

Edinburgh Research Explorer

Implementation of an Interior Point Method with Basis
Preconditioning

Citation for published version:
Schork, L & Gondzio, J 2020, 'Implementation of an Interior Point Method with Basis Preconditioning',
Mathematical Programming Computation, vol. 12, pp. 603–635. https://doi.org/10.1007/s12532-020-00181-
8

Digital Object Identifier (DOI):
10.1007/s12532-020-00181-8

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Mathematical Programming Computation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Mar. 2024

https://doi.org/10.1007/s12532-020-00181-8
https://doi.org/10.1007/s12532-020-00181-8
https://doi.org/10.1007/s12532-020-00181-8
https://www.research.ed.ac.uk/en/publications/00a692a1-3372-41f6-8baf-f45396efcc0e

Implementation of an Interior Point Method

with Basis Preconditioning∗

Lukas Schork† Jacek Gondzio‡

School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, Scotland, UK

Technical Report ERGO 18-014, 20 September 2018

Abstract

The implementation of a linear programming interior point solver is described that
is based on iterative linear algebra. The linear systems are preconditioned by a basis
matrix, which is updated from one interior point iteration to the next to bound the
entries in a certain tableau matrix. The update scheme is based on simplex-type pivot
operations and is implemented using linear algebra techniques from the revised simplex
method. An initial basis is constructed by a crash procedure after a few interior point
iterations. The basis at the end of the interior point solve provides the starting basis for
a crossover method which recovers a basic solution to the linear program. Results of a
computational study on a diverse set of medium to large-scale problems are discussed.

1 Introduction

The purpose of this paper is to describe a new linear programming (LP) interior point
solver called IPX that is based on iterative linear algebra. IPX uses an approach originally
implemented in [2,16] that employs a basis matrix as preconditioner for the linear systems.
In the previous works the basis was chosen as the first m linearly independent columns of an
m×n matrix A, after ordering the columns by scaling factors from the current interior point
iterate. Although this yields a perfect preconditioner close to the solution of a nondegenerate
LP model, the success of the method was limited in practice.

The core of IPX is a new method for basis selection. A starting basis is constructed
after a few interior point iterations and subsequently updated in an attempt to maintain
“maximum volume”. The maximum volume criterion is known from rank revealing matrix
factorizations (see, for example, [17]) and bounds the condition number of the preconditioned
matrices in terms of the dimension of the LP model [3, 20]. Because finding a maximum
volume basis is computationally impractical for large-scale problems, the implementation is
based on a heuristic that efficiently finds a basis of comparable quality. The required linear
algebra operations are those from the revised simplex method, for which established and
highly optimized computational techniques exist.

Section 2 sketches the interior point algorithm and discusses the effect of inexact step
directions, which arise from iterative linear algebra. Section 3 presents the basis precondi-
tioner and the update scheme for maintaining a basis matrix. Section 4 is concerned with

∗Supported by Google Research Award “Fast interior point method for linear programming problems”.
†L.Schork@ed.ac.uk
‡J.Gondzio@ed.ac.uk

1

the very first interior point iterations and the construction of a starting basis. Section 5
presents the crossover method for recovering a vertex solution from the final basis. Compu-
tational results on a representative set of LP models are discussed in Section 6. This test
set is used throughout the paper to provide statistics of IPX runs and to illustrate the effect
of algorithmic decisions.

The following notations and conventions are used. When d is a vector, D is the diagonal
matrix with entries dj on the diagonal. Index sets are understood to be ordered and are
denoted by calligraphic letters; Jk is the k-th index and |J | the number of indices in the
set. When D is a diagonal matrix, DB is the principal submatrix indexed by B. For the
rectangular matrix A, AB is composed of the corresponding columns of A. A basis B is an
index set such that AB is square and nonsingular. Associated with B is the nonbasic set N
with the obvious definition.

IPX internally stores the LP model in the following primal-dual form

minimize
x,xl,xu

cTx (1a)

subject to Ax = b,

x− xl = l,

x+ xu = u,

xl,xu ≥ 0,

and

maximize
y,zl,zu

bTy + lTzl − uTzu (1b)

subject to ATy + zl − zu = c,

zl, zu ≥ 0,

where A is an m × (n + m) matrix whose rightmost m columns form the identity matrix.
The first n and the last m components of x are termed “structural” and “slack” variables,
respectively, although the objective coefficients of slack variables do not need to be zero.
Entries of −l and u are allowed to be infinity, in which case the corresponding dual variable
is fixed at zero and its term is dropped from the dual objective. We define the index sets

L = {j | lj > −∞}, U = {j | uj <∞}.

A variable xj is termed “free” if it has no finite bound and “fixed” if its lower and upper
bounds are equal. After preprocessing only structural variables can be free and only slack
variables can be fixed.

IPX accepts user input in the more convenient form

minimize
x

c̄Tx

subject to Āx {=,≤,≥} b̄,
l̄ ≤ x ≤ ū,

where Ā is an m̄× n̄ matrix. The user model is transformed into computational form with

optional dualization. If the input becomes the primal problem, then A =
[
Ā Im̄

]
, where

Im denotes the identity matrix of dimension m; and if it becomes the dual problem, then

A =
[
ĀT (−In̄)J In̄

]
, where J is the set of variables with finite lower and upper bounds.

The reason for dualization is that the linear algebra implementation is optimized for matrices
A with (many) more structural columns than rows. If the user does not make an explicit
choice, the model is dualized if m̄ > 2n̄.

2

2 Inexact Interior Point Method

A primal-dual interior point method (IPM) simultaneously solves (1a) and (1b) by generat-
ing a sequence of iterates for

(
x,xl,xu,y, zl, zu

)
that keeps

(
xl,xu, zlL, z

u
U
)

positive while
driving the residuals

rb = b−Ax, (2a)

rl = l− x+ xl, (2b)

ru = u− x− xu, (2c)

rc = c−ATy − zl + zu (2d)

and the complementarity measure

µ =
1

nµ

∑
j∈L

xljz
l
j +

∑
j∈U

xuj z
u
j

to zero. Here nµ = |L| + |U| is the number of finite bounds. If the iterate is feasible, i. e.
(2a)–(2d) are all zero, then nµµ = fp − fd is the gap between the primal and dual objective
values. The usual requirement is to obtain 8-digit accuracy in the objective, leading to the
termination criterion

|fp − fd| ≤ 10−8 (1 + 0.5|fp + fd|) . (3)

By the behaviour of the algorithm, primal and dual feasibility are practically always satisfied
when the objective criterion is reached.

The most time consuming part of each interior point iteration is computing the step
direction by solving a small number of linear systems of the form

AT I −I
A

I −I
I I

Zl X l

Zu Xu

∆x

∆y

∆xl

∆xu

∆zl

∆zu

=

rc

rb

rl

ru

sl

su

(4)

for certain vectors sl and su. IPX implements a version of Mehrotra’s method [15], which
composes the step from a predictor and a corrector direction. Mehrotra’s method is widely
considered to be the most efficient method using two linear system solves per iteration. For
implementations based on Cholesky factorization it is common practice to compute more
than one corrector direction to reduce the iteration count of the IPM [7]. We do not consider
this technique here because iterative linear algebra does not offer large savings when solving
multiple systems with the same matrix.

After eliminating ∆xl, ∆xu, ∆zl and ∆zu from (4), the linear system becomes[
G AT

A 0

](
∆x

−∆y

)
=

(
ra

rb

)
(5)

for a certain vector ra and G the diagonal matrix with entries gj = zlj/x
l
j + zuj /x

u
j . Note

that gj is zero if xj is a free variable. We define diagonal matrices D and H with entries

dj =

{
(gj)

−1/2 if gj 6= 0,

1 if gj = 0,
hj =

{
1 if gj 6= 0,

0 if gj = 0,

3

so that (5) can be rescaled to[
H DAT

AD 0

](
D−1∆x

−∆y

)
=

(
Dra

rb

)
. (6)

The dj are called “scaling factors” in interior point terminology and the 2× 2 matrices are
said to have “KKT form”. The KKT system can either be solved as it is written or can be
further reduced by eliminating (parts of) ∆x. In any case, an iterative linear solver only
provides an approximate solution to (5) or (6) and the accuracy of the solution needs to be
controlled by some means. The iterative methods implemented in IPX compute a solution
of the form [

H DAT

AD 0

](
D−1∆x

−∆y

)
=

(
Dra

rb

)
+

(
δ

0

)
,

where a residual δ occurs only in the first block equation. As termination criterion for the
linear solver it is required that

‖δ‖∞ ≤ τ := ετ
√
µ, (7)

where ετ is a problem independent parameter. The criterion is motivated theoretically be-
cause it maintains boundedness of

∥∥D−1∆x
∥∥ in terms of

√
µ, which is key to the convergence

of the IPM (see, for example, [22, Chapter 6]). Choosing a smaller tolerance increases the
computational cost per linear system but reduces the number of interior point iterations as
the step directions become more accurate. The effect on the total computation time is quite
moderate, however. On our test set varying ετ between its default value 0.3 and within the
range [0.05, 0.5] changed the geometric mean of the IPX runtimes by up to 8%.

Given an approximate solution to the KKT system, the order in which the remaining
step components are recovered determines to which of the block equations in (4) the residual
propagates. Solving the dual feasibility equations exactly has shown to be necessary for the
robustness of the IPM. We therefore compute

∆xl = −rl + ∆x,

∆xu = ru −∆x,

∆zlj = (slj − zlj∆xlj)/xlj for all j for which zlj/x
l
j < zuj /x

u
j ,

∆zuj = (suj − zuj ∆xuj)/xuj for all j for which zlj/x
l
j ≥ zuj /xuj ,

∆zlj = rcj − (AT∆y)j + ∆zuj for all j for which zlj/x
l
j ≥ zuj /xuj ,

∆zuj = −rcj + (AT∆y)j + ∆zlj for all j for which zlj/x
l
j < zuj /x

u
j .

By this choice the first four block equations in (4) are solved exactly and the residual is shifted
between the last two blocks. If a variable has two finite bounds and is active at its lower
bound in the solution, the residual eventually occurs in the equation zlj∆x

l
j + xlj∆z

l
j = slj .

Since in this case xlj → 0 but xuj → (xuj)∗ > 0, adjusting ∆zlj to satisfy dual feasibility
causes a smaller residual in the right-hand side to (4) than adjusting ∆zuj .

3 Basis Preconditioning

In advanced interior point iterations the KKT matrix usually becomes very ill conditioned
due to a wide spread of the diagonal entries of G. This ill conditioning is a major obstacle
for iterative linear algebra and requires effective preconditioning to obtain an acceptable
iteration count of the linear solver. The situation is further complicated because LP problems
arise from a variety of applications and therefore have different numerical properties. The

4

motivation for IPX was to develop a general-purpose LP solver based on iterative linear
algebra, which is not tailored to a particular class of problems.

We shall see that preconditioning the linear systems by a careful choice of basis matrix
yields a robust method with good overall efficiency. Different variants of basis precondition-
ing were described in [2, 3, 16]. In this paper a new variant specific for IPMs is presented
that takes advantage of free variables while reducing the KKT system to a smaller, positive
definite one.

3.1 Preconditioned CR Method

Assume first that the LP model does not contain free variables. Then G has a zero-free
diagonal, D = G−1/2 and the KKT system (5) can be reduced to positive definite normal
equations

AD2AT∆y = rb −AD2ra =: r.

Basis preconditioning transforms this system using a scaled basis matrix ABDB into

(ABDB)−1AD2AT (ABDB)−T∆u = (ABDB)−1r. (8)

In our setting the transformation is carried out explicitly, meaning that the iterative solver
computes a solution for ∆u rather than ∆y.

IPX uses the Conjugate Residual (CR) method [18, Algorithm 6.20] for solving positive
definite linear systems. The CR method is a Krylov subspace method originally proposed
in [13] for the symmetric indefinite case. Compared to the Conjugate Gradient method
it requires one more vector update per iteration, but has shown to reach the termination
criterion in fewer iterations and smaller computation time.

Matrix-vector products with the transformed normal matrix

C := (ABDB)−1AD2AT (ABDB)−T = Im + (ABDB)−1AND
2
NA

T
N (ABDB)−T (9)

are implemented through a matrix-vector product with AND
2
NA

T
N and two linear system

solves with a factorization of ABDB. Neither AND
2
NA

T
N nor C are formed explicitly.

After computing an approximate solution for ∆u, a solution to the KKT system is
recovered from

∆y = (ABDB)−T∆u,

∆xN = D2
N (raN +ATN∆y),

∆xB = A−1
B (rb −AN∆xN).

By definition of ∆x, a residual originating from the iterative method occurs only in the
basic components of the first block equation in (6). That residual is

δB = D−1
B ∆xB −DBATB∆y −DBraB

= D−1
B A−1

B (rb −AN∆xN)−∆u−DBraB
= D−1

B A−1
B r

b −D−1
B A−1

B AND
2
N (raN +ATN∆y)−∆u−DBraB

= (ABDB)−1rb − (ABDB)−1AD2ra −
(
Im + (ABDB)−1AND

2
NA

T
N (ABDB)−T

)
∆u

= (ABDB)−1r − C∆u.

Therefore, to satisfy the accuracy requirement (7), the CR method is terminated when the
infinity norm of the residual in (8) becomes smaller than τ .

When G has zeros on the diagonal the KKT system can still be reduced to normal
equations if all free variables are basic. This requirement is satisfied by the initial basis in

5

IPX and is maintained throughout; hence let B = B0 ∪ B1, where B0 are the indices of all
free variables. Then (6) can be permuted to

IN DNA
T
N[

IB1

0

]
DBA

T
B

ANDN ABDB 0

D−1
N ∆xN

D−1
B ∆xB

−∆y

 =

DNr

a
N

DBr
a
B

rb

 .

Transforming this system using the scaled basis matrix yields
IN DNA

T
NA
−T
B D−1

B[
IB1

0

]
IB

D−1
B A−1

B ANDN IB 0

D−1
N ∆xN

D−1
B ∆xB

−∆u

 =

DNr

a
N

DBr
a
B

D−1
B A−1

B r
b

 ,

where ∆u = DBA
T
B∆y as before. Notice that the components of ∆u correspond to basic

variables. It follows from the second block equation and DB0
being the identity matrix that

the components of −∆u corresponding to free variables are given by raB0
and can be elimi-

nated. Also, the components of ∆xB corresponding to free variables can be removed from
the linear system and can be computed from the third block equation once the remaining

components of D−1∆x are known. Let P =
[
IB1 0

]
have m columns. The resulting linear

system is
IN DNA

T
NA
−T
B D−1

B PT

IB1 IB1

PD−1
B A−1

B ANDN IB1 0

D−1
N ∆xN

D−1
B1

∆xB1

−P∆u

 =

DNr

a
N

DB1
raB1

PD−1
B A−1

B r
b

−

ξ

0

0

 ,

where

ξ = DNA
T
NA
−T
B D−1

B

(
0

raB0

)
= DNA

T
NA
−T
B

(
0

raB0

)
.

Because the upper left 2× 2 block now has a zero-free diagonal, the system can be reduced
to normal equations(

IB1
+ PD−1

B A−1
B AND

2
NA

T
NA
−T
B D−1

B PT
)

(P∆u) =

− PD−1
B A−1

B ANDN (DNr
a
N − ξ)−DB1

raB1
+ PD−1

B A−1
B r

b (10)

and can be solved for P∆u. The solution for ∆u is completed by inserting the components
corresponding to free variables given by −raB0

.
The dimension of (10) is m minus the number of free variables. In the implementation the

CR method always operates on vectors of dimension m, in which components corresponding
to free variables are initialized to zero and are reset to zero after each matrix-vector product
with C defined in (9). The only actual change to the code was to replace the right-hand
side of (8) by that of (10), scattered into a full size vector. The result is a concise handling
of free variables, which implicitly reduces the dimension of the linear systems.

3.2 Maintaining a Basis Matrix

The aim of basis preconditioning is to make the transformed normal matrix (9) well con-
ditioned, since then we expect fast convergence of the linear solver. Clearly, the condition

6

number of C depends on the choice of the basis. While finding an optimal basis in that sense
seems to be impossible without enumerating all bases [3], a criterion that can be targeted
in practice is to find a basis B that satisfies1

max
p,q
|D−1
B A−1

B ANDN |pq ≤ ρ (11)

for a parameter ρ ≥ 1. Such a basis, called “ρ-maximum volume basis”, exists for any
matrix AD of full row rank and bounds the spectrum of C in the interval [1, 1 + ρ2mn],
see [3, 20]. Compared to the previous approaches for basis preconditioning in IPMs [2, 16],
the advantage of the maximum volume concept is that it does not rely on having m large
and n small scaling factors. Due to degeneracy the latter assumption is rarely satisfied in
practice.

A ρ-maximum volume basis is obtained through pivot operations in the scaled tableau
matrix D−1

B A−1
B ANDN starting from an arbitrary basis [8, 12]. A generic pivot scheme is

given in Algorithm 1. In each iteration any entry that is larger than ρ in absolute value
can be chosen as pivot. Because each basis update increases |det(ABDB)| (see [8]), the
algorithm terminates in a finite number of iterations.

Algorithm 1 Maxvolume

Input: basis B, parameter ρ ≥ 1.
1: loop
2: Choose (p, q) such that |D−1

B A−1
B ANDN |pq > ρ. If no such (p, q) exists, then stop.

3: Bp = Nq
4: end loop

It will be seen that the number of pivot operations for updating the basis from one
interior point iteration to the next is quite small in practice. The difficulty in implementing
Algorithm 1 is finding a pivot element in line 2. Because the tableau matrix is only available
implicitly through operations with A−1

B , searching systematically for an entry that is larger
than ρ can be expensive. In particular, testing if (11) is satisfied would require to compute
all tableau entries, which is impractical for large-scale problems.

To make the approach practical we relax the target and only attempt to find a ρ-maximum
volume basis. The idea is to perform pivot operations in the scaled tableau matrix as long as
large entries are readily found, and to terminate the method when the pivot search becomes
costly. The pseudocode of the update procedure is given in Algorithm 2.

Assume first that the parameter nslices is 1. Then wj is the sum of entries in column
j of the scaled tableau matrix if j ∈ N . The algorithm chooses the index with maximum
such weight as candidate and computes the corresponding column of the scaled tableau
matrix. If its maximum entry is larger than ρ in absolute value, the basis is updated. In
this case the tableau row needs to be computed as well to update the column sums (line
15). After computing maxskip+1 candidate columns without finding a pivot, the algorithm
terminates.

When nslices > 1, then in each iteration of the outer loop only a subset of rows of
the tableau matrix contributes to the column weights. This slicing of the tableau matrix
decreases the chance that when a column has large positive and negative entries that these
cancel out in the column sum; and it makes the algorithm adaptive to the number of rows
of A.

IPX runs Algorithm Maxvolume Heuristic at the beginning of each interior point iteration
with the new scaling matrix D and the basis from the previous iteration as starting basis.
Free and fixed variables are excluded from the pivot search and remain basic and nonbasic,

1For a matrix A the expression |A| is meant componentwise.

7

Algorithm 2 Maxvolume Heuristic

Input: basis B, parameters (ρ, nslices,maxskip) such that ρ ≥ 1, 1 ≤ nslices ≤ m,
maxskip ≥ 0.

1: for s = 0 to nslices− 1 do
2: Let u ∈ Rm, w ∈ Rn+m.
3: for i = 1 to m do // set row mask
4: ui = 1 if mod(i, nslices) = s
5: ui = 0 if mod(i, nslices) 6= s
6: end for
7: wT

N = uTD−1
B A−1

B ANDN , wB = 0 // initialize column weights
8: skipped = 0 // count “skipped” columns
9: while skipped ≤ maxskip do

10: j = arg maxk |wk| // choose candidate column
11: Compute v = D−1

B A−1
B Ajdj .

12: if ‖v‖∞ > ρ then
13: p = arg maxi |vi|
14: Bp = j
15: Update w .
16: else // no pivot found in column j
17: skipped = skipped+ 1
18: Flag column j to be excluded from pivot search.
19: end if
20: end while
21: end for

respectively. The default parameters are nslices = 5 + bm/10000c and maxskip = 10, but
they have shown little effect on the number of basis updates and the quality of the basis
preconditioner.

3.3 Empirical Tests

To investigate the effect of the parameter ρ we consider two LP models, pds-20 and nug20,
which have similar dimensions but very different characteristics. The operation counts and
computation times for updating the basis and running the iterative solver are reported in
Table 1. IPM iterations prior to the start of basis preconditioning are included in the total
IPM time but not in the figures for the CR method. These iterations and the starting bases
were the same for all values of ρ.

In both examples a smaller ρ systematically reduced the iteration count and runtime of
the CR method, but increased the number of updates and the time for finding the basis. A
larger set of models confirmed that values between 2.0 and 4.0 lead to similar and close-to-
optimal total runtime if the correlations are the same as in Table 1. Therefore IPX uses a
problem independent default of ρ = 2.0.

The behaviour is not always that clear, however. It turned out that sparsity in the
tableau matrix also has large effect on the number of CR iterations. While A is almost
always a sparse matrix in real life, for some models A−1

B and A−1
B AN are sparse as well

for all relevant bases; such models are called “hypersparse” in simplex community [4, 9].
On the one hand hypersparsity enables orders of magnitude speedup for finding the basis
because operations with A−1

B , if implemented properly, take far less than order of m time.
On the other hand a sparse tableau matrix has shown to lead to fewer CR iterations. This is

not surprising because the maximum eigenvalue of C is bounded by 1 +
∥∥D−1
B A−1

B ANDN
∥∥2

F
(see [20]) and the Frobenius norm becomes small when the tableau is sparse. Both effects are

8

name (dimension) ρ Maxvolume Heuristic CR method IPM total

updates time iter time time

pds-20 1.1 2793 1.00 4359 1.81 4.68

(m = 12081, 2.0 1964 0.90 5129 2.15 4.91

n = 81163) 4.0 1697 0.85 6467 2.77 5.49

10.0 1548 0.81 10029 4.34 6.98

nug20 1.1 8871 91.52 11567 34.49 133.24

(m = 14098, 2.0 6238 66.83 14928 41.45 115.64

n = 72546) 4.0 5091 55.62 19652 53.39 116.04

10.0 4385 48.80 31485 87.21 143.11

Table 1: Linear algebra operations on two example models. Times are reported in seconds.

seen in Table 1 by comparing the hypersparse pds-20 to the not-hypersparse nug20. When
sparsity in the tableau matrix varies significantly between different bases, it can happen
that a smaller ρ leads to more CR iterations. We observed such a behaviour on a number
of LP models. It is not obvious how to choose a basis that preserves sparsity as far as
possible while targeting the maximum volume criterion. This remains a topic for further
investigation.

A second comparison with the two example models demonstrates that the heuristically
found basis does not degrade effectiveness of the preconditioner compared to a (true) ρ-
maximum volume basis. In Figure 1 the CR iteration counts per interior point iteration
are plotted for either basis. Finding the maximum volume basis was a very expensive task
for nug20 and is not an option in practice. For both models and all values of ρ the curves
closely resemble each other, showing that the heuristically found basis yields an equally good
preconditioner. The curves also illustrate the typical behaviour of the CR iteration counts
during the course of the IPM: one or more peaks usually occur after the switch to basis
preconditioning, and the iterations level out toward the end of the interior point solve.

4 Initial Iterations and Crash Basis

IPX does not use basis preconditioning from the beginning of the interior point solve. At the
early iterations the KKT matrix is usually well conditioned by itself and a simpler (and less
expensive) preconditioner is equally effective. This is exploited by performing a few “initial
iterations” of the IPM in which the CR method is aplied with a variant of diagonal scaling.
When the method does not converge within min(500, 10 +m/20) iterations, a starting basis
is constructed and the interior point iteration is repeated with basis preconditioning. This
section looks at these techniques in more detail.

4.1 Initial Iterations

The KKT matrix in (5) is nonsingular if and only if A has full row rank and the columns
of A corresponding to zeros on the diagonal of G are linearly independent. While the first
requirement is satisfied after adding slack variables to all constraints, the latter requirement
might not be. To overcome the problem at the beginning, zeros on the diagonal of G are
replaced by the regularization value min{{gj | gj 6= 0}, µ}. Regularization can significantly
change the solution to the linear system, but using it in the initial iterations has shown to
be unproblematic for the convergence of the IPM. The regularization value is chosen to yield

9

10 15 20 25 30 35 40 45 50 55

0

50

100

150

200

250

300

350

400

450

C
R

 i
te

ra
ti
o
n
s

=10.0

=4.0

=2.0

=1.1

10 15 20 25 30

interior point iteration

0

500

1000

1500

2000

2500

3000

C
R

 i
te

ra
ti
o
n
s

=10.0

=4.0

=2.0

=1.1

Figure 1: LP models pds-20 (above) and nug20 (below) with ρ-maximum volume basis
(solid line) and heuristically computed basis (dashed line).

10

a well conditioned KKT matrix as long as the remaining diagonal entries of G are balanced
and µ is sufficiently large. Including µ in the definition guarantees that regularization is
eventually reduced to zero even if none of the remaining gj becomes small (i. e. if all non-
free variables are at a bound in the solution).

An additional benefit of regularization is that the KKT system can always be reduced
to normal equations

AG−1AT∆y = rb −AG−1ra = r. (12)

From an approximate solution for ∆y, the solution components ∆x to the KKT system are
recovered from

∆xN = G−1
N (ra +AT∆y)N , ∆xB = rb −AN∆xN ,

where G is the regularized matrix and B = {n+ 1, . . . , n+m} is the slack basis. It is easily
verified that the accuracy requirement (7) is satisfied if∥∥∥G1/2

B (r −AG−1AT∆y)
∥∥∥
∞
≤ τ.

In the initial iterations IPX solves (12) by the CR method using a symmetric positive
definite matrix M as preconditioner. The method iterates on ∆y and requires one operation
with M−1 per iteration. In an early version of the code diagonal preconditioning was used,
where M = diag(AG−1AT) was obtained by dropping all off-diagonal entries. The method
has been refined for matrices A with “dense” columns; i. e. columns whose nonzero count is
much higher than the average. Let As and Ad be the sparse and dense part of A, respectively,
and Gd and Gs be the corresponding diagonal blocks of G. Then IPX uses

M = diag(AsG
−1
s ATs) +AdG

−1
d ATd (13)

as preconditioner. By treating the second summand as a low-rank update, an inverse rep-
resentation of M is obtained from the Sherman-Morrison-Woodbury formula and can be
computed through the Cholesky factorization of a dense matrix of dimension equal to the
number of columns in Ad. For LP models with a small number of dense columns, using (13)
is little more expensive than diagonal scaling but often more effective because AsG

−1
s ATs is

better approximated by its diagonal than AG−1AT . IPX classifies the maximum number of
columns as dense such that each column in Ad has more than 40 nonzeros and more than
10 times the number of nonzeros of any column in As. If this yields more than 1000 dense
columns, then no columns are treated as dense.

4.2 Crash Basis

At the switch to basis preconditioning a starting basis must be determined, given the current
interior point iterate and its associated scaling matrix D. To reduce the number of basis
updates in the first run of Algorithm Maxvolume Heuristic and to make the linear algebra
operations fast, the basis should have the following (often competing) properties:

• The basis matrix is well conditioned.

• The basis matrix and ideally the tableau matrix are sparse.

• The basis is close to a maximum volume basis for the current D.

• All free variables are basic.

• All fixed variables are nonbasic.

11

Making all free variables basic is required for the reduction of the KKT system to normal
equations (Section 3.1) and is always achievable. If the columns corresponding to free
variables are linearly dependent, then the model is either dual infeasible or some of the
variables are redundant and can be fixed at an arbitrary value. The analogue requirement is
to make all fixed variables nonbasic, which allows them to be removed from the optimization
entirely. Again, this is always achievable, for if a fixed slack variable cannot be replaced in
the basis, then either is the corresponding row of A redundant and can be removed, or the
model is primal infeasible.

Finding efficiently a basis that satisfies the last requirement is already nontrivial if most
slack variables are fixed. In particular, the obvious method by computing an LU factor-
ization of the structural part of A would be unacceptably expensive for many large-scale
problems. Instead, IPX “crashes” a starting basis through the following steps:

Initial guess A set J of m column indices is constructed as follows:

(1) If the LP model contains free variables, the first step is computing an incomplete
left-looking LU factorization of the corresponding columns of A. In the left-looking
method L starts out to be the identity matrix and its strictly lower triangular part is
computed one column at a time. Let j be the next free variable, â = L−1Aj and i be
such that |âi| is maximum among all entries of |â| whose row has not been pivotal. If
|âi| > 10−3, variable j is added to J and the next column of L is composed from the
entries of â/âi that are nonzeros in Aj and have not been pivotal. (Restricting the
column of L to the nonzero pattern of Aj makes the factorization incomplete.) After
processing all free variables, L is discarded but the index set I of pivot rows is kept.

(2) In the second and third step columns of A corresponding to fixed and free variables are
treated as vacant; i. e. they are treated as being structurally zero in A and AD. The
second step adds singleton columns to J if their entry in AD is sufficiently large. For
each i /∈ I the maximum entry in row i of |AD| and the maximum entry that lies in
a singleton column are determined. If the singleton entry is nonzero and not smaller
than 0.5 times the maximum of the row, its column is added to J and i is added to I.

(3) Let A33 be the submatrix of A composed of rows i /∈ I and columns j /∈ J . The third
step extends I and J by choosing a structurally independent subset of the columns of
A33. Processing in decreasing order of the dj , the next column from A33 is tested for
being structurally dependent on the columns from A33 already chosen, by computing
an alternating augmenting path [6]. If the candidate column is independent, its index
is added to J and the row that was newly matched by the augmenting path is added
to I. The method stops at the latest when |J | = m or when all columns of A33 have
been processed. It is stopped before if too many candidate columns were structurally
dependent, ensuring that the computation time is small.

(4) Finally J is completed by adding slack variables for i /∈ I.

Initial factorization The task is to find a well conditioned basis matrix that contains
as many columns of J as possible. A right-looking Markowitz LU factorization of AJ
is computed with the usual columnwise threshold pivoting. If during the course of the
factorization all entries in a column of the active submatrix become smaller than 10−3, the
column is immediately removed without choosing a pivot. After completion, the LU factors
are padded with unit columns whose row has not been pivotal. Accordingly a preliminary
basis B is obtained composed of indices of J and indices of slack variables.

12

Basis repair The resulting basis matrix AB would be nonsingular in exact arithmetic. It
is well known, however, that AB can have tiny singular values even if no small pivots occur
in the LU factorization, and such cases actually happen in practice. It is therefore essential
to control the condition number of AB and to repair numerical singularities if necessary.
Because the model is scaled during preprocessing so that the maximum entry of A is bounded
by a moderate number, a high condition number of AB can only be caused by large entries in
A−1
B . As described in [11] a rook search is performed for estimating the maximum absolute

entry of A−1
B along with its position (p, i) in the matrix. If the entry is larger than 105, then

Bp is replaced by the i-th slack variable and the rook search is repeated. During the basis
repair AB typically requires frequent refactorization due to numerical instability in the LU
update. If the basis matrix is refactorized, columns are dropped from the active submatrix
and replaced by unit columns as in the initial factorization.

Handling free and fixed variables The obtained basis may contain fixed slack variables
and may not contain all free variables. These “defects” are corrected by basis updates. For
each free variable that is nonbasic a column of the tableau matrix is computed and the
variable is pivoted into the basis if it can replace a non-free basic variable. If not, the model
is either declared dual infeasible or the free variable is fixed at zero. Likewise, for each fixed
(slack) variable in the basis a row of the tableau matrix is computed and searched for an
exchange column. If the tableau row is numerically zero, the model is either declared primal
infeasible or the constraint corresponding to the slack variable is removed. After correcting
all defects, the remaining fixed variables (which are nonbasic now) are excluded from the
IPM solve.

The described procedure has been developed through extensive testing and works effi-
ciently on most real-world problems. Steps (i)–(iii) of the initial guess are designed to be
fast and to yield a column subset of close-to full rank. Depending on the characteristics of
the LP model, each of the three steps may add the majority of columns to J . Computing
the starting basis typically accounts for less than 5% of the total IPX runtime. When the
computation time is significant, the last step of the procedure often dominates due to the
number of pivots for fixed variables. Processing these variables as described is advantageous
later, however, because otherwise fixed variables can lead to small step sizes in the IPM and
dependent equality constraints can cause dual variables to blow up.

The crash bases are surprisingly close to the bases at the end of the interior point solve.
In Table 2 the number of basis updates in relation to m is reported. Note that a value 0.25,
for example, means that at least 75% of the starting basis must be final. It is seen that
updating the basis during the interior point solve never exhibits the combinatorial nature
that can occur in the simplex method.

5 Crossover

A basic solution to (1) is an optimal solution with an associated basis B such that zlB and
zuB are zero and xN is at a bound (or zero if the variable is free). In this case B is said
to be an optimal LP basis. Basic solutions are required in a number of applications, most
prominently for classical integer programming. Because the basis from the preconditioner
need not become optimal close to the solution, the basis-preconditioned IPM requires a
crossover step for recovering a basic solution, as any other interior point solver.

For the crossover it is convenient to combine the dual slack variables into z = zl − zu.

13

basis updates / m instances

0.000–0.010 24

0.010–0.025 8

0.025–0.050 6

0.050–0.100 16

0.100–0.250 46

0.250–0.500 22

0.500–1.000 38

1.000–3.350 5

Table 2: Number of basis updates in the IPM starting from crash basis (165 models in total).

A primal-dual solution (x,y, z) then satisfies

Ax = b, ATy + z = c, (14a)

l ≤ x ≤ u, (14b)

zj ≤ 0 if xj > lj for all j, (14c)

zj ≥ 0 if xj < uj for all j. (14d)

Let us first assume that (x,y, z) from the final interior point iteration is an exact primal-
dual solution and let B be any basis. The variables in N+ = {j ∈ N | lj < xj < uj} and
B+ = {j ∈ B | zj 6= 0} are called primal and dual “superbasic”, respectively. The crossover
method removes superbasic variables by two push phases.

The dual push phase manipulates (y, z) and B whilst satisfying (14c), (14d) and

ATBy + zB = cB,

ATNy + zN = cN .

In each iteration an i ∈ B+ is chosen and zi is moved toward zero until the adjustment
to (y, zN) would violate the sign condition for z. The push is complete if zi reaches zero.
Otherwise a basis update is applied exchanging i ∈ B with the blocking index j ∈ N .
Because in the latter case zj has become zero, each iteration reduces the number of dual
superbasic variables by 1.

The primal push phase manipulates x and B whilst satisfying (14b) and

ABxB +ANxN = b.

In each iteration a j ∈ N+ ∩ (L ∪ U) is chosen and xj is moved toward a bound until the
adjustment to xB would violate the bound constraints. The push is complete if xj reaches
its bound. Otherwise a basis update is applied exchanging j ∈ N with the blocking index
i ∈ B. Because in the latter case xi has been moved to a bound, each iteration reduces the
number of primal superbasic variables by 1.

As pointed out in [5], the push phases are equivalent to Megiddo’s algorithm [14] if the
initial basis contains a maximum number of variables for which lj < xj < uj and a minimum
number for which zj 6= 0. In this case the analysis in [14] proves that each push maintains
complementarity of (x,y, z) so that the final iterate is indeed a basic solution. It is easy to
see, however, that each dual push as stated above maintains complementarity regardless of
the initial basis; if moving zi (i ∈ B+) toward zero makes a zj (j ∈ N+) nonzero, the step is
blocked immediately because (14c) or (14d) would be violated. Furthermore, because there

14

exist no dual superbasic variables after the dual push phase completed, the primal phase can
move any basic variable xi without violating complementarity. Hence the above algorithm
can be run from any starting basis.

In practice the final iterate from the IPM is neither exactly feasible nor complementary
and care must be taken with small pivot elements to prevent the basis matrix from becoming
too ill conditioned for finite precision arithmetic. These issues are addressed by the IPX
implementation as follows. Before executing the push phase, the final IPM iterate is dropped
to an (x,y, z) satisfying (14b)–(14d). For each variable either xj is set to a bound or zj
is set to zero, depending on which perturbation is smaller. The dropping usually increases
the residuals in (14a). Throughout the push operations the conditions (14b)–(14d) are
maintained exactly by truncating the update to a variable if necessary. A blocking variable
is eligible as pivot only if the pivot element is larger than 10−5 in absolute value. Among all
candidates, the exchange variable is chosen using the two-pass ratio test from the simplex
method [10], which allows larger pivot elements by exploiting a feasibility tolerance for (14b)–
(14d) with default value 10−7. The combination of the last two techniques was necessary to
make the implementation robust against failure due to a numerically singular basis.

IPX naturally uses the final basis from the preconditioner as starting basis for crossover.
The number of pushes is determined from the beginning by the number of superbasic vari-
ables, whereas the number of pivot operations depends on the order in which the superbasic
variables are processed. IPX proceeds in the primal and dual push phase in decreasing and
increasing order, respectively, of the scaling factors from the final interior point iteration.
We have not found a systematic difference in the number of pivot operations compared to
other orderings and find this the most natural choice that makes the computations invariant
to a permutation of the variables.

At the end of the push phases (x,y, z) is a basic solution to the LP model with perturbed
right-hand side and objective, and B may or may not be an optimal basis for the original
problem. If it is not, a reoptimization with the simplex method is required. The main
reason for a non-optimal basis is that the pairwise complementarity products xljz

l
j and xuj z

u
j

can be quite large when the IPM reaches the termination criterion (3), resulting in a large
perturbation. To reduce the number of simplex iterations in the clean-up, IPX uses a more
stringent termination criterion for the IPM when crossover is requested. In addition to (3)
it is required that

max
j
‖δxjAj‖∞ ≤ 10−8(1 + ‖(b, lL,uU)‖∞), (15a)

max
j
|δzj | ≤ 10−8(1 + ‖c‖∞), (15b)

where δxj and δzj are the perturbations to drop the iterate to complementarity. (For each
j either δxj or δzj is zero.) On 60% of the models in our test set the stricter condition
forced at least one extra interior point iteration, and except for some badly scaled models
no more than 6 iterations were needed. Hence the additional computation time for the
IPM is moderate, in particular because the final iterations are typically fast with basis
preconditioning. Using the stricter termination criterion for the IPM, the basis after the
push phases was optimal in 150 out of 165 cases.

A conventional IPM implementation would not be able to achieve (15) reliably because
the linear systems would become too ill conditioned in the final iterations to be solved to
sufficient accuracy. IPX dynamically eliminates variables from the optimization process
when the primal is close to its bound or the dual is close to zero. This technique requires a
basis to be implemented correctly and allows the IPM to be run to (arbitrary) high accuracy.
Details can be found in [19].

15

min(m̄, n̄) instances

1,036–2,499 16

2,500–4,999 17

5,000–9,999 27

10,000–24,999 41

25,000–49,999 31

50,000–99,999 11

100,000–249,999 19

250,000–499,999 4

500,000–999,999 3

1,000,000–1,439,571 1

Table 3: Dimensions of 170 test problems after presolve.

6 Results

IPX is written in C++ and comprises about 10,000 lines of code for the core algorithm. The
factorization of basis matrices and its update is separated from the interior point code and
can be provided by an external package. By default the authors’ BASICLU package is used,
which implements a Markowitz LU factorization and a variant of the Forrest-Tomlin update
[21]. Both packages are available from https://www.maths.ed.ac.uk/ERGO/software.

html.
In this section the configuration is benchmarked on a diverse set of LP models. For

comparison the interior point solver from the commercial software Gurobi [1] version 7.0 is
used, which represents a state-of-the-art implementation based on Cholesky factorization.
The computations were run on a desktop computer with an Intel i5-6500 processor with 4
cores and 8GB physical memory. While it is clear that the Cholesky factorization would
have benefitted from hardware with higher floating point capability more than the iterative
solver, this setup was chosen because it is often used by practitioners.

For the test set all LP models from the sources listed in Appendix A were collected. For
the mixed-integer problems the canonical LP relaxation was built, and a presolved version
was generated for each model by the Gurobi LP presolve. Instances for which the resulting
m̄ × n̄ constraint matrix was such that min(m̄, n̄) ≤ 1000 were removed, because for these
models the normal equations (possibly after dualization) can be solved efficiently by dense
linear algebra routines.

Both solvers were then applied with default parameters and a time limit of 36, 000 sec-
onds. IPX was run on the presolved models, whereas Gurobi was given the original models
and its presolve time was subtracted from its total runtime. Infeasible and unbounded mod-
els, as well as models for which the Cholesky factorization required more than the 8GB
physical memory were removed from the set. Models were also removed if they were solved
by both methods within 1 second. The test set was finally cleaned by keeping only 1 or 2 in-
stances of the same model (for example, from the 12 pds instances only pds-60 and pds-100

were kept). The resulting set contained 170 LP models that are listed with their solution
times in Appendix A. An overview of their dimensions is given in Table 3. While there
is a lack of truly large instances, the set represents a wide range of medium to large-scale
models.

IPX does not provide a simplex implementation for cleaning up the basic solution after
the crossover push phases. For the study the final basis was used as starting basis for the

16

subset instances IPX/Gurobi IPX faster Gurobi faster

>1s 164 3.67 22 142

>10s 89 3.94 16 73

>100s 41 6.29 6 35

Table 4: Runtime comparison on 164 LP models that were solved by both methods.

Gurobi primal or dual simplex, depending on which infeasibility was smaller. In 150 cases
Gurobi decided the initial solution to be optimal within its default tolerances. In 15 cases a
simplex run was necessary and the time was added to the total IPX runtime.

All models in the test set were solved by either IPX or Gurobi to basic solution. The
Gurobi crossover reached time limit on 1 instance (nug30), whereas the IPX interior point
method failed on 5 instances:

• On stormg2 1000, ns2122603 and ns1688926 the IPM stopped after no progress was
achieved over a number of iterations. The issue seems to be solvable by a refined IPM
implementation (for example using centrality correctors or a more conservative choice
of step sizes). The latter two models are questionable numerically, however, due to a
wide range of entries in the problem data.

• On cont1 l and cont11 l the initial LU factorization ran out of memory. It turned
out that the large fill-in was caused by the default pivot tolerance of 0.0625 being
too small. For the related but smaller instances cont1 and cont11 IPX detected the
initial LU factorization to be unstable and tightened the pivot tolerance to 0.3. In
the repeated factorization the fill-in decreased by about a factor 4. After setting the
initial LU pivot tolerance to 0.3, cont1 l was solved to an optimal basic solution
in 3155 seconds (Gurobi required 1951 seconds); cont11 l reached time limit after 3
interior point iterations with basis preconditioning.

Table 4 compares the runtimes on the 164 models that were solved by both codes with
default parameters. The column “IPX/Gurobi” shows the geometric mean of the runtime
ratios, a value >1.0 meaning that IPX was by that factor slower. The subset “>10s” consists
of the models for which at least one solver required more than 10 seconds. The last subset
should be considered with care because 41 instances are insufficient to draw a conclusion.

IPX solved the vast majority of test problems and its average runtime on the medium-size
instances was in the same order of magnitude as that of Gurobi. Hence the new approach
proved to be a general-purpose LP solver. For large instances, say m ≥ 100, 000, the
irregular memory access of the iterative solver and update scheme became decisive. Here
the Cholesky factorization often performed better as long as the required number of floating
point operations was not too high.

The breakdown of the total IPX runtime into different parts of the algorithm is illustrated
in Figure 2 for the 87 models that IPX solved successfully but took longer than 10 seconds.
Computing the starting basis was inexpensive except for cont1, where it accounted for one
third of the total time. Here the issue was the large fill-in in the first LU factorization before
tightening the pivot tolerance. On average 15% of the time for running the linear solver
was spent in the initial IPM iterations (not shown separately). Taking geometric means,
preparing the preconditioner and running the iterative solver accounted for 22% and 45% of
the total time, respectively. Crossover took 2% on average, but dominated the IPM runtime
on 7 models.

17

10s 100s 1000s 10000s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Fraction of total runtime spent for computing the crash basis (black bar at the
bottom), for updating the basis during the interior point solve (dark grey), for running the
linear solver (light grey) and for crossover (black bar at the top). The 87 LP models are
ordered on the x-axis by total runtime.

7 Conclusions

The results show that a robust implementation of an interior point solver based on iterative
linear algebra is possible. The key idea of the approach presented in this paper is the
maximum volume criterion for choosing a basis matrix for preconditioning. We proposed a
heuristical method for maintaining a “good” basis at reasonable cost. Although the approach
is considerably slower than a state-of-the-art Cholesky factorization on average, it is faster
for relevant problems and might therefore be used as an alternative when appropriate.

Maintaining a basis matrix in the IPM enables further options to improve numerical
stability. We described the treatment of free variables, otherwise an issue in IPM im-
plementation, and mentioned the ability to remove close-to-converged variables from the
optimization process. The latter option allows running the IPM to high accuracy, which is
required for a clean crossover. These techniques can also be used to supplement direct linear
algebra, for example by performing some extra IPM iterations with basis preconditioning
prior to crossover.

18

A Test Set and Solution Times

The LP models have been obtained from the following sources:

(1) J. Castro: http://www-eio.upc.es/~jcastro/;
(a) huge CTA instances, (b) integrated refinery problems, (c) L1.zip, (d) Linf.zip

(2) J. A. J. Hall: http://www.maths.ed.ac.uk/hall/PublicLP/

(3) Kennington collection: http://www.netlib.org/lp/data/kennington/index.html

(4) C. Mészáros: http://old.sztaki.hu/~meszaros/public_ftp/lptestset/;
(a) misc, (b) New, (c) problematic, (d) stochlp

(5) MIPLIB 2010: http://miplib.zib.de/download/miplib2010-complete.tgz

(6) H. Mittelmann: http://plato.asu.edu/ftp/lptestset/;
(a) fome, (b) misc, (c) nug, (d) pds, (e) rail

(7) Netlib collection: http://www.netlib.org/lp/data/index.html

The table provides the computation times in seconds, excluding presolve, obtained on an
Intel i5-6500 CPU (4 cores, 3.2GHz, 6MB L3 cache) and 8GB of physical memory.

src name IPX Gurobi

total IPM push clean-up total IPM crossover

1a L1 sixm250obs 180.13 176.50 3.63 43.51 42.11 1.40

1a L1 sixm500obs 553.82 506.01 47.81 471.78 468.72 3.06

1b srd120 329.48 327.37 2.11 496.50 484.87 11.63

1b srd240 1883.34 1877.22 6.12 3615.52 3577.24 38.28

1c L1 bts4 5.70 5.56 0.14 1.43 1.27 0.16

1c L1 five20b 47.36 47.21 0.15 6.50 3.74 2.76

1d Linf bts4 11.14 10.80r 0.26 0.08 49.29 48.72 0.57

1d Linf five20b 243.51 64.63r 16.31 162.57 25.09 10.79 14.30

2 dcp2 5.70 5.68r 0.02 0.74 0.59 0.15

3 cre-b 2.30 2.27 0.03 0.43 0.38 0.05

3 ken-18 5.54 5.46 0.08 1.26 1.11 0.15

3 osa-60 5.66 5.59 0.07 1.07 0.99 0.08

4a bas1lp 4.00 3.84 0.16 1.18 1.03 0.15

4a baxter 2.45 2.39 0.06 1.94 1.89 0.05

4a co9 2.11 2.08 0.03 0.43 0.35 0.08

4a dbic1 58.43 46.69 11.74 11.97 2.79 9.18

4a dbir1 17.32 16.32 1.00 1.62 1.42 0.20

4a e18 12.57 12.33 0.24 63.23 63.07 0.16

4a ex3sta1 3.45 3.43 0.02 0.44 0.21 0.23

4a jendrec1 0.91 0.91 0.00 1.13 0.71r 0.42

4a lpl1 21.91 21.44 0.47 4.10 1.79 2.31

4a mod2 6.11 6.07 0.04 1.47 1.24 0.23

4a model10 1.56 1.54 0.01 0.01 0.31 0.24 0.07

4a nemsemm1 5.78 5.77 0.01 0.63 0.58 0.05

4a nl 1.03 1.02 0.01 0.40 0.37 0.03

4a nsct1 7.66 7.50 0.16 3.52 3.41 0.11

4a p010 4.25 4.24 0.01 0.15 0.13 0.02

4a rat7a 2.04 2.03 0.01 0.53 0.34 0.19

4a route 2.37 2.29 0.08 0.44 0.39 0.05

19

src name IPX Gurobi

total IPM push clean-up total IPM crossover

4a stat96v1 21.68 21.16r 0.39 0.13 20.75 4.94r 15.81

4a stat96v3 1423.94 470.08r 13.97 939.89 8063.47 5.22r 8058.25

4a ulevimin 3.90 3.87 0.03 0.60 0.53 0.07

4a world 6.74 6.70 0.04 1.70 1.35 0.35

4b degme 2496.77 2495.89 0.88 166.39 79.77 86.62

4b karted 499.65 499.42 0.23 144.93 27.22 117.71

4b tp-6 2820.88 2820.03 0.85 65.97 41.95 24.02

4b ts-palko 314.70 314.50 0.20 79.19 8.60 70.59

4c gen4 12.28 11.80r 0.48 1.82 0.50 1.32

4c l30 1.79 1.59 0.15 0.05 4.03 0.81 3.22

4d fxm3 16 7.24 7.18 0.06 0.95 0.76 0.19

4d pltexpa4 6 3.03 2.98 0.05 1.27 1.19 0.08

4d scfxm1-2r-256 8.14 8.05 0.09 1.56 1.04 0.52

4d stormg2-125 28.26 28.05 0.21 2.85 2.47 0.38

4d stormg2 1000 f 29.31 24.14 5.17

5 30 70 45 095 100 2.44 0.96 1.48 1.22 0.32 0.90

5 app1-2 4.45 4.39 0.06 1.04 0.87 0.17

5 atlanta-ip 10.16 10.00 0.16 4.83 4.49 0.34

5 bab3 120.10 119.76 0.34 6.23 5.89 0.34

5 bley xl1 10.42 7.82 2.60 13.47 13.22 0.25

5 buildingenergy 262.46 260.49 1.97 6.14 5.66 0.48

5 circ10-3 1.24 0.97 0.27 0.56 0.38 0.18

5 core4872-1529 4.24 4.14 0.10 1.58 1.27 0.31

5 dano3mip 1.68 1.66 0.02 1.09 0.94 0.15

5 datt256 1218.29 158.08 1060.21 718.31 0.99 717.32

5 dc1l 5.91 5.85 0.06 1.08 1.00 0.08

5 dolom1 2.38 2.35 0.03 0.58 0.54 0.04

5 ds-big 196.95 195.40 1.55 6.02 5.02 1.00

5 ex10 38.71 12.89 25.82 121.79 114.36 7.43

5 f2000 3.59 2.33 1.26 2.77 0.87 1.90

5 germanrr 1.98 1.92 0.03 0.03 0.32 0.29 0.03

5 gmut-75-50 5.97 5.92 0.02 0.03 0.77 0.68 0.09

5 in 5381.13 4622.91 758.22 101.16 82.71 18.45

5 ivu06-big 2067.81 2064.87 2.94 34.32 30.73 3.59

5 ivu52 69.17 68.36 0.81 3.50 3.19 0.31

5 map06 11.29 11.20 0.09 3.48 3.18 0.30

5 mining 772.01 769.99 2.02 46.61 36.77 9.84

5 momentum3 25.74 25.58 0.16 22.06 18.04 4.02

5 msc98-ip 4.13 3.62 0.27 0.24 3.01 2.60 0.41

5 mspp16 65.30 64.97 0.33 57.42 52.71 4.71

5 mzzv11 2.29 2.12 0.17 1.56 1.49r 0.07

5 n15-3 18.96 18.62 0.34 2.41 2.07 0.34

5 n3seq24 27.02 26.51 0.51 4.09 3.74 0.35

5 nb10tb 92.78 78.21 0.58 13.99 53.61 41.88 11.73

5 neos-1140050 6.81 6.78 0.03 3.93 3.29 0.64

5 neos-1429212 34.07 31.44 2.63 3.28 1.88 1.40

5 neos-1605075 1.28 0.94 0.34 1.01 0.86 0.15

5 neos-476283 23.75 23.27 0.48 20.02 19.75 0.27

20

src name IPX Gurobi

total IPM push clean-up total IPM crossover

5 neos-506428 7.51 4.38 3.13 1.27 0.96 0.31

5 neos-520729 12.09 11.76 0.33 0.43 0.35 0.08

5 neos-631710 220.24 3.41 216.83 8.65 1.19 7.46

5 neos-738098 2.63 1.49 1.14 0.62 0.48 0.14

5 neos-799711 1.44 1.31 0.13 0.50 0.40 0.10

5 neos-824661 2.04 1.73 0.31 0.35 0.20 0.15

5 neos-826694 1.16 0.81 0.35 0.18 0.08 0.10

5 neos-933638 1.94 1.05 0.89 0.61 0.36 0.25

5 neos-941313 8.44 6.87 1.57 1.10 0.37 0.73

5 neos-948126 1.64 1.12 0.52 0.40 0.21 0.19

5 neos-957389 4.42 4.31 0.11 0.58 0.51 0.07

5 neos-984165 1.70 1.21 0.49 0.41 0.22 0.19

5 neos6 1.09 1.06 0.03 0.45 0.42 0.03

5 neos808444 2.80 1.19 1.61 0.64 0.39 0.25

5 net12 2.84 2.81 0.03 4.41 4.36 0.05

5 netdiversion 110.27 105.20 5.07 14.44 4.16 10.28

5 npmv07 23.06 22.90 0.16 3.73 3.50 0.23

5 ns1111636 5.32 5.10 0.22 0.50 0.38 0.12

5 ns1116954 6.96 2.10 4.86 12.17 11.72 0.45

5 ns1631475 4.62 4.37 0.25 1.04 0.55 0.49

5 ns1644855 49.55 47.95 1.60 131.62 131.15 0.47

5 ns1663818 1105.00 1077.75r 27.25 208.25 197.32r 10.93

5 ns1685374 9.89 9.87 0.02 11.95 1.56 10.39

5 ns1696083 4.94 4.86 0.08 1.70 1.61 0.09

5 ns1758913 26.17 19.57 6.60 20.98 3.89 17.09

5 ns1853823 492.59 473.30 19.29 32.71 20.82r 11.89

5 ns1854840 136.53 124.13 12.40 6.23 4.67 1.56

5 ns1904248 6.60 1.67 4.93 0.84 0.66 0.18

5 ns1905797 1.57 1.45 0.12 11.45 11.31 0.14

5 ns2017839 20.15 20.06 0.06 0.03 7.30 3.20r 4.10

5 ns2118727 42.02 41.91 0.11 13.81 13.51 0.30

5 ns2122603 f 4.45 1.55 2.90

5 ns2124243 4.78 4.37 0.41 0.61 0.31 0.30

5 ns2137859 11.63 11.42 0.21 2.66 2.13 0.53

5 ns894244 3.11 2.64 0.47 0.83 0.63 0.20

5 ns930473 7.18 6.80 0.38 1.13 0.75 0.38

5 nsr8k 16.80 16.44 0.36 4.66 3.93 0.73

5 ofi 135.49 134.65 0.75 0.09 28.99 28.46 0.53

5 opm2-z11-s8 19.45 10.88 8.57 22.40 15.04 7.36

5 opm2-z12-s7 44.36 20.42 23.94 37.79 23.23 14.56

5 pb-simp-nonunif 1.31 1.04 0.27 1.27 0.74 0.53

5 rail02 70.95 62.32 8.63 45.21 42.02 3.19

5 rail03 399.19 318.68 80.51 55.43 48.65 6.78

5 ramos3 4.56 0.98 3.58 4.44 0.33 4.11

5 reblock420 1.95 1.18 0.77 0.82 0.57 0.25

5 rmatr100-p5 3.87 3.83 0.04 9.12 9.10 0.02

5 rmatr200-p5 56.49 55.73 0.76 1.29 1.22 0.07

5 rmine14 83.03 80.43 2.60 48.61 20.80 27.81

21

src name IPX Gurobi

total IPM push clean-up total IPM crossover

5 rmine21 2707.83 2580.18 127.65 1619.99 694.80 925.19

5 rocII-9-11 6.59 6.25 0.34 1.09 0.74 0.35

5 satellites3-40-fs 22.04 14.67 7.37 6.18 3.08 3.10

5 satellites3-40 34.42 25.38 9.04 61.16 56.60 4.56

5 sct1 4.18 4.12 0.06 1.31 1.23 0.08

5 shs1023 173.49 170.75 2.74 14.42 12.80 1.62

5 siena1 3.86 3.78 0.08 1.12 1.02 0.10

5 sing161 281.89 273.55 8.34 13.59 12.08 1.51

5 sing359 268.72 258.44 10.28 11.87 10.05 1.82

5 sp97ar 1.44 1.43 0.01 0.23 0.20 0.03

5 splan1 5242.17 4989.83 250.40 1.94 1775.73 1587.59 188.14

5 stockholm 5.59 5.49 0.10 0.73 0.63 0.10

5 stp3d 196.49 163.36 33.13 11.23 9.40 1.83

5 tanglegram1 7.35 5.82 1.53 7.74 0.30 7.44

5 triptim3 14.20 13.25 0.95 5.30 4.82 0.48

5 uc-case3 7.19 6.96 0.23 1.06 0.90 0.16

5 unitcal 7 12.49 12.06 0.43 1.11 0.90 0.21

5 van 2.73 2.72 0.01 7.48 7.33 0.15

5 vpphard 8.21 7.19 1.02 3.70 3.40 0.30

5 vpphard2 26.22 25.84 0.38 36.63 36.30 0.33

5 wnq-n100-mw99-14 20.27 20.04 0.23 39.36 39.02 0.34

6a fome13 40.48 36.03 4.45 5.85 4.62 1.23

6a fome21 15.51 15.00 0.51 3.47 3.10 0.37

6b cont1 88.48 88.39 0.09 18.82 2.00 16.82

6b cont11 668.59 641.68 4.80 22.11 249.96 1.86 248.10

6b cont11 l f 3256.25 32.06 3224.19

6b cont1 l f 1951.28 50.34 1900.94

6b neos 118.83 118.63 0.20 8.11 7.76 0.35

6b neos1 7.90 7.79 0.11 1.43 1.32 0.11

6b neos3 60.89 27.39 33.50 38.56 11.39 27.17

6b ns1687037 145.85 145.75 0.10 24.51 15.43 9.08

6b ns1688926 f 28.94 22.52r 6.42

6b sgpf5y6 3.42 3.32 0.10 1.70 1.41 0.29

6b watson 1 85.67 85.17 0.50 4.51 3.26 1.25

6b watson 2 193.78 192.68 1.10 6.49 3.49 3.00

6c nug08-3rd 573.80 253.75 320.05 91.23 18.80 72.43

6c nug20 192.26 176.12 16.14 435.45 37.49 397.96

6c nug30 11473.21 5125.17 6336.99 11.05 1400.47 t

6d pds-100 110.60 104.93 5.67 30.88 28.14 2.74

6d pds-60 39.51 37.67 1.84 16.52 15.40 1.12

6e rail2586 259.01 258.58 0.43 15.32 12.66 2.66

6e rail4284 370.69 369.90 0.79 32.89 29.68 3.21

7 dfl001 2.16 2.03 0.13 0.64 0.53 0.11

7 pilot87 1.62 1.62 0.00 0.43 0.25 0.18

7 qap15 15.41 13.28 2.13 4.26 2.78 1.48

f: failed, t: time limit, r: IPM solution reported not optimal

22

References

[1] Gurobi Optimization. http://www.gurobi.com. Accessed: Jan 24, 2017.

[2] G. Al-Jeiroudi, J. Gondzio, and J. A. J. Hall. Preconditioning indefinite systems in
interior point methods for large scale linear optimisation. Optim. Methods Softw., 23(3),
2008.

[3] M. Arioli and I. S. Duff. Preconditioning linear least-squares problems by identifying a
basis matrix. SIAM J. Sci. Comput., 37(5):S544–S561, 2015.

[4] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. MIP: theory and
practice—closing the gap. In System modelling and optimization (Cambridge, 1999),
pages 19–49. Kluwer Acad. Publ., Boston, MA, 2000.

[5] R. E. Bixby and M. J. Saltzman. Recovering an optimal LP basis from an interior point
solution. Oper. Res. Lett., 15(4):169–178, 1994.

[6] I. S. Duff. On algorithms for obtaining a maximum transversal. ACM Trans. Math.
Softw., 7(3):315–330, September 1981.

[7] J. Gondzio. Multiple centrality corrections in a primal-dual method for linear program-
ming. Comput. Optim. Appl., 6(2), 1996.

[8] S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, and N. L.
Zamarashkin. How to find a good submatrix. In Matrix methods: theory, algorithms
and applications. World Sci. Publ., Hackensack, NJ, 2010.

[9] J. A. J. Hall and K. I. M. McKinnon. Hyper-sparsity in the revised simplex method
and how to exploit it. Comput. Optim. Appl., 32(3):259–283, 2005.

[10] P. M. J. Harris. Pivot selection methods of the Devex LP code. Math. Programming,
5, 1973.

[11] N. J. Higham and S. D. Relton. Estimating the largest elements of a matrix. SIAM J.
Sci. Comput., 38(5), 2016.

[12] D. E. Knuth. Semioptimal bases for linear dependencies. Linear and Multilinear Alge-
bra, 17(1), 1985.

[13] D. G. Luenberger. The conjugate residual method for constrained minimization prob-
lems. SIAM J. Numer. Anal., 7:390–398, 1970.

[14] N. Megiddo. On finding primal- and dual-optimal bases. ORSA J. Comput., 3(1), 1991.

[15] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM J.
Optim., 2(4):575–601, 1992.

[16] A. R. L. Oliveira and D. C. Sorensen. A new class of preconditioners for large-scale
linear systems from interior point methods for linear programming. Linear Algebra
Appl., 394:1–24, 2005.

[17] C.-T. Pan. On the existence and computation of rank-revealing LU factorizations.
Linear Algebra Appl., 316, 2000.

[18] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, second edition, 2003.

23

[19] L. Schork. Basis Preconditioning in Interior Point Methods. PhD thesis, University of
Edinburgh, submitted 2018.

[20] L. Schork and J. Gondzio. Maintaining a basis matrix in the linear programming interior
point method. Technical Report ERGO-17-009, University of Edinburgh, 2017.

[21] L. Schork and J. Gondzio. Permuting spiked matrices to triangular form and its ap-
plication to the Forrest-Tomlin update. Technical Report ERGO-17-002, University of
Edinburgh, 2017.

[22] S. J. Wright. Primal-dual interior-point methods. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1997.

24

