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  A PAS-phosphoglycerate kinase (PGK)-like protein was identified in T. cruzi 

 The PAS-PGK-like protein contains a PTS1 sequence for import into glycosomes 
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Abstract 

 

Per-ARNT-Sim (PAS) domains of proteins play important roles as modules for signalling 

and cellular regulation processes in widely diverse organisms such as Archaea, Bacteria, 

protists, plants, yeasts, insects and vertebrates. These domains are present in many proteins 

where they are used as sensors of stimuli and modules for protein interactions. 

Characteristically, they can bind a broad spectrum of molecules. Such binding causes the 

domain to trigger a specific cellular response or to make the protein containing the domain 

susceptible to responding to additional physical or chemical signals. Different PAS proteins 

have the ability to sense redox potential, light, oxygen, energy levels, carboxylic acids, fatty 

acids and several other stimuli. Such proteins have been found to be involved in cellular 

processes such as development, virulence, sporulation, adaptation to hypoxia, circadian 

cycle, metabolism and gene regulation and expression. Our analysis of the genome of 

different kinetoplastid species revealed the presence of PAS domains also in different 

predicted kinases from these protists. Open-reading frames coding for these PAS-kinases 

are unusually large. In addition, the products of these genes appear to contain in their 

structure combinations of domains uncommon in other eukaryotes. The physiological 

significance of PAS domains in these parasites, specifically in Trypanosoma cruzi, is 

discussed. 
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Protein domains are parts of the polypeptide sequence that can evolve, fold into a three-

dimensional structure, and function independently from the rest of the protein. Domain 

sizes can vary widely; however, the majority of domains comprise between 100 and 200 

residues, with the most common size being about 100 residues [1]. Protein domains are 

present in the three domains of life: archaea, bacteria and eukaryotes. In the case of 

eukaryotes, many proteins possess one or multiple domains, with different architectures [2]. 

It has been estimated that there are at least 1200 families of protein domains [3]. Many of 

these families have specific roles in diverse cellular processes, such as apoptosis, 

modulation of the cytoskeleton, vesicle trafficking, DNA binding, protein-protein 

interactions and regulation of intercellular or intracellular signalling. However, some 

families are considered to contain “promiscuous domains” or “versatile domains”. 

Moreover, the possibility of combining different domains in a single polypeptide provides 

proteins with the ability to be involved in broad spectra of processes that are key in 

interaction networks in the cell, especially those that contribute to signal translation [4,5].  

In eukaryotes about 215 promiscuous protein domains have been identified [4], which 

include the Per-ARNT-Sim (PAS) domains. The versatile PAS domain is present in all 

kingdoms of life [6]. PAS is an acronym derived from the three eukaryotic proteins in 

which the domain was first recognized by sequence homology: the period circadian protein 

(Per), the vertebrate aryl hydrocarbon receptor nuclear translocator (ARNT) and single-

minded (Sim), a Drosophila protein involved in embryonic development [7]. One of the 

first structural studies of a PAS domain involved the photoactive yellow protein (PYP), a 

mediator of the phototactic negative response by the phototrophic bacterium 

Ectothiohodospira halophila [8]. This globular protein is considered to contain the 

prototype structure of a PAS domain [9,10] (Fig. 1). 

During the last few years, studies of proteins from all domains of life have resulted in 

21,000 entries annotated as PAS domain in the Pfam database [6]. The more than 200 

proteins having a PAS domain comprise receptors, signal transducers, kinases, transcription 

factors, ion channels, chemotaxis proteins, cyclic nucleotide phosphodiesterases and 

proteins involved in embryological development of the central nervous system [11]. In this 

paper, we review the known functionality of PAS domains as a prelude to considering the 
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enigmatic role of this domain in the biology of trypanosomatid parasites, with particular 

emphasis on Trypanosoma cruzi, since the presence of these regulatory domains in parasitic 

protists was so far unknown. 

 

2. Localization and structure of PAS domains 

 

PAS domain proteins have different subcellular locations. The domain may be contained in 

proteins present in the plasma membrane, exposed to either the intra- or the extracellular 

environment [11]. Membrane proteins with PAS domains (Aer, FixL, ArcB and DcuS) 

have been previously studied [12-16]. In all such membrane proteins analysed until now, 

the PAS domain is located adjacent to a transmembrane region. Possibly, such a location 

allows the PAS domain to interact with other modules present in the same or other, adjacent 

membrane proteins [17]. PAS domains can also be part of soluble cytoplasmic proteins 

(such as NifL, guanylyl cyclase and histidine kinase (HK), photoactive yellow protein 

(PYP) and transcription factors). These proteins may have a single or multiple PAS 

domains in their structure [18-21]. 

In all these proteins, the PAS domain functions as a sensor of changes or various stimuli in 

its environment (oxygen, pH, light, ions, glucose, voltage, oligomerisation state, carboxylic 

acids, energy level or fatty acids) and as modulator of protein-protein interactions, allowing 

organisms to “sense” and respond appropriately to the changes or stimuli [22-24]. These 

domains are often associated with other regulatory modules in multi-domain proteins. 

Moreover, a PAS protein can contain a single or multiple, tandemly-organized PAS 

domains [11]. Some studies suggest that PAS domains in tandem can regulate recruitment 

and oligomerisation state of proteins [25,26]. The presence of a PAS domain in a protein 

can confer association specificity of its effector domain. In prokaryotes, PAS domains have 

been shown to induce the formation of homodimers [25], and in eukaryotes the formation 

of heterodimers [24]. Oligomerisation is a necessary requirement for the function of many 

proteins. This process is crucial to trigger and regulate different physiological processes, 

such as gene expression, activity of enzymes and cell-cell adhesion [27]. In the case of 

some PAS proteins with enzymatic activity, such as the histidine kinases, dimerisation is a 

prerequisite to achieve phosphorylation in trans [11]. In addition, the PAS domain can 
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mediate the oligomerisation of transcription factors such as bHLH/PAS, and it can confer 

specificity and distinct recognition of target genes [21].  

Initially, PAS domains were considered homologous regions of about 50 amino acids in the 

Per, ARNT and Sim proteins [28]. However, subsequent studies revealed that PAS domains 

can also be formed by regions comprising approximately 100 to 150 amino acids [10]. PAS 

domains adopt a globular structure formed by several α-helices and antiparallel β-sheets. 

The role of each segment in this structure is discussed in [9]. Both the N- and C-terminus 

have different helices, called flanking helices, which can vary in length and sequence. 

These helices are involved in protein-protein interactions and their residues can contribute 

to the formation of bonds with ligands. Taylor et al. [28], when analysing a sequence 

alignment of 300 PAS domains, found that each of the elements or segments of secondary 

structure are retained along the alignment. They concluded that it is very likely that all PAS 

domains have the PAS core, a helical connector, and a β-scaffold as structural elements 

(Fig. 1). The β-scaffold is the most conserved part, both with regard to its amino-acid 

sequence and the number of sheets, making this a defining feature of a PAS domain [11]. In 

addition, the α-helix, which is attached to the C-terminal end of the PAS domain, can link 

the domain to another protein module. 

Although PAS domains from different proteins vary in sequence, orientation, length, and 

number of α-helices, they maintain a fairly conserved three-dimensional (3D) structure 

[29].  

 

3. Ligand binding in the PAS domain family 

 

Detection of a specific stimulus by a PAS domain is determined, in most cases, by the 

presence of a specific structure in the ligand. In addition to the chromophore of the PYP 

protein, the ρ-coumaric acid, other molecules have been identified as ligands of PAS 

domains. These include cofactors such as flavin adenine dinucleotide (FAD), for example 

in Escherichia coli, where the protein Aer is a membrane flavoprotein having FAD bound 

to its N-terminal PAS domain. The FAD acts as a redox sensor and mediates aerotaxis, a 

positive aerotactic response [30]. Klebsiella pneumoniae and Azotobacter vinelandii 

possess a histidine kinase with a FAD-binding PAS domain that regulates the expression of 
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genes involved in nitrogen fixation (nif genes) through the interaction with the DNA-

binding protein NifA [31]. Many proteins contain PAS domains belonging to a sub-class 

that use flavin mononucleotide (FMN) as sensing intermediate. These domains are known 

as LOV domains, because they have the ability to respond to stimuli such as light, oxygen 

and voltage [22]. LOV proteins non-covalently bind the FMN, and then, in response to a 

stimulus (such as blue light), a covalent bond is formed between a conserved cysteine 

residue and the FMN. This covalent bond induces a structural change in the PAS domain 

that is propagated to the rest of the protein [32]. 

The gas-sensing PAS domains (Heme-PAS) can join heme groups of both type b and c 

[33,34]. Heme-PAS are commonly found in three types of proteins, the histidine kinase 

protein, phosphodiesterase guanylyl cyclase, and transcription factors of type bHLH [35-

38]. 

In bacteria, several chemoreceptors of carboxylic acids have been identified. Pseudomonas 

putida KT2440 possess a chemoreceptor with a PAS domain that recognizes C2 and C3 

carboxylic acids and so mediates taxis for these compounds [39]. E. coli also have an 

integral membrane sensor for carboxylic acids, the histidine kinase DCuS [16,40], that 

senses C4 and C6 carboxylates through a periplasmically exposed PAS domain. DcuS is 

closely related to sensor kinase CitA of K. pneumomiae, that is part of a two-component 

system regulating the transport and metabolism of citrate [40,41]. In Rhizobium meliloti, 

DctB is a transmembrane sensor histidine kinase that phosphorylates DctD in response to 

binding carboxylic acid, and controls the expression of another integral membrane protein 

[42]. Unlike DcuS and CitA, the DctB structure has two tandemly-arranged periplasmic 

PAS domains, and uses different backbone and side-chain interactions [42]. 

In prokaryotes, fatty acid-binding PAS domains are commonly associated to proteins 

having a key role in the virulence of pathogenic bacteria. In Mycobacterium tuberculosis, 

oleic and palmitic acid can function as ligands of PAS domain protein RV1364c, a 

multidomain protein which regulates the stress-dependent regulatory factor δ (δF) [43]. 

Furthermore, in Xanthomonas campestris the perception of cis-2-unsaturated fatty acids by 

a PAS domain regulates expression of a subset of genes that contribute to virulence (for 

example, genes involved in the type IV secretion system) and motility. It is the domain of 

the RpfC/RpfG two-component system that is implicated in sensing these fatty acids [44]. 
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Fatty acid-binding PAS domains have also been reported for human cells; unsaturated C18 

fatty acids such as oleic and linoleic acid are high-affinity ligands of the PAS domain in the 

hypoxia-inducible factor 3α (HIF-3α) [44]. HIF transcription factors are - dimers that 

mediate the expression of genes involved in the cellular response to hypoxia. In these 

factors, the PAS domain has a crucial function in forming active HIF heterodimers and 

recruiting co-regulators. For HIF-3α, the fatty acids can have a role as structural cofactors; 

their binding by the PAS domain can be necessary to acquire a stable structural 

conformation which allows its translocation to the nucleus and perform its function (as with 

other proteins of the same family) [44]. 

It has been found that PAS domains can also bind divalent metals, as occurs in some 

pathogenic bacteria such as Salmonella typhimurium that sense these metals in the host 

environment. Certain concentrations of divalent cations (such as Mg2+ and Ca2+) promote 

remodelling of the bacterial envelope and activation of genes associated with virulence, 

including intracellular survival, invasion, phagosome alteration, acid stress and cationic 

antimicrobial peptides resistance [45]. All these virulence properties are regulated by the 

PhoQ/PhoP signal transduction system. The membrane protein PhoQ is an Mg2+ and Ca2+ 

sensing histidine kinase. PhoQ has a periplasmic PAS domain rich in acidic residues, which 

is involved in the binding of, among others, these divalent ions [46,47]. 

In Saccharomyces cerevisiae, the two PAS kinases, Psk1 and Psk2, have been widely 

studied. They are activated for two different pathways, the cell integrity stress pathway and 

the glucose repression pathway [48]. For Psk1, the activation also occurs in response to 

non-fermentative carbon sources, through direct phosphorylation of Snf1, the master of the 

fermentation/respiration switch [23]. Snf1 is activated by phosphorylation, through the 

formation of a complex with three other kinases; SaK1, Tos3 and Elm1. Once 

phosphorylated, Snf1 activates Psk1/Psk2 through phosphorylation in its kinase domain 

[49-51].  

The mammalian PAS kinases are enzymes involved in the expression of genes for insulin 

in pancreatic beta cells and for regulating glucose homeostasis in peripheral tissues in mice 

[45]. Four mammalian PAS kinase substrates have been reported, namely pancreatic 

duodenal homeobox-1 (Pdx-1) [52], glycogen synthase (Gsy) [53], eukaryotic translation 

elongation factor 1A1 (eEF1A1) [54], and ribosomal protein S6 (S6) [55]. In yeast, five 
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substrates of Psk have been identified: UDP-glucose pyrophosphorylase (Ugp1), Cap 

Associated Factor (Caf20), Translation Initiation Factor (Tif11 (eIF1A)), Suppressor Sro9 

of Rho3, and glycogen synthase (Gsy2) [56]. The activated Psk1 induces the activation of 

the poly(A)-binding protein 1 (Pbp1) by phosphorylation, which then inhibits the target of 

rapamycin complex 1 (TORC1) through sequestration at stress granules [57]. In both yeast 

and mammals, the association of small metabolites to the PAS domain could induce a 

disruption of the interaction between the PAS domain and the kinase domain, subsequently 

causing an activation of the kinase [20].  

In Bacillus subtilis a PAS histidine kinase is required for the initiation of sporulation in 

response to nutrient depletion. The kinase KinA has a N-terminal half composed of three 

PAS domains in tandem (named PASA, PASB and PASc), acting together as a sensor 

module that is critical for triggering kinase activity [58]. Each PAS domain has a specific 

function in the protein. It has been shown that domain PASA binds ATP and catalyses the 

exchange of a phospho group between ATP and nucleoside diphosphates [59]. This 

hydrolysis reaction drives the conformational changes that activate or deactivate a KinA. 

Apparently, the PASA domain possesses a nucleotide-diphosphate kinase (NDPK)-like 

activity. NDPK enzymes are phosphotransferases, which catalyse the transfer of the -

phospho group from a (deoxy)nucleoside triphosphate (as ATP or GTP) to a 

(deoxy)nucleoside diphosphate (as ADP or GDP) [60]. For pathogenic protists such as 

trypanosomatids, it has been postulated that phosphotransferases control communication 

between spatially separated pathways of consumption and production of ATP [61]. In 

KinA, the ATP bound to the PASA domain could probably serve as a mediator of the state 

of binding of ligands to other signal-sensing domains by driving the conformational change 

of the kinase. Thus, different ligand molecules could promote or prevent ATP binding or 

ATP hydrolysis, and therefore the kinase sensor can be activated or inhibited by different 

signals [59]. Other studies have also revealed the importance of the PASA domain in the 

kinase activity of KinA [25,62]. 

In all the sensor kinases documented here, the PAS domain undergoes a conformational 

change in response to a signal (binding of a small ligand or another protein). This change 

serves as a signal that is transmitted to the rest of PAS-containing protein, causing its 

structural reorganisation, which leads to modification of its activity. This conformational 
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mechanism is what enables the PAS domain to be a versatile signal transducer and 

orchestrate many cellular processes in diverse organisms. The regulation of proteins by 

PAS domains can occur through different mechanisms: (a) by regulation of intermolecular 

interactions. Ligand binding can lead to deployment and rotation of the protein. In addition, 

once unfolded, the protein can acquire a structure that will allow it to form homodimers or 

heterodimers [22]; (b) by steric effects/hindrance. The binding of a ligand causes a change 

in the spatial arrangement of the PAS domain. In the absence of the stimulus, the 

orientation of the PAS domain protein prevents it from acquiring a conformational state 

that would allow it to fulfil its function or to interact with other proteins [63]; and (c) 

through its cellular localization. In this latter case, the PAS domain acts as a cellular 

localisation module. Some sequences for determining subcellular localisation (such as NLS 

and NES) may be located within the domain. The exposure of the subcellular localisation 

sequence located in the PAS domain is dependent on the presence of ligand. The binding of 

ligand to the PAS domain induces a conformational change in the domain that allows the 

topogenic sequence to be revealed, so that the protein can be routed to its destination 

compartment and perform its role [64]. 

 

4. PAS domains in diverse organisms 

 

The PAS domains are widely distributed in proteins from eukaryotes, Bacteria and 

Archaea. In prokaryotes, they are specifically associated with histidine sensor kinase 

proteins of two-component regulatory systems (both in simple systems and in phospho-

relay systems) [17]. These histidine kinases are involved in the regulation of various 

processes such as sporulation [58], nitrogen fixation [65], aerotaxis [13], stress response 

[66], nodulation [67], degradation of hydrocarbons [68], polar organelle development [69] 

and virulence of pathogenic bacteria [70,71]. 

In eukaryotic organisms, PAS domains are present in proteins involved in many cellular 

processes, from the regulation of the biological clock to glucose homeostasis. In plants, 

they are present in photoreceptors (phytochrome and phototropins [72,73], circadian clock 

proteins [74] and several transcription factors [75]. These proteins function in different 

pathways that control the development and response of plants to stress adaptation. In 
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addition, their presence in circadian clock proteins suggests they might serve as a link 

between environmental conditions and the biological clock [76].  

As in plants, mammalian PAS domains function as regulatory modules in various 

transcription factors belonging to the bHLH-PAS family, involved in processes such as the 

circadian rhythm response to xenobiotics and adaptation response to hypoxia [77]. In 

mammals, the regulation of glucose homeostasis also involves the participation of PAS 

domains through a mechanism associated with the synthesis and secretion of insulin [20]. 

This domain is associated with serine/threonine protein kinases, in which the domain acts 

as a regulation module. Malfunctioning of these PAS kinases (named PASK, PASKIN, 

and PSK) is associated with various metabolic syndromes, such as type 2 diabetes. In 

yeasts, these PAS kinases operate very similarly. Moreover, they stimulate in these 

organisms the partition of glucose towards the biosynthesis of structural carbohydrates in 

response to certain stimuli such as damage of cell integrity [20]. 

In other organisms such as nematodes, insects and fish, PAS domains are linked to type 

bHLH-PAS transcription factors, similar to those found in mammals, and are involved in 

the same kind of cellular processes [78]. 

In protist organisms, little is known as yet about the presence of PAS domains. Studies 

focused on Dictyostelium discoideum revealed the presence the two phosphorelay sensor 

kinases, DhkA and DhkB, which regulate the expression of various genes involved in the 

differentiation of this organism [79,80]. These proteins are members of the family of two-

component signalling systems. Structurally, they consist of a highly conserved kinase 

domain and a PAS domain that functions as a regulatory response element. Also other 

genes coding for kinases with a PAS domain have been described in Dictyostelium which 

are involved in osmotic stress response [81]. Upon sequencing the genome of Paramecium 

tetraurelia the presence of a gene coding for a hypothetical membrane protein with a PAS 

domain was found, however the function of this protein remains unknown [82]. One of the 

significant findings from annotation of the nuclear genome of Naegleria was the 

identification of more than 50 proteins with PAS domains hinting at significant capacity for 

environmental perception by this protist [83]. 

There exists little knowledge as to whether PAS-proteins function in other protists, 

including relatively well-studied parasitic organisms such as Plasmodium falciparum, 

ACCEPTED M
ANUSCRIP

T



 12 

Toxoplasma gondii, Cryptosporidium parvum and kinetoplastids (Trypanosoma cruzi, 

Trypanosoma brucei, Trypanosoma rangeli and Leishmania spp.). This may be due to the 

near absence of these regulatory modules in their proteomes, different from other 

organisms like plants. Some authors suggested that the near absence of these domains in 

obligate parasites is due to their life in a stable environment, where is no necessity for a 

constant redox sensing [28].  

A similar suggestion was made by Galparin et al. [84] upon analysing the complete 

genomes of free-living prokaryotes (or not-obligate parasitic ones) and obligate parasitic 

prokaryotes. These authors had found that many regulatory domains (such as PAS, 

GGDEF, EAL and HD-GYP) are very abundant in all free-living bacteria but less so or 

even almost absent in obligate parasitic bacteria. In Aquifex aeolicus and Helicobacter 

pylori, two bacteria with almost the same number of genes but with a free-living and 

parasitic life style, respectively, they discovered a marked difference in the presence of 

these domains in their genomes. This could suggest that these domains could be particularly 

important for detecting or sensing the more diverse environmental stimuli encountered by 

free-living or non-obligate parasitic bacteria. Extreme cases of the near absence of these 

regulatory domains are the obligate-parasitic bacteria Mycoplasma and Buchnera. The 

minimal genomes of these organisms do not encode any such signalling proteins at all [84]. 

It seems as if these regulatory domains have no use whatsoever in these organisms, despite 

having a versatile life style. Another important aspect of this study by Galperin et al. [84] is 

that it revealed that signalling domains are generally less abundant and less evenly 

distributed in Archaea than they are in Bacteria. This skewed phylogenetic distribution 

suggests that signal transduction could have emerged in the early evolution of bacteria, with 

subsequently its mass loss in species developing a parasitic life style and be spread by 

horizontal transfer between Archaea [84]. A similar scenario could have occurred in 

unicellular eukaryotes, specifically in protists. However, to search support for this notion, it 

will be necessary to compare the presence of these regulatory modules in many species of 

free-living and obligate-parasitic species. In the case of Dictyostelium other PAS kinases 

have been studied, and their importance in the response of this organism to different 

environmental conditions [81].  
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The presence of these regulatory domains in parasitic protists was so far unknown. 

However, our analysis of the genome sequences of various protists that cause important 

diseases in humans and animals revealed a variety of diverse proteins present in the 

trypanosomatids with regulatory domains (such as PAS domain) [85]. This will be 

discussed in the next section. 

 

5. PAS domains in proteins of the Kinetoplastea 

 

Kinetoplastea are flagellated protists including free-living organisms as well as parasites of 

diverse invertebrates, vertebrates and plants. Some of these kinetoplastids cause severe 

diseases in humans (such as Chagas disease, African trypanosomiasis (or sleeping sickness) 

and various forms of visceral and cutaneous leishmaniasis) and are transmitted by different 

insect vectors [86]. These parasitic kinetoplastids belonging to the Trypanosomatidae 

family (including Trypanosoma and Leishmania species) have very complex life cycles, 

involving alternating hosts, during which they undergo drastic morphological and 

metabolic changes. However, there exists little knowledge of how these organisms sense 

the environmental changes encountered during the life cycle and respond by simultaneously 

regulating and coordinating intracellular processes required to adapt to these different 

environments [87]. There is evidence demonstrating that the drastic morphological and 

metabolic changes of the parasites manifested in each environment are accompanied by 

changes of the protein profile [88-91]. However, the signal transduction pathways that 

mediate these changes remain largely unknown, although progress is being made in the 

unravelling of pathways such as those involved in differentiation steps of some parasites 

[92,93]. Some posttranslational changes in proteins (such as phosphorylation) during the 

parasite developmental cycles have been observed [94-96]. In Trypanosoma cruzi, proteins 

of glycosomes (the kinetoplastids’ peroxisome-like organelles containing glycolytic 

enzymes) such as pyruvate phosphate dikinase (PPDK), undergo phosphorylation and 

proteolytic cleavage in response to nutritional changes. This post-translational modification 

of PPDK results in inactivation of the enzyme [97]. Probably, in these parasites, as in other 

parasitic organisms such as the malaria causing Plasmodium spp., phosphorylation plays a 

crucial role in modulating protein functions and thereby controls various aspects of the 

ACCEPTED M
ANUSCRIP

T



 14 

biology of these organisms [98]. This would explain the presence of a large number of 

eukaryotic protein kinases (ePKs), typical and atypical, in the genome of some 

trypanosomatids [87]. In the case of T. cruzi 190 protein kinase genes have been found in 

the genome [87]. Trypanosoma brucei and Leishmania major have 176 and 199 PKs, 

respectively [87]. This high number of PKs represents approximately 2% of each genome; 

this suggests a key role for phosphorylation in the biology of these parasites. Many of these 

kinases belong to the families STE, CMGC and NEK [74]. Several of these kinetoplastid 

protein kinases have been characterised, notably proteins involved in transducing signals 

from the surface of the cell to the nucleus [99-104]. 

Importantly, approximately 8% of PKs in kinetoplastid species analysed are predicted to be 

catalytically inactive, based on the presence of mutations in residues essential for catalytic 

activity [87]. In the case of an apparent absence of catalytic activity, these kinases might 

work through a different mechanism, such as via regulation of protein-protein interactions. 

There is evidence for “dead” enzymes with unusual functions in metazoa accounting for a 

rich source of biological regulators [105,106]. Trypanosoma rangeli, an avirulent human 

parasite, has very similar genetic characteristics to human pathogenic trypanosomes; its 

genome encodes 151 ePKs, which corresponds to 1.94% of its total number of identified 

coding sequences. Indeed, several of the kinases are predicted to be catalytically inactive 

[107]. Another remarkable feature of the genomes of the parasites is the scarcity or even 

complete lack of some accessory domains (such as SH3, SH2, FN-III and immunoglobulin-

like domain) present in proteins of other eukaryotic organisms [87,108]. In contrast, the 

presence of other accessory domains and a different domain architecture of some proteins, 

were observed [87,107]. The genome of plant pathogens of the genus Phytomonas encodes 

89 ePKs. This corresponds to 1.39% of its total number of identified coding sequences, 

similar to the percentage found for other parasitic members of the Kinetoplastea analysed 

so far [109]. In contrast, a considerably higher number was identified in the free-living 

kinetoplastid Bodo saltans in which the genome encodes 562 PKs, belonging to different 

kinase families, corresponding to 2.96 % of its total number [110].  

PAS domains are also present in kinetoplastids, both in free-living and, in lower numbers, 

in parasitic ones, where they are primarily linked to protein kinases (Table 1 and 

Supplementary Information online, Table S1). On the contrary, no PAS domain was 
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detectable in the genome of Perkinsela sp., the organism of kinetoplastid ancestry present 

as an endosymbiont in Paramoeba spp. This difference with the free-living and parasitic 

kinetoplastids could be interpreted as an indication for the loss of the capacity to sense the 

environment [111]. Most of the genes encoding the kinetoplastid protein kinases with PAS 

domains are located in a preserved manner in certain chromosomes of these protists. In 

addition, several of these genes have unusually large open-reading frames. These protein 

kinases are characterized by slightly acidic isoelectric points, except BSAL_46115 in Bodo 

saltans. Additionally, there is a PAS-containing phosphoglycerate kinase (PGK) protein in 

all parasitic kinetoplastids, but not the free-living B. saltans, with a similarly high 

isoelectric point in each of the parasites [85]. In many of these kinases, the PAS domain is 

present together with other signalling-related domains (Tables 1 and S1), often in domain 

combinations that are usually not observed in kinases from other eukaryotes. For example, 

the L. major and T. brucei genes Lmj15.1200 and Tb927.1.1530 both have an unusual 

apposition of two domains related to cyclic-nucleotide binding and a PAS domain. Other 

kinases possess, besides the PAS and cyclic nucleotide-binding domain, also domains 

related to the CheY-like superfamily (TvY486_0100670) or the histidine kinase-like 

ATPase, C-terminal domain (Tc_MARK_5804) (Table S1). In Trypanosoma grayi 

(Tgr.1039.1000), a putative PAS-containing protein kinase has also a cAMP-dependent 

protein kinase regulatory subunit and a dimerisation-anchoring domain. Such regulatory 

proteins with five modules in their structure deserve special interest. 

The kinases with PAS/cyclic nucleotide-binding domains are the most frequent ones and 

seem to be a common feature of these parasites. In eukaryotic pathogens many biological 

functions also are mediated by cyclic nucleotides [112]. In Plasmodium and kinetoplastid 

protists, the binding of cyclic nucleotides to these modules is apparently involved in 

regulating progression through the life cycle, pathogenesis and the process of cell invasion 

[113-115]. In T. cruzi and Trypanosoma vivax protein kinases, a PAS domain is linked to a 

domain of the CheY-like superfamily, a response regulator domain which is also present in 

some plants (e.g. Arabidopsis) and prokaryotic two-component systems. In prokaryotes, 

this domain is associated with many processes such as responding to stimuli, sporulation, 

regulation of transcription, ethylene detection and signal transduction [116]. Other domains 

such as the histidine kinase-like ATPase, C-terminal domain, are present in proteins such as 
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DNA gyrase B, topoisomerases and proteins involved in DNA repair. Thus far, there is 

little knowledge about the possible physiological role of these domains when present 

together with PAS in these multidomain protein kinases.  

The abundance of alternative domain combinations suggests that fusions between the PAS 

domain and various output domains is a mechanism that allows these parasites to regulate 

transcription, enzyme activity, and/or protein-protein interactions more efficiently in 

response to environmental challenges. PAS domains can perform the same function, but in 

different protein contexts (i.e. with different partner domains), resulting in the domain 

having acquired a variety of novel overall functions in the physiology of the organism 

[117]. It is also possible that the presence of a PAS domain in various proteins (possibly 

involved in different signalling pathways) could serve as a “link-module” of different 

regulatory processes, serving as a “master regulator” in the biology of these parasites. 

Synteny of the different genes encoding PAS-domain containing proteins is conserved 

among the different trypanosomatids, as shown in Table S2 (in the Supplementary 

Information online). 

 

6. PAS domains in Trypanosoma cruzi 

 

Several genomic and proteomic analyses of T. cruzi have been performed [87,108,118]. 

The genomic analyses revealed that T. cruzi contains a predicted 22,570 protein-encoding 

genes, of which 12,570 represent allelic pairs. Among them are genes encoding different 

families of kinases [87,108]. Some of these protein kinases appear to possess different 

regulatory modules within their structure, including PAS domains (Tables 1 and S1).  

Among the T. cruzi kinases we previously analysed are isoenzymes of the 

glycolytic/gluconeogenic enzyme phosphoglycerate kinase (PGK) [119-121]. The tandemly 

arranged genes Tc00.1047053505999.100 and Tc00.1047053505999.90 encode isoenzymes 

PGKA (56 kDa) and PGKB (47 kDa) which were located in the glycosomes and cytosol, 

respectively. In addition, by western blots a 47 kDa form was also detected in glycosomes, 

probably as a result of dual subcellular distribution of the Tc00.1047053505999.90 

translation product.  80% of the PGK activity was associated with the cytosolic cell 

fraction, 20% with the glycosomes.  Of this latter fraction, 23% could be attributed to 
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PGKA.  Surprisingly, the majority (77%) of the glycosomal PGK activity (assumed to be 

associated with the 47 kDa form called PGKC) displayed kinetics with respect to the 

substrate ATP very different from that of the cytosolic PGKB: a much lower Km (10 versus 

99 M and inhibition at ATP concentrations >100 M).  This was tentatively attributed to 

activity regulation of PGKC by posttranslational modification [120].   

Additionally, we recently identified a gene for a PGK-like protein in the T. cruzi genome, 

TcCLB.506945.20, and in the genomes of other trypanosomatids, except T. brucei.  It is 

present in a locus distinct from that harbouring the PGKA-PGKB gene tandem. The 

encoded TcPGK-like protein is only 44-45% identical to TcPGKA and TcPGKB, but seems 

to have conserved all residues for PGK substrates binding and catalysis.  Interestingly, the 

sequence of its pgk-like gene contains a region encoding a PAS domain at the protein’s N-

terminal end. This indicates that this PGK isoenzyme of T. cruzi is a PAS-PGK-like 

enzyme. From the amino-acid sequence is predicted that this protein has a molecular weight 

of about 58 kDa (Table 1). Transcriptional analysis showed that the gene is expressed at 

different differentiation stages of the parasite [85]. Furthermore, the encoded PAS-PGK-

like proteins of the different trypanosomatids possess a C-terminal tripeptide conform with 

a putatively functional type-1 peroxisomal-targeting signal (PTS1); in the case of the T. 

cruzi protein it is the sequence –PRL. Indeed, the protein was detected in a proteomic 

analysis of glycosomes purified from epimastigote forms of the parasite (PM, JLC, AC, 

WQ, unpublished results). It was present in the pellet fraction obtained after an osmotic 

shock treatment of the organelles, whereas it was found in the soluble fraction after their 

carbonate treatment with carbonate (PM, JLC, AC, WQ, unpublished results). This strongly 

suggests that the protein is peripherally associated to the glycosomal membrane.  In 

addition, the protein appeared more abundant in the proteome of trypanosomes sampled in 

the stationary growth phase than in exponentially growing cells (PM, JLC, AC, WQ, 

unpublished results). This could be related with a role of this protein associated with the 

availability of the glucose in the medium which is lowered in the former growth phase 

[119,122]. 

In order to determine the possible biological relevance of the PAS domain in the PAS-

PGK-like T. cruzi protein, we conducted a structure-based sequence alignment (using 

alignment programs MUSTANG / STACCATO [123,124]) of five PAS domains with 
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known crystal structures and diverse ligand-binding specificity (they bind FMN, FAD, 

heme, chromophore and fatty acid) (Fig. 2). In addition, the PAS-PGK sequences from T. 

cruzi and four other trypanosomatids were aligned to the structures using the HHPRED 

alignment software vs 3ue6. This result shows that the PAS domain in the PAS-PGK-like 

T. cruzi protein is an authentic PAS domain, as do the PAS domains of some Leishmania 

species. As is evident from Figure 2, PAS domains (selected from the five crystal 

structures) are highly diverse in some regions, yet they exhibit conservation in other areas.  

The PAS sequences from the PGK-like trypanosomatid proteins (collectively called PAS-

Tryp) match these variable and conserved areas. An important aspect of the PAS domains 

of these parasites is that they not only resemble the PAS domains of proteins from other 

organisms, but that the sequences within the PAS-Tryp set are well conserved. 

One notable difference between the PAS domains is the absence of conservation of some 

key amino acids for ligand binding among the reference structures (magenta positions in 

the alignment of Fig. 2), in agreement with their different ligand specificities. The set of 

trypanosomatid sequences have also residues different from the reference structures at these 

positions. Assuming that the PAS domains present in these PGKs of the parasites possess a 

ligand-binding activity implies that these proteins have probably acquired a new specificity. 

Furthermore, a similar high level of conservation is observed between the PAS domains 

and the PGK domains (87% and 85%, respectively) of these different PAS-Tryp sequences. 

This also strengthens the hypothesis that the PAS domain in these PAS-PGK-like protein 

has some function, i.e. ligand binding specificity, instead of being a vestige or useless relic. 

PAS domains can also function in signalling without small molecule binding, for example 

in the dimerisation of animal circadian clock proteins and the intramolecular regulation of 

potassium voltage-gated channels [77,125,126].  

The sequences of PAS domains (approximately 75 amino acids long) in different protein 

kinases and PGKs of kinetoplastids were aligned and then used to perform a phylogenetic 

analysis. For this analysis, different sequences of parasitic kinetoplastids belonging to the 

genera Trypanosoma, Leishmania, Crithidia, Angomonas, Strigomonas, Leptomonas and 

Endotrypanum were taken. Sequences of PAS domains of the free-living of kinetoplastid B. 

saltans were also included (Fig. 3). 
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Inspection of the phylogenetic tree showed that the PAS domains present in proteins of 

these kinetoplastids can be grouped into two families/lineages, supported by high bootstrap 

values, one of them comprising the PAS domains present in protein kinases with a 

transmembrane domain (TMD), MAP kinases (MAPK) and isoforms of the glycolytic 

enzyme PGK. The other lineage represents the PAS modules of protein kinases containing 

also the effector domain of CAP family transcription factors (PK cap-EDs). These latter 

proteins are present in most organisms belonging to the genera Trypanosoma, Leishmania, 

Leptomonas and Crithidia. These PAS domains of PK cap-EDs were excluded from the 

clade comprising the PAS-containing protein kinases with a TMD, MAPKs and PGKs. 

This strongly suggests that these proteins acquired these domains separately from the PK 

cap-EDs.  

The tree topology found for the taxa belonging to the Trypanosomatida and Eubodonida 

orders corresponds to what has been reported previously [127]. The enzyme-specific 

clustering revealed by this analysis indicates that the PAS domain sequences have evolved 

characteristics specific for each type of protein in which it is found (PAS kinase TMD, 

MAPK, PGK and PK cap-EDs, respectively) in the kinetoplastids. Furthermore, in the case 

of the PAS-PGKs the analysis suggests that this domain was lost from the mammal-

infective African trypanosomes, since none of its PGK isoenzymes (A, B and C) possesses 

a PAS domain, while Trypanosoma grayi (a tsetse fly transmitted trypanosome infecting 

African crocodiles) preserves the PAS-PGK. This latter finding tallies with the result of a 

phylogenomic analysis [128], showing that T. grayi is more closely related to T. cruzi than 

to the African trypanosomes T. brucei, T. congolense and T. vivax. The presence of this 

PAS-PGK in the free-living organism B. saltans indicates that this enzyme has an origin at 

least prior to the divergence between the bodonids and trypanosomatids. This situation with 

PAS-PGK is similar as has been found for another glycolytic enzyme, glucokinase (GCK), 

that is present together with hexokinase in glycosomes of B. saltans and all 

trypanosomatids studied, but was lost from T. brucei [129,130]. 

The PAS domain of the trypanosomatid PAS-PGK-like protein is located at the N-terminal 

end of the sequence. An N-terminal position with respect to the effector domain has also 

been reported for the PAS domain in most other proteins [11]. Figure 4 shows that the N- 

and C-termini of the PGK catalytic unit are in the protein localised at the opposite side to 
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the catalytic site. There is a very short linker between PAS and PGK domains suggesting 

that the PAS domain will also be on this opposite side (i.e. at the bottom of the structure in 

the Figure 4 orientation). This hypothetical localisation positions the PAS domain near the 

flexible hinge region (pink) connecting the two domains of the PGK between which is the 

deep cleft with the active site. By interfering with the bending of the hinge region, the PAS 

domain could indirectly cause an allosteric transition of the PGK and hence influence its 

catalytic activity. It would be a scenario similar to that of the PAS-kinase in yeast 

(Psk1/Psk2), where ligand-dependent structural alterations occur that are transmitted to the 

rest of the protein. This structural alteration could induce a change in affinity of this protein 

for its substrate [20]. In the case of the PAS-PGK-like protein from T. cruzi, a change in 

affinity for the substrate could have a significant effect on the fluxes through the metabolic 

pathways. Knowing the versatility of the functions of PAS domains, is possible that the role 

of this domain in the PAS-PGK-like protein is not limited to an allosteric regulation of the 

catalytic activity. Promoting interaction of this PGK isoenzyme with other proteins is 

another possibility. Different scenarios can be considered for the biological role of this 

domain in a protein most likely localized within glycosomes, as we infer from the presence 

of a PTS1 in its sequence and our (unpublished) proteomics data.  

 

7. Possible functions that could be attributed to the PAS domain in the T. cruzi PAS-

PGK-like protein 

 

7.1. Metabolic adaptation to different environments 

 

7.1.1. Internal sensor of carbon sources 

 

Various kinetoplastid protists have complicated life cycles involving successive cell 

differentiation steps. The differentiation of these different organisms has many aspects in 

common. The differentiation processes are inscribed in the organisms’ nuclear genome, by 

encoding the proteins involved in the consecutive steps executing them, but each transition 

is activated in response to environmental cues [131,132]. The signals that activate these 

morphological and physiological changes act via a variety of complex physiological 
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signalling pathways comprising cascades of protein kinases [92,93,133]. Various studies 

have reported that lipid components (such as oleic acid and phorbol esters) present in the 

intestine of Triatoma infestans, an insect vector transmitting T. cruzi, induce cell 

differentiation of the parasite [134]. These free fatty acids (FFAs) act as triggers for 

metacyclogenesis (i.e. differentiation into human infective forms), through different 

signalling pathways, involving diacylglycerol biosynthesis and protein kinase C (PKC) 

[134]. It has been demonstrated that these FFAs are efficiently incorporated into T. cruzi 

epimastigotes [135]. This uptake could occur through a spontaneous flip-flop process or be 

mediated by specific fatty-acid transporters, as they have been reported in other cell types 

[134,136]. The glycosomal membrane of T. brucei has been shown to possess three distinct 

half-size ABC transporters, called GAT1-3 [137]. One of these transporters, GAT1, is 

involved in the uptake of long-chain fatty acids such as oleoyl-CoA, from the cytosol 

toward the glycosomal matrix [138]. Although sequence analysis (Figure 2) failed to 

identify particular similarities to fatty acid- or oxygen-sensing PAS domains, these remain 

candidate ligands of trypanosome PAS domains, since alternative recognition modes may 

have evolved. A further plausible novel candidate, in our opinion, is glucose. These ligands 

could modulate the activity of the intraglycosomal PAS-PGK-like enzyme through its PAS 

domain, as has been reported for several PAS proteins in other eukaryotes [44].  

The presence of a PAS domain may be linked to an adaptive mechanism that allows these 

parasites to survive and deal with the environmental differences (e.g. a different availability 

of nutrients such as glucose, amino acids or fatty acids) encountered during the transfer 

from vertebrate to invertebrate hosts and vice versa [139]. Molecules such as fatty acids or 

glucose could make this protein function as a “switch” between the different metabolic 

pathways present in the glycosomes, such as those for β-oxidation of fatty acids, 

gluconeogenesis, and glycolysis. Binding of these molecules could mediate activation or 

inhibition of this enzyme through the PAS domain. Binding of fatty acids to this PAS-

PGK-like protein could be responsible for inducing inhibition or modulation of the activity 

of this enzyme, similarly as the inhibition by acyl-CoAs reported for glucose-6-phosphate 

dehydrogenase and hexokinase in partially purified extracts of T. cruzi [140]. Activation of 

β-oxidation will allow epimastigotes to adapt and grow in environments poor in glucose, as 

the gut of insects [138], by obtaining energy through an alternative route to glycolysis. 
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Interestingly, molecules such as fatty acids could direct, in a coordinated manner, both the 

morphological and physiological changes necessary for the parasite to adapt to the 

environment of the insect gut. Something similar could happen in intracellular amastigotes. 

These live in the cytosol of mammalian cells, where the concentration of free glucose is 

very low, thus rendering it likely that they obtain their energy, at least to a considerable 

extent, through the oxidation of fatty acids [139]. In this respect, it is perhaps relevant that 

in the mammalian host, T. cruzi replicates and persists in cells such as cardiac muscle, 

smooth muscle and fat cells [141], where the availability of fatty acids is high and their 

oxidative metabolism is favoured over glucose utilization. There is probably a link between 

fatty-acid metabolism of the parasites with the metabolism of its host cell, through the 

utilization of fatty acids generated by the host cell (by peroxisomal and/or mitochondrial 

pathways) [142]. Maybe the linkage of the metabolism of the parasites with the metabolism 

of its host cell could occur in a PAS-dependent manner. 

The progression from slender trypomastigote to epimastigote could be driven by a PAS-

dependent process. Some authors [143] have suggested that this transformation represents a 

progressive change from an environment rich in glucose (the bloodstream of the vertebrate 

host) to an environment poor in monosaccharides (invertebrate host). In bloodstream 

trypomastigotes, the association of a glucose molecule to a PAS domain could induce 

activation of the PAS-kinase (as in yeast and mammals) [20], while the absence of 

monosaccharides could trigger an inhibition of the function of this enzyme, and the 

subsequent induction of the morphological and physiological changes that allow it to adapt 

to the shortage of glucose. 

 

7.1.2. Internal sensor of oxygen 

 

The ability to sense and adapt to changes in oxygen tension can be very important for many 

organisms, both eukaryotes, from mammals to protists, and prokaryotes. Facultative 

anaerobic bacteria and lower eukaryotes (often pathogens), can drastically change their 

metabolism in response to the available electron acceptor [144,145]. For both mammals and 

some bacteria it has been shown that a way to detect changes in the concentration of 

oxygen is through PAS domains [144,146,147]. In trypanosomes, something similar might 
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occur. During their life cycle they are exposed to variable molecular oxygen tensions. This 

could suggest the need for an oxygen-sensing mechanism that can contribute to the 

regulation of their metabolism. It is possible that the presence of the glycosomal PAS-

PGK-like protein could be part of a mechanism for rapid adaptation to the environment 

encountered by T. cruzi. One could imagine that this metabolic switching occurs through 

binding of oxygen to the PAS domain, as has been reported for other PAS-domain proteins 

in prokaryotes [33]. The binding of molecules (such as glucose, fatty acid, but also oxygen, 

or any other molecule) could induce a change in the activity of this enzyme, leading to a 

change in catalytic state, from an “on” to an “off” state. Another possibility is that the 

binding of specific ligands could facilitate the catalytic rate in one or the other direction of 

a reversible reaction (e.g. glycolytic versus gluconeogenic) by changing the kinetic 

properties. 

 

7.2. Protein phosphorylation inside glycosomes 

 

Another function that may be associated with the PAS domain of the PAS-PGK-like 

protein is phosphorylation. The protein might phosphorylate other proteins inside the 

glycosomes. In yeast, PAS-kinases are involved in regulating glucose partitioning and 

translation of signalling information about glucose concentrations into a physiological 

response through the phosphorylation of several proteins. Phosphorylation of these proteins 

by these PAS-kinases may have different consequences, such as modification of their 

cellular localisation, enzymatic activity or specificity for the target protein to which they 

interact [48]. Until now very little is known about the presence of protein kinases inside 

glycosomes. However, Gonzalez-Marcano et al. reported post-translational modification of 

T. cruzi PPDK [97], an enzyme in an auxiliary branch of glycolysis, located in the 

glycosomes of trypanosomatids. Phosphorylation of this protein leads to proteolytic 

cleavage and concomitant inactivation of the enzyme. In some eukaryotic organisms such 

as Zea mays, PPDK is reversibly phosphorylated by a bifunctional serine/threonine kinase 

called PPDK regulatory protein (PDRP) through a light-dependent reaction [148]. Since 

PDRP is apparently absent in all protists including trypanosomes, the protein and the 

mechanism by which this post-translational modification occurs in PPDK are unknown. 
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The PAS-PGK-like protein could be a good candidate for this function (see below). Similar 

to the PAS-kinases in yeast, this protein may act in response to a stimulus (such as a carbon 

source) to phosphorylate PPDK and so to regulate its enzymatic activity. This notion is in 

agreement with the results found by González-Marcano et al. [97]. They observed changes 

in the expression of the different PPDK forms (phosphorylated/non-phosphorylated) when 

the metabolism changes from glucose-based to amino acid-based energy and carbon source. 

It suggests that it functions as a nutrient-dependent regulatory system of metabolism in this 

parasite. Such a role by PPDK in a nutrient-dependent regulatory system was supported by 

observing that PPDK (phosphorylated/non-phosphorylated) levels did not change when a 

nutrient such as glucose was replenished by adding it regularly to the medium [97]. 

Regulation by phosphorylation of PPDK through a PAS-kinase could be an elegant 

mechanism for metabolic regulation.  

Despite the inability to detect any protein kinases so far inside glycosomes, the finding of a 

protein phosphatase in the organelles of T. brucei renders the necessity for the presence of 

such kinases very likely.  These trypanosomes possess the phosphatase PIP39 with a PTS1 

that, during the differentiation from non-proliferating short-stumpy bloodstream forms into 

insect-stage procyclic forms, translocates from the cytosol into the glycosomes [149]. 

PIP39 is clearly part of a differentiation-linked signalling pathway involving a cascade of 

protein kinases; it is itself phosphorylated during the process. Although the intraglycosomal 

targets of PIP39, as well as the nature of the kinases phosphorylating such targets remain to 

be determined, it underscores the importance of protein-phosphorylation dependent 

signalling pathways in trypanosomes. A gene putatively encoding glycosomal PAS-PGK-

like protein has been detected in all trypanosomatids except T. brucei. But it could be 

imagined that in the other parasites, the PAS-PGK plays a role similar to the still 

unidentified kinase of T. brucei. 

Finally, the likelihood of the presence of protein kinases within glycosomes is also 

supported by the finding that several glycosomal enzymes appeared to be differentially 

phosphorylated in a comparative phosphoproteomics analysis of procyclic and bloodstream 

form life-cycle stages of T. brucei [96]. Examples are the glycosomal NADH-dependent 

fumarate reductase (Tb927.5.930) and glycerol kinase (Tb09.211.3550), with three and two 

apparent physiological phosphorylation sites, respectively [96]. 
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7.3. Regulation of subcellular localization of proteins 

 

The presence of a PAS domain in the PAS-PGK-like protein may be related to trafficking 

of this protein between cytosol and glycosomes, and so to exert functions in different 

subcellular compartments. Studies with other organisms have shown modulation of the 

activity of proteins by changes of their subcellular localization directed by PAS domains. 

For example, in Drosophila, the methoprene-tolerant protein (MET) functions both as a 

transcription factor and juvenile hormone (JH) receptor, regulating the expression of genes 

involved in the development and diverse physiological processes. This transcription factor 

is characterized by having two topogenic sequences, a nuclear export sequence (NES) and a 

nuclear localization sequence (NLS), located in its PAS-A and PAS-B domains, 

respectively [150]. This feature allows this MET protein to undergo translocation from the 

cytosol to the nucleus, where it fulfils its function as a recruiter of co-activators of 

transcription. In the absence of JH, the MET protein is inactive in the cytosol. When the 

cellular concentration of JH increases, it binds to MET through its PAS-B domain. This 

binding induces a conformational change allowing the NLS (located within the PAS-B) in 

MET to be exposed, resulting in nuclear routing [151]. In plants, this type of PAS domain-

mediated regulation has also been observed [152].  

 

7.4. Does PAS-PGK-like protein act as a protein kinase? 

 

The trypanosomatid’s PAS-PGK protein might even fulfil multiple roles. Recent studies 

with mammalian cells have shown that some glycolytic kinases, like pyruvate kinase and 

PGK, not only phosphorylate their metabolite substrates, but under some conditions also 

proteins [153-155]. For example, Li and coworkers described for cells involved in 

tumorigenesis that, under certain conditions, translocation of isoenzyme 1 of PGK (PGK1) 

to mitochondria was induced. Within the mitochondria, this PGK1 functions as a protein 

kinase, phosphorylating pyruvate dehydrogenase kinase (PDHK1). The subsequent 

phosphorylation of the pyruvate dehydrogenase (PDH) complex by this activated PDHK1 
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suppresses mitochondrial pyruvate metabolism and promotes the Warburg effect [154]. 

This effect results in increased production of lactate.  

Although the human PGK1 does not contain a PAS domain, the observation that it 

possesses protein kinase activity suggests that trypanosomatid PAS-PGK may also provide 

such activity inside glycosomes triggered by a cytosolic signalling system. T. brucei and T. 

cruzi contain homologues of the MAP kinase ERK and the peptidyl-prolyl cis/trans 

isomerase (PPIase) PIN1 which in the human tumour cells are involved in the signalling 

resulting in translocation of PGK1 to mitochondria and exhibiting protein kinase activity 

[156-159]. The T. brucei and T. cruzi ERK homologues are called Erk-like (TbECK1) and 

Erk2 (TcMAPK2), respectively [156,157]. These proteins are associated with functions 

related to phenotype, karyotype, cell cycle and growth modulation. The homologue of the 

PIN1 protein in T. brucei is known as TbPIN1, whereas in T. cruzi three homologues have 

been found called TcPIN1 [158], TcPAR14, and TcPAR45 [160]. These trypanosome PIN1 

proteins appear to be involved in cell proliferation and growth. Like PAS-PGK, these 

proteins are expressed in all developmental stages of these parasites, but are localized in the 

cytosol. The presence of these signalling pathway homologues could support the idea that 

they interact with PAS-PGK to endow it with protein kinase activity. Moreover, the 

identification of LXL-like motifs in the PAS domain of PAS-PGK could support this 

notion. LXL motifs are clusters of basic amino acids present in the substrates of ERK 

kinase. These motifs allow the ERK substrate to interact with this kinase, through a slot or 

pocket coupling [154].  

Interestingly, human PGK1 with protein kinase activity plays also another role in cancer 

development. Tumorigenesis inducing conditions result in its acetylation, rendering it into a 

kinase that phosphorylates Beclin1 [155]. This stimulates autophagy that is required to 

support tumour metabolism. Autophagy plays also a major role in trypanosomatid biology. 

The process is strongly upregulated during differentiation steps when the parasites undergo 

drastic metabolic and morphological changes to degrade redundant proteins and organelles 

such as glycosomes [161-166]. The possibility that PAS-PGK might act not only as a 

glycolytic enzyme but also as a protein kinase perhaps with an involvement in signalling 

pathways for differentiation steps triggered by environmental cues, like pH dependent 
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activation of T. cruzi metacyclogenesis [167] is an intriguing possibility that deserves 

further study. 

 

8. Conclusions and future trends 

 

PAS domains are highly conserved regulatory modules, widely distributed in Archaea, 

Bacteria and eukaryotes. They are present in different types of proteins and participate in a 

wide range of cellular functions, such as virulence, aerotaxis, metabolism and adaptation of 

microorganisms to their environment. Little is known about the presence of these 

regulatory domains in parasitic organisms, specifically in kinetoplastids. Genome analysis 

of some of these parasites revealed the presence of PAS domains in various protein kinases, 

where they are associated with other regulatory domains. Since the PAS domains have been 

overlooked so far in the kinetoplastids, because of their low abundance in the parasite 

genomes and their high sequence divergence, we cannot discard the possibility that this has 

also been the case in other parasites, notably unicellular ones. Therefore, our assessment of 

these overlooked domains in kinetoplastid genomes provides a paradigm for assessing 

possibilities for PAS domains in other parasites. In T. cruzi a PAS-PGK-like protein was 

identified. Analysis of its amino-acid sequence suggests that this PAS domain can have an 

important function in the modulation of the catalytic activity of the glycolytic enzyme. 

However, due to the multiple functions that these domains can have, several other possible 

functions of this domain in this glycosomal enzyme could also be considered. Currently, it 

is difficult to establish the role of this PAS domain in the PGK-like protein of T. cruzi. 

Therefore, we set out to clone and overexpress this protein. Future molecular and 

biochemical studies of this recombinant protein could give insight into the physiological 

significance of this likely regulatory PAS module in a glycolytic enzyme of an important 

human parasite.  
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Figure legends 

Fig. 1. Structure of photoactive yellow protein (PYP) [PDB code: 2phy].  

 

The structure of this photoactive proteín is divided in four segments: N-terminal cap 

(purple), PAS core (orange), helical connector (green) and -scaffold (blue) [10]. 

 

Fig. 2. Structure-based alignment (MUSTANG/STACCATO). 
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Structure-based alignment (MUSTANG/STACCATO) of trypanosomatid PGK PAS 

domains with five crystal structures of PAS domains with diverse ligand binding 

specificities (FMN [PDB code: 3ue6], FAD [2gj3], haem [3vol], chromophore [1nwz] and 

fatty acid [3k3c]). The alignment is coloured using the ClustalX [168] scheme as 

implemented in the program Jalview [169]. White on magenta is used to highlight ligand-

binding residues in the crystal structures. The upper five sequences are labelled according 

to their identifiers in the TriTryp database [85] while the lower five structures are labelled 

with PDB IDs (first four characters) followed by chain ID (fifth character). 

 

Fig. 3. Phylogenetic analysis of PAS domains in protein sequences from kinetoplastids. 

  

Sequences of PAS domains were identified by a BLAST search in different protein kinases 

and PGKs of different kinetoplastids (trypanosomatids and bodonids) as listed in Table 1, 

and aligned using MUSCLE with default parameter setting. All positions containing gaps in 

the alignment and missing data were eliminated. There were a total of 48 positions in the 

final dataset. The phylogenetic relationships of the PAS sequences were subsequently 

inferred using the Neighbor-Joining method.  Evolutionary analyses were conducted in 

MEGA7. Numbers at the individual nodes of the tree represent bootstrap support (500 

replicates). The horizontal bar represents the units of the number of amino-acid 

substitutions per site. 

 

 

Fig. 4. Crystal structure of cytosolic T. brucei PGK coloured from blue to red, N- to C-

terminus.  

 

Substrates in this ternary complex (PDB code: 13pk) are shown as balls and sticks. The N-

terminus (blue) is far from the catalytic site but near the hinge region (pink). 
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Figure 1 
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Figure 2.  
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Figure 4. 
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Table 1. Detectable proteins containing PAS domains in complete kinetoplastid genomes 

Organism Product 

Localization 

Genome 

(Chromosome) 

Associated domains 
Mass 

(Da) 
pI Gene ID 

Free-living 

Bodo 

Bodo saltans 

PAS PAC sensor-like protein, putative 

Phosphoglycerate kinase, putative 

Not assigned 

Not assigned 

 

258487 

57000 

5.50 

  9.10 

BSAL_46115 

CUG91042.1 

Obligate Parasites 

Cryptobia 

Trypanoplasma 

borreli 

 

Unspecified product 

 

Not assigned 

  

 

 

--------- 

 

 

-------- 

 
NODE_142343_length

_19892_cov_7.208827 

 

Trypanosoma 

Stercorarian and reptilian Trypanosomes  

T. cruzi 

 CL Brener 

Esmeraldo-like 

PAS-domain containing phosphoglycerate kinase, putative 

STE/STE11 serine/threonine-protein kinase, putative 

Serine/threonine-protein kinase, putative (fragment) 

STE group serine/threonine-protein kinase, putative 

32 

33 

7 

9 
 

57944 

112256 

102877 

204034 

9.26 

6.54 

5.78 

6.17 

TcCLB.506945.20 

TcCLB.510565.70 

TcCLB.505977.13 

TcCLB.508995.10 

T. rangeli 

PAS-domain containing phosphoglycerate kinase, putative 

Protein kinase, putative 

Protein kinase, putative 

Not assigned 

Not assigned 

Not assigned      
 

57843 

149563 

111547 

9.52 

6.47 

6.96 

TRSC58_04456 

TRSC58_00261 

TRSC58_05624 
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T. grayi 

PAS-domain containing phosphoglycerate kinase, putative 

Protein kinase, putative (cap-ED) 

Protein kinase, putative (TMD) 

Mitogen activated kinase-like protein 

Not assigned 

Not assigned 

Not assigned 

Not assigned 

  

57652 

198289 

111990 

110006 

9.42 

5.32 

7.11 

6,78 

Tgr.6.1260 

Tgr.1039.1000 

Tgr.304.1050 

Tgr.238.1040 

Salivarian Trypanosomes 

T. brucei brucei 

TREU927 

STE Protein kinase, putative (cap-ED) 

STE /STE 11 serine /threonine- protein kinase, putative 

1 

9 

          

191477 

112317 

6.11 

5.33 

Tb927.1.1530 

Tb427.9.3 120 

T. congolense 

Protein kinase, putative 

Protein kinase, putative  

Protein kinase, putative 

Protein kinase, putative (fragment) 

9 

Not assigned 

Not assigned 

Not assigned                     

112039 

194502 

200028 

61609 

6.91 

5.68 

5.79 

7.54 

TcIL3000_9_920 

   TcIL3000_0_12910 

  TcIL3000_0_00130 

TcIL3000_0_43080 

T. vivax 

Protein kinase, putative 

Protein kinase, putative 

Protein kinase, putative (fragment) 

1 

Not assigned 

9 

          
 

197789 

197792 

97849 

6.09 

6.25 

6.29 

TvY486_0100670 

TvY486_0027590 

TvY486_0901000 

Leishmania ACCEPTED M
ANUSCRIP

T



 56 

 

PAS domain-containing sequences were found in the TriTrypDB, GeneDB and NCBI databases using BLAST. Their domain composition was then assessed using the software tools from 

ExPaSy, SMART, ProteinBlast and InterPro EMBL-EBI. 

L. major 

PAS-domain containing phosphoglycerate kinase, putative 

STE group serine/threonine-protein kinase, putative (cap-ED) 

STE group serine/threonine-protein kinase, putative (cap-ED) 

STE/STE 11 serine/ threonine- protein kinase, putative (TMD) 

Mitogen activated kinase-like protein 

30 

15 

20 

26 

36 

          

57570 

287443 

419207 

113736 

108204 

8.75 

6.58 

6.57 

6.56 

6.90 

LmjF.30.3380 

LmjF.15.1200 

LmjF.20.0770 

LmjF.26.1730 

LmjF.36.3680 

Leptomonas 

L. seymouri 

PAS-domain containing phosphoglycerate kinase, putative 

Protein kinase, putative (cap-ED) 

Protein kinase, putative (TMD) 

Mitogen activated kinase-like protein 

Protein kinase, putative (cap-ED) 

Not assigned 

Not assigned 

Not assigned 

Not assigned 

Not assigned 

                   

57348 

449325 

114214 

102095 

315051 

9.10 

7.00 

6.89 

5.56 

7.32 

Lsey_0231_0130 

Lsey_0040_0040 

Lsey_0045_0290 

Lsey_0172_0060 

Lsey_0311_0040 

 

 

Crithidia 

C. fasciculata 

PAS-domain containing phosphoglycerate kinase, putative 

Protein kinase, putative (TMD) 

Protein kinase, putative (cap-ED) 

Protein kinase, putative 

Mitogen activated kinase-like protein 

26 

16 

18 

24 

28 

               

57208 

114077 

470028 

323033 

110426 

9.60 

6.50 

6.40 

6.93 

6.70 

CFAC1_260059100 

CFAC1_160018200 

CFAC1_180014500 

CFAC1_240044200 

CFAC1_280040900 
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PAS domain   Intermembrane domain   PAC domain     PGK domain     Kinase domain      Cyclic nucleotide-binding   

Histidine kinase ATPase domain   CheY-like domain  Dimerization-anchoring domain     (TMD) Transmembrane domain,   

(cap-ED) Effector Domain of the CAP family transcription factors   Forkhead-associated (FHA) domain    Helicase superfamily C-terminal domain 

------ : This sequence contains several consecutive undefined AA. Its pI and Mw cannot be computed 

 

This table presents proteins containing PAS domains as detectable in representative species of kinetoplastid genera. Information about PAS proteins of additional species of the genera 

Trypanosoma, Leishmania and Leptomonas can be found in Table S1 of the Supplementary Information. 
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