = 1, minimum segment length = 12, number of target nodes =
100, and σ= 3 m; for Fonner Run, mean skip value = 2, minimum segment length = 15, number of target
nodes = 100, and σ= 3 m.
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the rate of base level lowering, a subtle change in rock resis-
tance to erosion or a nonuniform rainfall pattern causing a
breakdown of the relationship between drainage area and dis-
charge. In this case, the study catchment is of a small enough
scale that nonuniform precipitation is unlikely, so the steep-
ened lowermost reach is probably caused either by harder sed-
imentary layers downstream or by an incision signal that has
propagated up from the Ohio River, which has incised during
the Pleistocene [e.g., Granger et al., 2001]. Figure 9 shows
that m/n ratios outside of the range of plausible m/n ratios pro-
duce chi plots that do not have collinear tributary channels.

4.3. Rio Torto, Apennines, Italy

[43] Our third example is from a tectonically active area in the
Apennines of central Italy. The study catchment is bounded by
the Fiamignano Fault, a normal fault that has seen an increase in
throw rate from 0.3 to 1.0 mm yr�1 approximately 0.75Ma ago
[Roberts and Michetti, 2004;Whittaker et al., 2008; Attal et al.,
2011]. Royden and Perron [2013] examined one of the tri-
butaries within this catchment. They fixed m/n=0.4 and fit
analytical solutions to the measured profile using scenarios in
which uplift occurred in two stages. From this, Royden and
Perron [2013] inferred that n=0.5 on the basis that the relative
steepness of two distinct segments in the chi plot was consistent
with the known difference in uplift rates.
[44] We performed segment fitting analysis on a network of

the main stem Rio Torto (as determined by flow distance) and
four tributaries upstream of the Fiamignano Fault (Figure 10).
The best fit m/n ratio in the Rio Torto Basin is poorly
constrained compared to both CHILD model runs and the
Fonner Run. We compiled the most likely m/n ratio across a

range of parameter values: we varied mean skip between 1
and 3, minimum segment length between 8 and 20, the number
of target nodes between 60 and 150, and set σ to 20 m because
our fieldwork has shown that the DEMoccasionallymisses the
floor of the gorges resulting in large error on the order of 20 m.
The result of this analysis is shown in Figure 11. The colli-
nearity test does not provide tight constraints on the most
likely m/n ratio due to the presence of a tributary that appears
to hang above the rest of the tributary network (tributary 4,
Figures 10a and 10c). The main stem channel also is poorly
constrained, with the 25th to 75th percentile of most likely
m/n ratios spanning 0.15 to just over 0.6, again due to the ex-
istence of multiple convexities. Tributaries 1, 2, and 3 give the
tightest constraints on the m/n ratio, but these estimates of the
most likely m/n ratio strongly differ. Such uncertainty is per-
haps to be expected in locations with such tectonic, lithologic,
and structural complexity as the central Apennines. These re-
sults highlight the need to explore and report our method’s
parameter space when selecting the m/n ratio.
[45] Regardless of the m/n ratio, profiles in χ-elevation

space all indicate a steepened reach upstream of the fault,
consistent with the known increase in relative uplift rate ex-
perienced by the catchment [Whittaker et al., 2008; Attal
et al., 2011], as well as additional steepened reaches in the
headwaters of the main stem and tributary 4 (Figure 10).
This headwater steepening corresponds to lithological
changes associated with post-Miocene faults [ISPRA, 2010]
that show no sign of recent (i.e., Holocene) activity in the
field [Roberts and Michetti, 2004]. This example highlights
the way the method can be used to identify locations that
merit further field investigation.
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d.
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Figure 9. (a) Fonner Run network over a hillshade map, UTM zone 17N. Plots of the χ-elevation profiles
for m/n ratios of (b) 0.3, (c) 0.65, and (d) 0.8. The dashed lines are the best fit segments, and the solid lines
are the transformed data. Parameter values are the same as in Figure 8. An m/n ratio of ~0.65 gives the best
fit for both main stem profile and collinearity test.
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4.3.1. Using Mχ to Constrain the n Exponent
in Locations With Known Uplift Rates
[46] Royden and Perron [2013] asserted that in rivers with

similar precipitation and erodibility but different uplift rates,
the ratio between Mχ values is proportional to the ratio be-
tween uplift rates raised to the 1/n power. Here we explore
this assertion, which can be used to determine the n exponent,
and extend it to cases where erodibility is a function of uplift
rate, as suggested by some authors [e.g., Snyder et al., 2003].
In segments unaffected by stretch zones,Mχ is related to ero-
sion rate, erodibility and other parameters according to equa-
tion (6). Assuming that segments represent stretches of the
river equilibrated to the uplift rate that led to their formation,
uplift rate can be substituted for erosion rate, and equation (6)
can be rearranged as follows:

M χ
nKA0

m ¼ U : (10)

[47] If we have two separate segments with separate values
of Mχ we can relate these to a ratio between uplift rates:

M χ;1
nKA0

m

M χ;2
nKA0

m ¼ U1

U2
: (11)

[48] Again, this equation assumes that there has been some
equilibration between uplift and erosion rate or, in other
words, that uplift has been sustained for long enough to be

Figure 11. Box-and-whisker plot of the best fitm/n ratio for
the Rio Torto channel network. The red lines are the median
most likely m/n ratios across 30 parameter values (varying
skip, minimum segment length, and number of target nodes).
The whiskers are the data range (with one outlier in channel
3), the boxes extend between the 25th and 75th percentiles
of the data, the tapering extends to the 95% confidence inter-
vals of the median most likely m/n ratio calculated by
bootstrapping the data 10,000 times. Dashed lines inserted
as a visual aid to identify m/n ratios of 0.5, 0.6, and 0.7.

Figure 10. Results of segment fitting algorithm for the Rio Torto and tributaries using anm/n ratio of 0.6.
Parameter values are mean skip = 1, number of target nodes = 100, minimum segment length = 12, and
σ= 20 m. (a) Channel profiles colored by the best fit Mχ. (b) Calculated values of Mχ for each tributary.
Dashed gray lines denote segments selected to calculate Mχ ratio. (c) Best fit segments (dashed lines)
and transformed data (solid lines) in χ-elevation space. (d) Map of Rio Torto projected in UTM zone
33N; the outlet of the study catchment is at approximately 42.267655°W, 13.186485°E. Channels colored
by best fit Mχ shown on a hillshade of the study catchment.
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reflected in the channel profile. Therefore, estimates of ero-
sion rates or uplift rates that represent timescales of thou-
sands to millions of years would be appropriate for such an
analysis, whereas measurements of suspended sediment,
which vary on interannual timescales, may not capture the
full range of erosion rates that drive topographic signatures
of uplift rates. The parameter A0 is a constant, and if we as-
sume K is a constant, equation (11) simplifies to

M χ;1

M χ;2

� �n

¼ U 1

U 2
: (12)

[49] The ratio of uplifts is thus equal to the ratio of Mχ to
the power n.
[50] Some authors have suggested that the erodibility of

bedrock channels is a function of uplift rates. If we assume
the erodibility coefficient has the form K= kUa [e.g., Snyder
et al., 2003; DiBiase et al., 2010], then equation (12) can
be recast as

M χ;1

M χ;2

� �ne

¼ U 1

U 2
; (13)

where ne is an “effective” slope exponent where ne= n/(1� a).
If we solve equation (12) for the slope exponent n (and note
that equation (13) has the same form as equation (12) so can
similarly be solved for ne), we find that

n ¼ Log
U1

U2

� �
=Log

M χ;1

M χ;2

� �� �
: (14)

[51] In practice, one can only use equation (14) if the m/n
ratio is constrained beforehand, since the m/n ratio affects
the values ofMχ derived for each segment and thus theMχ ra-
tio. In the Rio Torto, we follow Attal et al. [2011] and assume
the upstream segments are equilibrated to a fault throw rate of
~0.3 mm yr�1 whereas the downstream segments are equili-
brated to a fault throw rate of ~1.0 mm yr�1. These rates yield
an uplift ratio of ~3.3. Regardless of parameter combinations,
the transformed channels are composed of several distinct
segments. We use the average value of Mχ from tributaries
1, 2, and 3 to calculate Mχ ratios since these channels appear
to have the most consistent profiles (Figures 10b and 10c).
We use the most downstream segment on each of these chan-
nels, which is bounded by the fault, and the segments in these
channel that sit on the plateau.
[52] Using these criteria leads to Mχ ratios of ~4.3, 8, and

10, respectively when the most likely m/n ratios are 0.5,
0.6, and 0.7, respectively (Figure 11). These Mχ ratios
result in an estimate of n between 0.52 and 0.82, that is,
at the lower end of the range of values suggested based
on a physical description of the erosion processes at work
in bedrock rivers [Whipple et al., 2000]. Note however that
in addition to the lithological variations mentioned in
section 4.3, the complexity of the tectonic setting in the
Apennines may also lead to difficulties when trying to in-
vert topographic data to retrieve stream power parameters:
for example, the Rio Torto basin is experiencing back-
tilting as it is being uplifted [e.g., Attal et al., 2011], poten-
tially causing a reduction in the steepness of the upstream

reaches which may lead to an anomalously high Mχ ratio
(and thus a low n estimate).

5. Conclusions

[53] We present a method for analyzing channel longitudi-
nal profiles in order to extract information about erodibility
or erosion rates. Our method extracts the most statistically
likely channel segments that have distinct steepness, normal-
ized for drainage area through the integral method of channel
profile analysis. This method eliminates the need for initial
processing of the raw topographic data (e.g., smoothing of
river profiles to derive channel slope) which inevitably leads
to loss of information. In locations where the stream power
incision model can predict channel incision rates, our method
can be used to quantify the most likely m/n ratio and locate
channel segments with distinct erosion rates or erodibilities
(where erodibility refers to the K parameter in the stream
power law, which encapsulates the influence of bedrock
strength, climate, sediment supply, erosion thresholds, and
channel width adjustment on the susceptibility of bedrock
to fluvial erosion). The method also reports uncertainties in
the most likely m/n ratio. Our tests on an idealized, simulated
landscape and on a landscape on the Appalachian Plateau
resulted in tightly constrained m/n ratios and identification
of distinct segments within the fluvial networks. In the case
of the modeled landscape, these distinct segments predict-
ably reflect the changes in uplift rate applied during the sim-
ulation. In a tectonically and structurally complex landscape
in the Apennines in Italy, the uncertainty on the estimates of
m/n ratio is much greater but the segments identified are nev-
ertheless consistent with the known tectonic history of the
area. We also show how users may apply our method to
quantify the n exponent in locations where erosion rates are
well constrained.

6. Author Contributions

[54] S.M.M. designed the algorithms. S.M.M., D.T.M., and
S.W.D.G. wrote the code. M.A. performed CHILD simula-
tions. S.M.M., D.T.M., S.W.D.G., and D.A.V. wrote vis-
ualization scripts, and S.M.M., M.A., D.T.M., S.W.D.G.,
and D.A.V. performed the analyses and wrote the paper.

7. Software Availability

[55] Source code, documentation, instructions, and chan-
nel profile data are available via the Community Surface
Dynamics Modeling System at http://csdms.colorado.edu/
wiki/Model:Chi_analysis_tools.

Appendix A: Description of the Calculation
of Erosion Rates in the CHILD Model

[56] In the CHILD model, erosion rates are calculated
using equations that can be combined to give equation (1)
[see Tucker et al., 2001; Attal et al., 2011]. Simulations
presented here are for a scenario in which erosion is purely de-
tachment limited, and there are neither erosion thresholds nor
adjustment in channel geometry [cf. Attal et al., 2008, 2011].
First, the model calculates potential hillslope and fluvial
erosion rates according to equations (A1) and (A2), respec-
tively (see below). Erosion driven by soil creep is computed
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based on the divergence of volumetric sediment discharge per
unit width qc, which is calculated with

qc ¼ �Kd∇z; (A1)

where Kd [L2 T�1] is a hillslope transport coefficient and
z [L] is surface elevation. Fluvial erosion rate E [L T�1] is
calculated following:

E ¼ kbτ pb; (A2)

where kb is a specific bedrock erodibility coefficient (in L T�1

per “stress quantity” in SI units), τ [M L�1 T�2] is fluvial
shear stress, and pb is a dimensionless constant. The erosion
rate calculated by both equations is compared, and the elevation
of the node is lowered by the largest amount predicted by either
of the two equations. Beyond a given drainage area, fluvial pro-
cesses become dominant, and equation (A2) prevails. The shear
stress quantity (the unit of which depends on the values chosen
for exponents mb and nb) is calculated according to

τ ¼ kt Q=Wð ÞmbSnb; (A3)

whereQ is water discharge [L3 T�1,W [L] is channel width, kt
is a scaling parameter, and mb and nb are constants. Here,
channel width is calculated using the simplest form of hydrau-
lic scaling available in CHILD [Leopold and Maddock, 1953]:

W ¼ kwQ
1=2; (A4)

where kw is a hydraulic scaling coefficient [L�1/2 T1/2]. In the
model, we assume no infiltration so that discharge is only the
product of the precipitation rate P in [L T�1] by drainage
area:

Q ¼ PA: (A5)

[57] Combining equations (A2) to (A5) gives

E ¼ kbkt
pb kw

�pb:mbð ÞP pb:mb=2ð ÞA pb:mb=2ð ÞS pb:nbð Þ: (A6)

[58] This equation is equivalent to equation (1), with
m = pb.mb/2, n = pb.nb, and K= kb kt

pb kw
(�pb.mb) P(pb.mb/2).

Note that the exponents mb, nb, and pb can be set to simulate
different fluvial incision laws (i.e., incision rate proportional
to fluvial shear stress, cross-section-averaged stream power
or specific stream power). In our example, we assume that
erosion rate is proportional to stream power per unit bed area
(so-called specific stream power) and set mb = nb= pb= 1.
Equation (A6) thus becomes

E ¼ KA1=2S (A7)

with K = kb kt kw
�1 P1/2 [T�1]. We thus have m = 0.5, n = 1,

and m/n = 0.5. In this case, the quantity τ in equation (A3)
represents the specific stream power [M T�3], and kt is the
specific weight of water (9810 kg m�2 s�2 in SI units).
The value of kb has to be adjusted with respect to Attal
et al.’s [2011] study where the exponents were set to differ-
ent values (mb = 0.6, nb = 0.7, and pb = 1.5): in the present
study, we set kb = 2.2 × 10�5 m yr�1 (W m�2)�1 as the
equivalent of the value of 5.2.10�6 m yr�1 Pa�3/2 that was
used in Attal et al. [2011]. We use kw = 4.6 m�1/2 s1/2 to

replicate the hydraulic scaling relationship without adjust-
ment in channel geometry constrained in the Apennines
[Attal et al., 2008]. We use rainfall parameters identical to
those in Attal et al. [2011], except that we do not allow
the parameters to vary around their mean value during the
runs; the CHILD model produces storms according to a
Poisson rectangular pulse rainfall model [Tucker and
Bras, 2000], using the following values: mean precipitation
rate = 0.75 mm/h, mean storm duration = 22 h, and mean
interstorm duration = 260 h. This means that each year, it
rains 7.8% of the time at a rate of 0.75 mm/h, thus equiva-
lent to an average yearly rainfall P = 1.63 10�8 m s�1. We
thus derive K = 1.67 10�6 yr�1 (equation (A7)).
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