

Edinburgh Research Explorer

High-Level Hardware Feature Extractionfor GPU Performance
Prediction of Stencils
Citation for published version:
Remmelg, T, Hagedorn, B, Li, L, Steuwer, M, Gorlatch, S & Dubach, C 2020, High-Level Hardware Feature
Extractionfor GPU Performance Prediction of Stencils. in GPGPU '20: Proceedings of the 13th Annual
Workshop on General Purpose Processing using Graphics Processing Unit. ACM Association for
Computing Machinery, pp. 21-30, 13th Workshop on General Purpose Processing Using GPU (GPGPU
2020) , San Diego, California, United States, 23/02/20. https://doi.org/10.1145/3366428.3380769

Digital Object Identifier (DOI):
10.1145/3366428.3380769

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
GPGPU '20: Proceedings of the 13th Annual Workshop on General Purpose Processing using Graphics
Processing Unit

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 13. Mar. 2024

https://doi.org/10.1145/3366428.3380769
https://doi.org/10.1145/3366428.3380769
https://www.research.ed.ac.uk/en/publications/93b99033-eec0-4c5e-9930-13b9fc819a04

High-Level Hardware Feature Extraction
for GPU Performance Prediction of Stencils

Toomas Remmelg
The University of Edinburgh

Edinburgh, Scotland, United Kingdom

toomas.remmelg@ed.ac.uk

Bastian Hagedorn
University of Münster

Münster, Germany

b.hagedorn@wwu.de

Lu Li
The University of Edinburgh

Edinburgh, Scotland, United Kingdom

lu.li@ed.ac.uk

Michel Steuwer
University of Glasgow

Glasgow, Scotland, United Kingdom

michel.steuwer@glasgow.ac.uk

Sergei Gorlatch
University of Münster

Münster, Germany

gorlatch@wwu.de

Christophe Dubach
The University of Edinburgh

Edinburgh, Scotland, United Kingdom

christophe.dubach@ed.ac.uk

Abstract

High-level functional programming abstractions have started to

show promising results for HPC (High-Performance Computing).

Approaches such as Lift, Futhark or Delite have shown that it

is possible to have both, high-level abstractions and performance,

even for HPC workloads such as stencils. In addition, these high-

level functional abstractions can also be used to represent programs

and their optimized variants, within the compiler itself. However,

such high-level approaches rely heavily on the compiler to optimize

programs which is notoriously hard when targeting GPUs.

Compilers either use hand-crafted heuristics to direct the op-

timizations or iterative compilation to search the optimization

space. The irst approach has fast compile times, however, it is

not performance-portable across diferent devices and requires a

lot of human efort to build the heuristics. Iterative compilation,

on the other hand, has the ability to search the optimization space

automatically and adapts to diferent devices. However, this pro-

cess is often very time-consuming as thousands of variants have to

be evaluated. Performance models based on statistical techniques

have been proposed to speedup the optimization space exploration.

However, they rely on low-level hardware features, in the form of

performance counters or low-level static code features.

Using the Lift framework, this paper demonstrates how low-

level, GPU-speciic features are extractable directly from a high-

level functional representation. The Lift IR (Intermediate Repre-

sentation) is in fact a very suitable choice since all optimization

choices are exposed at the IR level. This paper shows how to extract

low-level features such as number of unique cache lines accessed

per warp, which is crucial for building accurate GPU performance

models. Using this approach, we are able to speedup the exploration

of the space by a factor 2000x on an AMD GPU and 450x on Nvidia

on average across many stencil applications.

Keywords Performance models, GPUs optimizations, Stencil com-

putation, Features extraction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or
a fee. Request permissions from permissions@acm.org.

GPGPU ’20, February 23, 2020, San Diego, CA, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7025-7/20/02. . . $15.00
htps://doi.org/10.1145/3366428.3380769

1 Introduction

Recent years havewitnessed the emergence of high-level approaches

for high-performance computing such as Accelerate [22], Futhark [10],

Delite [4], Lift [35] and AnyDSL [19]. They enable programmers

to write hardware-agnostic code while putting the burden on the

compiler to extract performance. Tuning a compiler is very labori-

ous and time-consuming, especially when considering accelerators

such as GPUs (Graphics Processing Units) and this process has to

be repeated for every new hardware generation.

Lift proposes to use rewriting [34] to solve this problem. Rewrit-

ing for compiler optimizations is an approach irst proposed in 2001

in the Haskell compiler [30]. Lift’s rewrite rules attempt to deine

the set of all possible algorithmic and, crucially, hardware-speciic

optimizations. Rewrite rules liberate compiler writers from having

to implement hard-coded optimizations and make it easy to extend

the compiler. Optimizations are simply implemented as rules and a

generic rewriting engine explores the space automatically.

However, this approach results in a large optimization space. The

optimization process takes a few hours for stencils on GPUs [9],

even when using an eicient auto-tuner [1]. In response, this paper

develops an automatic performance model predicting the best op-

timized program variant using static features from the high-level

Lift IR. This removes the necessity for compiling and running

programs which accounts for the majority of the exploration time.

The use of performance modeling for GPUs is not novel [11,

12, 26, 27, 38]. However, to the best of our knowledge, this is the

irst paper to show how information about low-level GPU-speciic

features is extractable from a high-level functional IR. This paper

demonstrates that a high-level IR is amenable to the extraction

of low-level information useful for predicting performance using

high-level semantic information. It also shows how cache locality

information is extractable at this level. This relies on the use of the

rich information stored in the Lift type system together with the

ability to reason about array indices in a symbolic manner.

Using the extracted features, a performance predictor is built

using machine-learning. This leads to a highly accurate model for

the stencil domain, an important class of high-performance code.

The model achieves a correlation of 0.8 and 0.9 on GPUs from

Nvidia and AMD, respectively. Using the model to search the space

requires less than 5 runs in the majority of the cases to achieve

performance within 90% of the best available. In comparison, a

random search requires 100s of runs in the majority of the cases.

To summarize, the paper makes three contributions:

https://doi.org/10.1145/3366428.3380769

GPGPU ’20, February 23, 2020, San Diego, CA, USA T. Remmelg et al.

F
e

a
tu

re

E
x

tr
a

ct
io

n

OpenCL
Kernel

Compilation

OpenCL
Binary

Execution

OpenCL
Kernel
OpenCL
Kernel

Transformed
Expression

High-Level
Expression

Rewriting

Transformed
ExpressionC

o
d

e

G
e

n
e

ra
ti

o
n

Performance
 Predictor

Predicts best

OpenCL
Kernel
OpenCL
Kernel
OpenCL
Binary

Compilation

Execution

OpenCL
Kernel
OpenCL
Kernel
OpenCL
Kernel

OpenCL
Kernel
OpenCL
Kernel

Transformed
Expression

High-Level
Expression

Rewriting

Code
Generation

a) b)

Figure 1. Lift compilation and exploration. a) The current ap-

proach compiles and executes all transformed expressions. b) The

new strategy ranks the transformed expressions with a model and

only compile and execute the best ones.

• It shows how low-level GPU hardware features are extracted

from a high-level functional IR;

• It presents a simple unsupervised learning approach using

PCA and Clustering that predicts program performance;

• It shows that the model is able to drastically reduce explo-

ration time of the optimization space.

The rest of this paper is organized as follows: Section 2 moti-

vates this work while Section 3 presents background information

about OpenCL and Lift. Section 4 explains how low-level hardware

features are extracted from the high-level Lift IR, and Section 5

presents the performance model. Section 6 analyses the features

and the model performance while Section 7 shows that the model

is able to speedup drastically the optimization space exploration.

Finally, Section 8 discusses related work and Section 9 concludes.

2 Motivation

Current Lift Exploration Lift [34] explores the GPU optimiza-

tion space using rewrite rules. Figure 1a presents an overview. First,

a high-level expression representing the program is used as an

input to the compiler. This generic high-level expression does not

encode any optimizations. Then, the rewriting takes place and the

Lift exploration module applies rewrite rules to search the space

randomly. This results in a set of transformed expressions where

optimizations have been applied and parallelism has been mapped.

The transformed expressions are then fed into the Lift code gen-

erator which produces OpenCL kernels. These kernels are compiled

with the vendor-provided OpenCL compiler into binaries. Finally,

all binaries are executed, the performance is recorded and the best

found kernel is reported.

Kernel generation

Kernel compilation

Kernel execution

2.2%
7.3%

90.5%

Figure 2. Time breakdown for the Lift exploration process. Kernel

generation includes time to rewrite and compile Lift expressions to

OpenCL kernels. Kernel compilation is the vendor-provided OpenCL

compiler time. Kernel execution is the time required to execute all

generated kernels.

This process is time consuming as it produces a large number

of kernels (1,000 for this paper). In addition, every Lift generated

kernel is executable with a diferent number of threads leading up

to 10,000 kernel executions.

Time breakdown Figure 2 shows the percentages of the time

spent in the diferent stages of the current Lift compilation and

exploration. Unsurprisingly, the last part of Lift’s worklow, the

kernel execution, requires by far the most time (up to 90%). For this

paper, executing all kernels for a single application, including the

exploration of thread conigurations took up to 41 minutes while

all kernels were generated in less than a minute, which is about 2%

of the overall time.

Using a Performance Predictor for Exploration Themajor bot-

tleneck for exploration is clearly the OpenCL compilation and exe-

cution time of the generated kernels, which represent 98% of total

time. This paper addresses this bottleneck by using a trained per-

formance predictor directly on the transformed Lift expression.

Figure 1b shows how the exploration strategy is modiied with a

performance model.

Once the transformed expressions have been produced, the idea

is to extract features that are informative about performance. These

features are fed into a predictive model which almost instanta-

neously ranks the transformed expressions. Then, the transformed

expression with the fastest predicted performance is selected, the

corresponding kernel generated, compiled and inally executed.

While this approach seems very simple, the challenges are two-

fold. First, we need to identify features that are informative about

performance, such as memory access patterns. Then, they need

to be extracted from the high-level functional Lift IR. As we will

see, the Lift IR encodes all the required information to calculate

low-level GPU-speciic features. The next section gives background

information about the Lift IR while Section 4 will discuss feature

extraction.

3 Background

This section introduces OpenCL, the existing Lift IR, and the

rewrite systems used to produce eicient OpenCL kernels.

3.1 OpenCL

An OpenCL program (kernel) is executed by multiple threads (work-

items) organized in work-groups, providing a two-level thread hier-

archy. Both work-items and work-groups are organized in three-

dimensional grids identiied by unique IDs. On GPUs, multiple

High-Level Feature Extraction for Performance Prediction GPGPU ’20, February 23, 2020, San Diego, CA, USA

work-groups are executable on a core, and work-items are sched-

uled in groups of 32 for Nvidia (warp) or 64 for AMD (wavefront).

It is generally desirable to start a large thread number to reach

maximum occupancy.

OpenCL provides a three-level memory hierarchy: Global mem-

ory is accessible by all work-items and throughput is maximized

when threads in the same warp/wavefront access the same cache

line (coalesced accesses). Work-items of the same group commu-

nicate via a fast shared local memory, and each work-item has its

own private memory.

3.2 Lift IR

Lift [34, 35] is a functional language based on lambda calculus,

ofering a small set of reusable primitives. It is a compiler-internal

data-parallel intermediate language and is compiled to high-performance

OpenCL code. Lift’s distinguishes algorithmic primitives which

express what to compute, from OpenCL-speciic primitives which

express how to compute by explicitly mapping computations to the

OpenCL programming model. Lift’s type system supports scalar

types (e.g. int, float), tuple-types (denoted asU ×T), and array-

types (denoted as [T]n), where the array size n is part of the type.

Algorithmic Primitives Lift provides well-known functional

primitives deined on arrays as listed below:

map : (f : T → U , in : [T]n) → [U]n

reduce : (init : U , f : (U ,T) → U , in : [T]n) → [U]1

zip : (in1 : [T]n , in2 : [U]n) → [T ×U]n

iterate : (in : [T]n , f : [T]n → [T]n , m : int) → [T]n

split : (m : int, in : [T]n) → [[T]m]n/m

join : (in : [[T]m]n) → [T]m×n

slide :(size : int, step : int, in : [T]n) → [[T]size] n−size+step
step

pad :(l : int, r : int, h : (i : int, len : int) → int,

in : [T]n) → [T]l+n+r

at :(i : Cst , in : [T]n) → T

get :(i : Cst , in : T1 ×T2 × . . .) → Ti

array :(n : int, f : (i : int, n : int) → T) → [T]n

userFun : (s1 : ScalarT , s2 : ScalarT ′
, . . .) → ScalarU

Lift supports the deinition of arbitrary scalar-based sequential

OpenCL-C functions called userFun. These are directly embedded

in the generated OpenCL code.

OpenCL-speciic primitives Lift’s OpenCL speciic primitives

expose OpenCL’s thread and memory hierarchy. These primitives

are used to explicitly dictate how to perform the computation ex-

pressed with the algorithmic primitives.

Parallelism is exposed via specialized variations ofmap:mapGlobald ,

mapWorkgroupd ,mapLocald , andmapSeq. These primitives directly

correspond to OpenCL’s thread hierarchy. The computation speci-

ied within a OpenCL-speciic map is performed by its particular

level and dimension d ∈ {0, 1, 2} of the thread hierarchy, or exe-

cuted sequentially by a single thread (mapSeq). OpenCL’s memory

hierarchy is exposed via toGlobal(f), toLocal(f) and toPrivate(f),

which specify where the output of the function f is stored in mem-

ory.

1 stencil(arg: [float]N) =

2 map(reduce (+,0), slide(3,1, pad(1,1, 0, arg)))

Listing 1. 1D 3pt-stencil example in Lift.

1 transformedStencil(arg: [float]N) =

2 mapWrg(tile =>

3 mapLcl(toGlobal(reduce (+,0)), slide(3,1,

4 mapLcl(toLocal(id , tile))))

5)(slide (18,16, pad(1,1, 0, arg)))

Listing 2. 1D transformed 3pt-stencil example in Lift.

3.3 Rewriting

Lift encodes optimizations as semantics-preserving rewrite rules.

These rules are used to transform a high-level expression written

using the algorithmic primitives into a transformed expression in

which parallelism and memory is explicitly exploited. Similar to

Lift’s primitives, rewrite rules are also categorized into algorithmic

or OpenCL-speciic rules. Algorithmic rules such as the divide-and-

conquer rule:

map(f) → join ◦map(map(f)) ◦ split(n)

create a space of possible algorithmic implementations for the same

expression. OpenCL-speciic rules such as:

map(f) →mapGlobal0(f)

map expressions to the OpenCL’s programming model.

3.4 Example

Listing 1 shows a 1D 3-point stencil expressed in Lift [9]. pad is

applied adding one element (0) to the left and right of the input

array arg to implement a simple boundary handling. slide creates

overlapping neighborhoods of three elements which are summed

up using map and reduce.

Applying rewrite rules leads to Listing 2, where overlapped tiling

has been applied. Every tile is processed by a work-group (mapWrg)

loading all elements to local memory and computing the output

using its work-items before storing it in global memory. From this

expression high-performance OpenCL code is generated as shown

in [9].

4 Feature Extraction

This paper proposes a performance model that predicts the perfor-

mance of transformed Lift expressions on GPUs in order to identify

the best variant. The model relies on static features extracted from

the high-level Lift IR. Although the features are extracted at a high-

level, they capture information about low-level hardware features.

They broadly fall into three categories as seen in Table 1.

4.1 Parallelism

For a ixed input size, the number of launched threads inluences

how much parallelism versus sequential work is performed. We

include both global and local thread counts across the three thread

dimensions as features. Local thread count afects how large each

work-group will be, which may afect data reuse or the number of

concurrent groups.

GPGPU ’20, February 23, 2020, San Diego, CA, USA T. Remmelg et al.

Type Feature

Parallelism
global size (dimensions 0, 1 and 2)

local size (dimensions 0, 1 and 2)

Memory

amount of local memory allocated

global stores per thread

global loads per thread

local stores per thread

local loads per thread

average cache lines per access per warp

Control Flow &

Synchronization

barriers per thread

if statements per thread

for loop bodies executed per thread

Table 1. List of extracted features

4.2 Memory

This section covers the features related to the amount of memory

allocated, number of accesses, and access patterns.

4.2.1 Local memory usage

One of the important factors that determines performance on a GPU

is occupancy. Occupancy is typically maximized when multiple

work-group execute concurrently. More concurrent work-groups

typically translates to more threads executing concurrently, which

ultimately helps hiding memory latency.

The number of work-groups that execute simultaneously on

a core depends on the amount of resources used by each work-

group. One important resource is the amount of fast local memory

(shared memory) used by the work-group. Therefore, it is crucial

to determine this quantity.

Extracting the amount of local memory used in a Lift program is

straightforward. The program is traversed once, collecting memory

allocation sizes and summing up these numbers.

4.2.2 Number of Memory Accesses

Performance is largely afected by the amount and type of memory

operations. Applications that exhibit large amount of data re-usage

will beneit from exploiting the fast local memory. The program

can simply reuse the data in local memory several times, reduc-

ing the number of global memory accesses, resulting in increased

performance.

Algorithm The Lift code generator only produces loads and

stores to memory when a user function is called. Therefore, count-

ing the number of loads and stores boils down to counting how

often each user function is called. As can be seen in Algorithm 1,

a depth-irst traversal is performed on the IR while keeping track

of the number of times the body of patterns generating loops is

executed. Once a user-function is reached, the feature extractor

simply updates the total number of loads and stores. In addition to

this, the extractor keeps track of the type of memory being accessed,

local or global, using the toLocal and toGlobal patterns. The infor-

mation about the address space is encoded directly into the IR and

is populated by another pass that runs prior to feature extraction.

The number of global/local loads and stores is then normalized by

the number of total threads.

input :Lambda expression representing a program
output :Numbers of diferent types of memory accesses.

countAccesses(lambda)
1 totalLoad[local] = 0; totalLoad[global] = 0

2 totalStore[local] = 0; totalStore[global] = 0

3 countAccessesExpr(lambda.body, 1)

4 return {totalLoad,totalStore}

countAccessesExpr(expr, iterationCount)
5 switch expr do
6 case fc@FunCall
7 foreach arg in fc.args do
8 countAccessesExpr(arg, iterationCount)

9 switch expr.f do
10 case is l@Lambda

countAccessesExpr(l.body, iterationCount) ;

11 case is t@toPrivate or t@toLocal or toGlobal
12 countAccessesExpr(t.f.body, iterationCount)

13 case is m@MapSeq or m@MapGlb or m@MapLcl or ...
14 n = fc.input(0).length

15 countAccessesExpr(m.body, iterationCount * n)

16 case is it@Iterate
17 countAccessesExpr(it.body, iterationCount * it.count);

18 case is uf@UserFun
19 foreach arg in fc.args do
20 totalLoad[arg.addrsSpace] += iterationCount

21 totalStore[arg.addrsSpace] += iterationCount

22 otherwise do // Nothing to count ;

23 otherwise do // Nothing to count ;

24 return counts

Algorithm 1: Pseudo-code for counting the total number of

loads/stores for each type of memory.

1 example(arg0: [float]N , arg1: [float]N) =

2 mapWrg(x =>

3 mapLcl(toGlobal(multByTwo), mapLcl(toLocal(add)), x)

4)(split (64, zip(arg0 , arg1)))

Listing 3. Example for memory access count extraction.

Example Consider the program in Listing 3. The algorithm starts

with the top-level lambda and soon encounters the mapWrg prim-

itive. At this point in the algorithm, line 14, n will be N /64 (the

length of the outer dimension of the input after the split). The

algorithm calls recursively countAccessesExpr with N /64 as the iter-

ationCount. When visiting either of themapLcl in line 3 of Listing 3,

nwill this time be 64 (the length of the inner dimension of the input

after the split).

When the add function is visited, global loads is updated twice,

since the add function has two inputs (the tuple is automatically

unboxed). Since at this point, the iterationCount is N /64 ∗ 64 = N ,

the total number of global loads is N ∗ 2, and the total number of

local stores is N . When the multByTwo function is visited, local

reads and global store are both updated once, resulting in N local

loads and N global stores.

4.2.3 Memory Access Patterns

The way a program accesses memory has a profound impact on

performance. GPUs coalesce several memory requests into a single

one when threads in the same warp/wavefront access a single

cache line (typically 128 bytes). It is, therefore, important to extract

information about memory access patterns for building an accurate

performance predictor.

General Algorithm To determine the total number of cache line

reads, our feature extractor recursively traverses the IR, keeping

High-Level Feature Extraction for Performance Prediction GPGPU ’20, February 23, 2020, San Diego, CA, USA

track of the iteration count. When a memory access is encountered,

it determines the number of unique cache lines accessed by the

warp as follows. First, it generates the actual index expression using

the existing mechanism of the Lift compiler [35]. If the expression

contains no thread id, it means that all the threads are accessing

the same cache line.

When the expression contains a thread id, a new index expression

is generated for each thread in the warp by adding a constant to its

id (threads in a warp have consecutive ids). Let’s denote the original

array index expressed as a function of the thread id as access(tid).

Given n, the number of threads in a warp, the set of array indices

accessed by the warp is:

{access(tid + 0),access(tid + 1), · · · ,access(tid + n − 1)}

This list of indices expresses the diferent addresses accessed by a

warp. Given the cache line size s (expressed as a multiple of data

size), we compute the list of cache lines accessed:

{access(tid + 0)/s,access(tid + 1)/s, · · · ,access(tid + n − 1)/s}

Finally, we can subtract the elements in the list with each other to

identify which ones are equal (when the subtraction results in 0)

and count the number of unique accesses.

Implementation details The approach explained above is con-

ceptually correct, however, it relies on having the ability to symbol-

ically simplify arithmetic expressions. While the Lift arithmetic

simpliier supports a signiicant set of simpliications, it is not pow-

erful enough to deal with some simpliications. In such cases, the

feature extractor might fail to recognize identical accesses. The

following paragraphs explain a few workarounds used inside the

feature extractor.

The irst issue we encountered, is the diiculty in calculating the

set of unique cache lines by subtraction. Conceptually, one could

take the irst access access(tid + 0)/s , subtract every other accesses

by it and hope that the algebraic simpliier would be able to return

0 in case where two accesses are identical. Simplifying expressions

as simple as

(tid + 0)/s − (tid + 1)/s

which is 0 when s > 1, is far from trivial given that / represents

the integer division.

To overcome this challenge, we modify our approach slightly

and add an extra step. Before dividing by s , we irst calculate all

the relative array accesses as an ofset of the irst access by simple

subtraction. The intuition behind this is two-fold. First, it is much

easier to simplify a subtraction if it does not contain terms with

integer division. Second, we only care about the distances between

the accesses rather than their absolute location, therefore, we will

still be able to identify the number of unique cache line accessed.

So if the original accesses are

{tid + 0, tid + 1, · · · }

they become

{(tid + 0) − (tid + 0), (tid + 1) − (tid + 0), · · · }

which simpliies trivially to {0, 1, · · · }. Then, we perform the divi-

sion as before, which leads to {0/s, 1/s, · · · } which trivially sim-

pliies to {0, 0, · · · }. Now it is much easier to identify the unique

cache lines.

1 example(in: [float]N) = mapGlb(mapSeq(f), split(n, in))

Listing 4. Example for extracting memory access patterns.

Example Consider the example program in Listing 4. The array

index being read for the argument of f is i + n * gl_id, where i is

the iteration variable of the mapSeq and gl_id the global thread id.

Depending on the split factor n, a diferent number of cache lines

will be accessed by a warp. With a split factor of n = 1, a single

cache line would be accessed since the accesses within a warp are

consecutive. However, if the split factor is larger than the warp size,

then each warp will be touching a diferent cache line.

With a cache line of 32 words, 32 threads per warp and 1 word

for loat, the cache line indices within a warp are:

{(i + n ∗ дl_id), (i + n ∗ (дl_id + 1)), · · · , (i + n ∗ (дl_id + 31))}

Using the trick presented earlier, we can express all indices as

an ofset from the irst one:
{(i + n ∗ дl_id)−(i + n ∗ дl_id),

i + n ∗ (дl_id + 1)−(i + n ∗ дl_id),

· · · ,

i + n ∗ (дl_id + 31))−(i + n ∗ дl_id)}

which simpliies trivially to: {0,n, · · · ,n ∗ 31}. Now dividing by the

cache line size, we obtain {0,n/32, · · · ,n ∗ 31/32}.

If the split factor n is 1, this results in 32 zeros, meaning all the

thread in the warp access a single cache line. When the split factor

n = 4, this will results in the following list: {0, 0, 0, 0, 1, 1, 1, 1, · · · , 7, 7, 7, 7}.

Since it has 8 unique values, the warp touches 8 cache lines for this

memory access.

4.3 Control Flow and Synchronization

Another important factor that often limits performance on GPUs

is control low and synchronization. if-then-else and for loop state-

ments produce branching instructions which is notoriously bad

for GPU performance because they typically cause control low

divergence within warps. Similarly, barriers are detrimental to per-

formance since execution is altered until all threads have reached

the barrier. For this reason, the feature extractor determines the

total number of if-then-else, for loops and barriers produced by the

code generator.

Algorithm This is similar to the algorithm used to count the num-

ber of memory operations. It traverses the IR recursively, keeping

track of the number of times each function is executed. Whenever a

pattern that might produce a loop (e.g. iterate, mapLocal, reduceSeq)

is encountered, it checks whether a loop will be emitted and update

a global loop counters, taking into account the current iteration

count.

The algorithm also detects special cases where loops might not

be emitted. There are two cases to consider. First, when a mapSeq

iterates over an array of size 1, it is clear that a loop is not required.

The second case is more subtle and involves mapLocal, mapWrg or

mapGlobal. If the size of the input array is smaller than the number

of local threads, workgroups or global threads, respectively, the code

generator will emit an if-then-else statement instead of a loop since

the loop can at most be executed once per thread or workgroup.

To determine the number of barriers, the algorithm looks at

mapLcl as OpenCL only has barriers inside workgroups. The Lift

GPGPU ’20, February 23, 2020, San Diego, CA, USA T. Remmelg et al.

1 stencil(input: [float]N) =

2 MapGlb(ReduceSeq (+, 0.0f),

3 Slide(3, 1,

4 Pad(1, 1, Clamp , input)))

Listing 5. Example for a simple stencil program.

1 kernel void stencil (float* in , float* out , int N){

2 float acc;

3 for (int gid=global_id (); gid <N; gid+= global_size ()) {

4 acc = 0.0f;

5 for (int i = 0; i < 3; i += 1) {

6 int pos = gid - 1 + i;

7 acc += in[((pos >= 0) ? (

8 (pos < N) ? pos : (N - 1)) : 0)]; }

9 out[gid] = acc; }}

Listing 6. OpenCL-ish code generated for a simple stencil.

code generator detects unnecessary barriers [35] and tags the call

to mapLcl when it is not required. Therefore, we run this barrier

elimination pass before feature extraction, and we use this informa-

tion to ignore themapLcl which have been marked as not requiring

a barrier.

4.4 Use of High-Level Semantic Information

Another practical issue has to do with the pad pattern which is used

to implement boundary conditions in stencil programs. Listing 5

shows a simple stencil program applying a clamping boundary

condition which simply repeats the outermost value in case of out-

of-bounds accesses. Listing 6 shows the generated pseudo-OpenCL

code for this program. The pad pattern introduces a lot of ternary

operators ?: which check that every memory access is in bound.

This operator makes it harder for the simpliier to subtract memory

accesses with each other to identify unique cache lines.

To overcome this, we exploit the available high-level semantic

information: the padded data is rarely accessed and most accesses

are in bound. The feature extractor focuses on the common case by

simply ignoring the ternary operator and calculate the index for the

common case. Identifying the common case by statically analyzing

the OpenCL code is much harder even for this simple example. We

would have to predict the common case for two ternary operators

whose predicates depends on two opaque function calls (global_id

and global_size) to the OpenCL library.

4.5 Summary

This section has shown how low-level GPU-speciic features are

extracted from the Lift IR. Memory-related, control low, and syn-

chronization features are extracted using information about the

length of arrays from the type. We have seen how the ine-grained

memory feature related to cache lines accesses is computed using

the power of the Lift symbolic arithmetic expressions. The next

section explains how we build a simple performance model using

these extracted features.

5 Performance Model

Having seen how hardware-speciic information is extracted from

the high-level IR, we now focus on the performance model. It is

based on k-Nearest Neighbors (kNN), whichmakes prediction based

on the distance between programs in the feature space. Intuitively,

Lift programs that exhibit similar features are likely to have similar

performance.

5.1 Output Variable

The prediction output is throughput normalized by the maximum

achievable per input/program. This is to ensure that performance

is comparable across programs, since diferent programs might

exhibit diferent numbers of operations.

5.2 Principal Component Analysis

Given that a kNN model works best with a small number of fea-

tures, we use PCA (Principal Component Analysis) to reduce the

dimensionality of the feature space. Prior to applying PCA, the

features are centered and reduced with a mean of 0 and a standard

deviation of 1. This step is necessary since our features have very

diferent ranges of values. PCA is then applied and we retain the

principal components that explain 95% of the variance. In efect,

this compresses the feature space by removing redundant features.

5.3 K-Nearest Neighbors Model

A k-nearest neighbors model makes a prediction of a new data

point by inding the k closest points to it, using Euclidean distance

and averaging their responses to make a prediction. In our case,

the distance metric is determined by how close the feature vectors

are from one another.

The kNNmodel does not require any special training. The execu-

tion time of rewritten Lift expressions, together with their features,

are simply collected and added into a database. When predicting

a newly unseen Lift program, we simply look up the k closest

neighbors and average their prediction to form a new prediction.

In our experiment, we used k = 5.

5.4 Making Predictions

To make a prediction about new programs, we irst collect data

points from a group of training programs. For each program, we

conduct an exploration of their optimization space and store the

features and corresponding performance. Given a new program,

we proceed as follows:
1. For each rewritten program:

a. The features are extracted, normalized and projected based

on the PCA calculated from the training data;

b. The model predicts the performance using the average of

the k-nearest neighbors.

2. The diferent rewritten programs are sorted based on the

prediction.

3. The fastest predicted rewritten program is generated, com-

piled and executed.

6 Experimental Setup

Platform The setup consists of twoGPUs, an NVIDIA Titan Black

and an AMD Radeon R9 295X2. The Nvidia platform uses driver

version 367.35 and OpenCL 1.2 (CUDA 8.0.0). The AMD platform

uses OpenCL 2.0 AMD-APP (1598.5).

Benchmarks and Space We use the 2D stencil benchmarks from

[9] listed in Table 2. All experiments are performed using single

loating point with matrix sizes from 5122 to 81922.

Model evaluation The performance model is evaluated using

leave-one-out cross-validation, the standardmachine learningmethod-

ology. When evaluating performance on a given benchmark, the

training data consists of all the data collected from all benchmarks,

except the one being tested.

High-Level Feature Extraction for Performance Prediction GPGPU ’20, February 23, 2020, San Diego, CA, USA

Benchmark Points Points Used # grids

Stencil2D 9 9 1

SRAD1 9 5 1

SRAD2 9 3 2

Hotspot2D 9 5 2

Gradient 9 5 1

Jacobi2D 5 pt 9 5 1

Jacobi2D 9 pt 9 9 1

Gaussian 25 25 1

Table 2. Stencil benchmarks used in the evaluation.

7 Feature and Model Analysis

Before looking at how the performance model is used to speedup

the optimization space exploration, we irst perform an analysis of

the features and evaluate the model accuracy.

7.1 Features Analysis

We use the redundancy metric to analyze which features are the

most informative about performance:

R =
I (X ,Y)

H (X) + H (Y)

The redundancy metric normalizes the mutual information by the

sum of the entropy of the two variables. This ensures that diferent

features can be compared with one another. In our case, we are

interested in comparing each feature with the output we wish to

predict: performance. A higher value between a certain feature

and the output indicates that the feature is useful for performance

prediction.

Figure 4 shows the normalized mutual information between

features and performance. As expected, one of the most important

features is the average number of cache lines accessed per warp.

This feature, which represents locality, is extremely important for

stencil benchmarks.

The next most important feature for both machines is the global-

Size in dimension 1. This feature is directly related to the number of

threads that execute and, therefore, the amount of parallel work per-

formed. It is also used to determine if the kernels are launched using

a 2D or 1D iteration space (in the 1D case, the globalSize1 will be 1).

Then, comes the number of global stores, followed closely by the

number of global loads. This basically corresponds to the number

of memory accesses performed into the slow global memory.

For both platforms, barriers and control low (for loops) seem to

have only a medium impact on performance, whereas the number

of if-statements does not seem very relevant at all. Focusing on the

least important features, the number of local loads does not seem to

afect performance much. We conjecture that, since local memory

is very fast, having fewer or more local loads might not make much

of a diference in terms of performance, especially compared to the

number of global memory operations.

7.2 Benchmark diversity

Figure 3 shows the features of the best point in the space for our

benchmarks. As can be seen, some benchmarks share similarities,

which is essential for being able to make prediction. However, we

also observe quite a lot of diversity.

7.3 Performance Model Correlation

We analyze correlation between the predicted and actual values to

measure the model ability at distinguishing between good and bad

points. For all programs, the correlation coeicient is in the range

[0.7 − 0.9], with average of 0.9 on Nvidia and 0.8 on AMD, which

shows the predictor works adequately.

7.4 Summary

This section has shown that the most important features for perfor-

mance prediction on GPUs are related to memory access pattern,

amount of parallelism, and number of global memory accesses.

The section has also shown that the model’s predictions correlate

highly with actual performance. The next section shows how the

model is used to speedup the optimization space exploration of our

benchmarks.

8 Optimization Space Exploration

8.1 Model-based Exploration

This section shows the performance achieved when exploring the

space with our predictor. The exploration is conducted by gener-

ating 1,000 transformed Lift expression using rewrites and com-

bining them with 10 diferent thread-counts on average. This leads

to 10,000 design points per program/input pair. For each point, we

extract the features and use the model to rank them. We then run

the design points from highest predicted performance to lowest.

Figure 5 shows the normalized best performance achieved as

a function of the number of points evaluated. It also shows the

performance achieved using a purely random evaluation order.

Using the predictor, it is possible to very quickly achieve 100% of the

performance available in the space for all programs. In comparison,

the random strategy struggles to reach even 50% of the performance

available in some cases after having explored 3% of the whole space.

8.2 Space Exploration Speedups

Figure 6 shows the exploration speedup when using our model

compared to random to achieve 90% of the available performance.

The speedup is shown in terms of number of samples and total

time it takes to run them. A speedup of 10x means the performance

model needs 10x less runs, or 10x less time, than random to achieve

90% of the performance.

As can be seen, using the performancemodel brings large speedup

across all programs. When looking at the total number of runs re-

quired, on Nvidia, the performance model approach requires 35x

less runs than random. On AMD, there is an even bigger saving: the

model requires 77x less runs than random. When it comes to total

time, the model-based approach is a staggering 450x and 2000x

faster than random for Nvidia and AMD respectively.

8.3 Detailed Results

This section shows more details per program/input. Figure 7 shows

the actual number of runs required to reach 90% of the performance

across programs and input. As can be seen, only one run is necessary

in the majority of the cases for Nvidia and two runs for AMD. In

contrast, random needs over 60 runs for Nvidia and over 180 for

AMD in most cases.

The average number of runs using our model is 3 for Nvidia and

5 for AMD. In comparison, random requires on average 97 runs

GPGPU ’20, February 23, 2020, San Diego, CA, USA T. Remmelg et al.

Nvidia

AMD

localLoads

ifStatements

localStores

globalSize0

forStatements

localSize0

localSize1 localMemory

barriers

globalLoads

globalStores

globalSize1

avgWarpCacheLines

gaussian grad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d

Figure 3. Radar plot of the features for the top points in the space (input sizes 4K).

avgWarpCacheLines
globalSize1

globalStores
globalLoads

barriers
localMemory

localSize1
localSize0
forBodies

globalSize0
localStores

ifStatements
localLoads

0.00 0.02 0.04 0.06

Redundancy

F
e

a
tu

re

(a) NVIDIA

avgWarpCacheLines
globalSize1

globalStores
globalSize0

localSize0
globalLoads

barriers
localMemory

localStores
localSize1
forBodies

ifStatements
localLoads

0.00 0.02 0.04

Redundancy

F
e

a
tu

re

(b) AMD

Figure 4. Normalized mutual information (redundancy) between

each feature and performance.

for Nvidia and 240 for AMD. These results clearly show that the

performance model is working well in the majority of cases.

Interestingly, there are a couple of outliers programs/input size

combination that require over 30 runs for themodel-based approach.

In both cases, stencil2d on Nvidia and srad1 on AMD, this is when

the largest or smallest input sizes are used. We believe that in such

cases, the behavior of these programs probably changes drastically

with the input size. For instance, the data might actually it entirely

in the cache for the smallest input size of stencil2d and, therefore,

change drastically the behavior of the application for this input size.

Since our features have no notion of working-set size, the model

might be unable to pick up this change of behavior. However, even

in such cases, the model-based exploration is still ahead of random.

For stencil2d, the model needs 31 runs while random needs 691, a

21x speedup!

9 Related Work

Auto-Tuning OpenTuner [1] is a framework for domain-speciic

multi-objective auto-tuners. CLTune [25] is a generic auto-tuner for

OpenCL kernels. ATF [31] is a language-independent auto-tuning

framework which supports inter-parameter constraints. These auto-

tuning approaches attempt to ind good implementations using

online search which is orthogonal to our approach. In fact, auto-

tuners can be easily coupled with a performance predictor.

Analytical Performance Modelling CuMAPz [16] is a compile

time analysis tool that helps programmers increase the memory per-

formance of CUDAprograms. It estimates the efects of performance-

critical memory behaviors, such as data reuse, coalesced accesses,

channel skew, bank conlict and branch divergence. GROPHECY [23]

uses the MWP-CWP model [12] (Memory Warp Parallelism ś Com-

putation Warp Parallelism) to estimate the GPU performance of

skeleton-based applications. GPUPerf [33] is an enhanced version

of the analytical MWP-CWPmodel with addedmetrics and a way of

understanding performance bottlenecks. The boat hull model [26]

is a modiied version of the rooline model based on an algorithm

classiication and produces a rooline model for each class of device.

GPU cache models [27] have been built by extending reuse dis-

tance theory with parallel execution, memory latency, limited asso-

ciativity, miss-status holding-registers and warp divergence. COM-

PASS [18] introduces a language for creating analytical performance

models that analyze the amount of loating point and memory op-

erations based on static code features. Coloured petri nets [20]

were proposed for GPGPU performance modelling. Another ap-

proach [3] builds an analytical performance model to determine

the lower bound on execution time. Low-level GPU ISA solving and

assembly microbenchmarking [38] has been used to collect data

about architectural features and performance.

Sensitivity Analysis via Abstract Kernel Emulation [11] aims to

predict execution time and determine resource bottlenecks for a

given Nvidia GPU kernel binary. Analytical models describe low-

level details of the hardware to model performance using a model

written by a hardware expert. They typically use low-level kernel

representations to make their predictions. In contrast, our approach

based on machine-learning is fully automatic and works by extract-

ing features at a much higher level.

Statistical PerformanceModelling Earlywork [8] extracts static

code features and uses machine learning to predict the performance

of optimization sequences. Principal component analysis, cluster

analysis and regression modelling have been used [15] to gener-

ate predictive models for GPUs and CPUs. Predictive modelling

has also been applied in polyhedral compilation [29] to predict

speedups for diferent combinations of polyhedral transformations

from hardware performance counters. Graph-based program char-

acterization [28] has also been used for polyhedral compilation

to predict the speedups of optimization sequences. Clustering on

similarity of a graph-based intermediate representation has been

used [7] to cluster similar programs. Another approach [36] uses

machine learning models trained on assembly-level features to

choose a good combination of transformations for vectorization.

High-Level Feature Extraction for Performance Prediction GPGPU ’20, February 23, 2020, San Diego, CA, USA

gaussian grad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d

A
M

D
N

V
ID

IA

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Space explored (%)

P
e

rf
o

rm
a

n
c
e

 a
c
h

ie
ve

d

Method

KNN

Random

Figure 5. Achieved performance when exploring the space for a 4K input size using a model trained on other programs.

10

100

1,000

10,000

100,000

gaussiangrad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d Average

benchmark

s
p

e
e

d
u

p

#samples time

(a) NVIDIA

10

100

1,000

10,000

100,000

gaussiangrad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d Average

benchmark

s
p

e
e

d
u

p

#samples time

(b) AMD

Figure 6. Reduction in the number of samples and correspond-

ing time required to explore to reach at least 90% of the available

performance (average = geometric mean).

All these approaches use hardware counters, low-level code

features, assembly-level features or compiler data structures to

predict speedups or optimization sequences. In contrast, our work

shows how we can extract features at a much higher level and still

predict performance accurately.

MaSiF [6] uses PCA and kNN to auto-tune skeleton parame-

ters for programs written using TBB and FastFlow. Stargazer [13]

uses step-wise linear regression together with cubic splines to es-

timate the performance of programs on diferent GPU designs in

GPGPU-Sim [2]. Starchart [14] uses random sampling and building

regression trees to divide the whole optimization space into smaller

subspaces.

These approaches try to directly predict the efect tunable pa-

rameters have on the performance. However, they rely on the fact

that the number of parameters is ixed and known in advance. In

contrast, our approach predicts the performance independently of

the number of parameters in the program.

Artiicial Intelligence for Compilers Genetic programming has

been used [17] to generate features for predicting loop unrolling

factors. Others [24] have proposed ways of generating program

features out of simple ones. Features are encoded as numeric re-

lations and new ones are generated by joining existing relations

and aggregating them. TVM [5] uses machine learning to prune

the search space for compilation optimizations.

Support Vector Machines have also been used in compilers [32].

Machine learning has also been used to automatically learn com-

piler heuristics. [37] A neural-network cascade [21] is used to deter-

mine the amount of thread coarsening to apply to OpenCL programs

for diferent GPUs.

Machine learning models in compilers traditionally use features

extracted from a deeper stage in the compilation pipeline. Our

work instead extracts them at a considerably higher-level from a

functional IR.

10 Conclusions

This paper has demonstrated that it is possible to extract low-level

hardware-speciic features from the Lift high-level functional IR.

We have shown how type information, such as array length, is

useful for computing certain features. The ability to reason sym-

bolically about array indices also enables the extraction of very

ined-grained features such as the number of accessed cache lines

per warp. To the best of our knowledge, this is the irst time a paper

has shown how low-level features can be extracted at such high

level, without requiring any proiling or performance counters.

The paper has also demonstrated how a simple performance

model is built to make accurate performance predictions about

diferent program variants. Using an Nvidia and AMD GPU, and

stencil applications, we have shown that our model is able to predict

points in the search space that are within 90% of the best within

one or two runs in the majority of the cases. When compared to

a random search strategy, the model requires on average 77x less

runs than random on AMD and 35x less on Nvidia, which translates

to time savings of 2000x and 450x respectively.

GPGPU ’20, February 23, 2020, San Diego, CA, USA T. Remmelg et al.

31

2

2

2

2

4

1

1

1

1

13

1

1

1

12

5

1

1

1

1

1

23

3

1

2

1

1

1

1

1

1

1

1

1

1

6

1

2

1

1

512

1024

2048

4096

8192

ga
us

si
an

gr
ad

2d

ho
ts
po

t

j2
d5

pt

j2
d9

pt

sr
ad

1

sr
ad

2

st
en

ci
l2
d

(a) KNN on Nvidia GPU

691

290

131

103

101

110

92

86

121

47

111

81

62

47

44

191

70

17

19

13

51

97

104

132

171

17

10

8

8

8

41

102

57

106

46

311

59

44

34

50

512

1024

2048

4096

8192

ga
us

si
an

gr
ad

2d

ho
ts
po

t

j2
d5

pt

j2
d9

pt

sr
ad

1

sr
ad

2

st
en

ci
l2
d

(b) Random on Nvidia GPU

1

10

1

12

2

1

1

8

8

1

2

2

18

18

2

1

1

2

26

1

1

1

1

4

3

7

7

7

7

32

1

1

1

2

1

1

1

1

1

4

512

1024

2048

4096

8192

ga
us

si
an

gr
ad

2d

ho
ts
po

t

j2
d5

pt

j2
d9

pt

sr
ad

1

sr
ad

2

st
en

ci
l2
d

(c) KNN on AMD GPU

425

221

183

276

215

210

107

131

111

184

268

111

213

136

149

153

108

94

267

400

170

187

192

418

833

116

132

165

182

197

203

297

413

492

1081

167

81

69

93

169

512

1024

2048

4096

8192

ga
us

si
an

gr
ad

2d

ho
ts
po

t

j2
d5

pt

j2
d9

pt

sr
ad

1

sr
ad

2

st
en

ci
l2
d

(d) Random on AMD GPU

Figure 7. Number of samples needed to reach 90% of the available performance on for each program/input pair.

References
[1] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,

Jefrey Bosboom, Una-May O’Reilly, and Saman P. Amarasinghe. 2014. Open-
Tuner: an extensible framework for program autotuning. In PACT. ACM. htps:
//doi.org/10.1145/2628071.2628092

[2] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.
Aamodt. 2009. Analyzing CUDA workloads using a detailed GPU simulator. In
ISPASS. IEEE. htps://doi.org/10.1109/ISPASS.2009.4919648

[3] Ulysse Beaugnon, Antoine Pouille, Marc Pouzet, Jacques Pienaar, and Albert
Cohen. 2017. Optimization Space Pruning Without Regrets. In CC. ACM. htps:
//doi.org/10.1145/3033019.3033023

[4] Kevin J. Brown, Arvind K. Sujeeth, Hyouk Joong Lee, Tiark Rompf, Hassan Chai,
Martin Odersky, and Kunle Olukotun. 2011. A Heterogeneous Parallel Framework
for Domain-Speciic Languages. In Proceedings of the 2011 International Conference
on Parallel Architectures and Compilation Techniques (PACT ’11).

[5] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 578ś594.

[6] Alexander Collins, Christian Fensch, Hugh Leather, and Murray Cole. 2013.
MaSiF: Machine learning guided auto-tuning of parallel skeletons. In HiPC. IEEE.
htps://doi.org/10.1109/HiPC.2013.6799098

[7] John Demme and Simha Sethumadhavan. 2012. Approximate graph clustering
for program characterization. ACM TACO 8, 4 (2012), 21. htps://doi.org/10.1145/
2086696.2086700

[8] Christophe Dubach, John Cavazos, Björn Franke, Grigori Fursin, Michael F. P.
O’Boyle, and Olivier Temam. 2007. Fast compiler optimisation evaluation using
code-feature based performance prediction. In CF. ACM. htps://doi.org/10.1145/
1242531.1242553

[9] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and
Christophe Dubach. 2018. High Performance Stencil Code Generation with Lift.
In CGO. ACM, New York, NY, USA, 100ś112. htps://doi.org/10.1145/3168824

[10] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cos-
min E. Oancea. 2017. Futhark: Purely Functional GPU-programming with Nested
Parallelism and In-place Array Updates. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2017).

[11] Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, Prashant Singh
Rawat, Sriram Krishnamoorthy, Louis-Noël Pouchet, Fabrice Rastello, and P.
Sadayappan. 2018. GPU Code Optimization Using Abstract Kernel Emulation
and Sensitivity Analysis. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2018). ACM, New York,
NY, USA, 736ś751. htps://doi.org/10.1145/3192366.3192397

[12] Sunpyo Hong and Hyesoon Kim. 2009. An Analytical Model for a GPU Architec-
ture with Memory-level and Thread-level Parallelism Awareness. In ISCA. ACM.
htps://doi.org/10.1145/1555754.1555775

[13] Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi. 2012. Stargazer: Automated
regression-based GPU design space exploration. In ISPASS, Rajeev Balasubramo-
nian and Vijayalakshmi Srinivasan (Eds.). IEEE. htps://doi.org/10.1109/ISPASS.
2012.6189201

[14] Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi. 2013. Starchart: Hardware
and software optimization using recursive partitioning regression trees. In PACT.
IEEE. htps://doi.org/10.1109/PACT.2013.6618822

[15] Andrew Kerr, Gregory Diamos, and Sudhakar Yalamanchili. 2010. Modeling
GPU-CPU Workloads and Systems. In GPGPU. ACM. htps://doi.org/10.1145/
1735688.1735696

[16] Yooseong Kim and Aviral Shrivastava. 2011. CuMAPz: A Tool to Analyze Memory
Access Patterns in CUDA. In DAC. ACM, 6. htps://doi.org/10.1145/2024724.
2024754

[17] Hugh Leather, Edwin V. Bonilla, and Michael F. P. O’Boyle. 2009. Automatic
Feature Generation for Machine Learning Based Optimizing Compilation. In
CGO. IEEE. htps://doi.org/10.1109/CGO.2009.21

[18] Seyong Lee, Jeremy S. Meredith, and Jefrey S. Vetter. 2015. COMPASS: A Frame-
work for Automated Performance Modeling and Prediction. In Proceedings of the
29th ACM on International Conference on Supercomputing (ICS ’15). ACM, 10.

[19] Roland Leissa, Klaas Boesche, Sebastian Hack, Arsène Pérard-Gayot, Richard
Membarth, Philipp Slusallek, André Müller, and Bertil Schmidt. 2018. AnyDSL:
A Partial Evaluation Framework for Programming High-performance Libraries.
Proc. ACM Program. Lang. 2, OOPSLA, Article 119 (Oct. 2018), 30 pages.

[20] Souley Madougou, Ana Lucia Varbanescu, and Cees de Laat. 2016. Using Colored
Petri Nets for GPGPU Performance Modeling. In CF. ACM. htps://doi.org/10.
1145/2903150.2903167

[21] Alberto Magni, Christophe Dubach, and Michael F. P. O’Boyle. 2014. Automatic
optimization of thread-coarsening for graphics processors. In PACT. ACM. htps:
//doi.org/10.1145/2628071.2628087

[22] Trevor L. McDonell, Manuel M T Chakravarty, Gabriele Keller, and Ben Lippmeier.
2013. Optimising Purely Functional GPU Programs. In ICFP ’13: The 18th ACM
SIGPLAN International Conference on Functional Programming. ACM.

[23] Jiayuan Meng, Vitali A. Morozov, Kalyan Kumaran, Venkatram Vishwanath, and
Thomas D. Uram. 2011. GROPHECY: GPU performance projection from CPU
code skeletons. In SC. ACM. htps://doi.org/10.1145/2063384.2063402

[24] Mircea Namolaru, Albert Cohen, Grigori Fursin, Ayal Zaks, and Ari Freund. 2010.
Practical Aggregation of Semantical Program Properties for Machine Learning
Based Optimization. In CASES. ACM. htps://doi.org/10.1145/1878921.1878951

[25] Cedric Nugteren and Valeriu Codreanu. 2015. CLTune: A Generic Auto-Tuner
for OpenCL Kernels. In MCSoC. IEEE. htps://doi.org/10.1109/MCSoC.2015.10

[26] Cedric Nugteren and Henk Corporaal. 2012. The boat hull model: enabling
performance prediction for parallel computing prior to code development. In CF.
ACM. htps://doi.org/10.1145/2212908.2212937

[27] Cedric Nugteren, Gert-Jan van den Braak, Henk Corporaal, and Henri E. Bal.
2014. A detailed GPU cache model based on reuse distance theory. In HPCA.
IEEE. htps://doi.org/10.1109/HPCA.2014.6835955

[28] Eunjung Park, John Cavazos, and Marco A. Alvarez. 2012. Using graph-based
program characterization for predictive modeling. In CGO. ACM. htps://doi.
org/10.1145/2259016.2259042

[29] Eunjung Park, Louis-Noël Pouchet, John Cavazos, Albert Cohen, and P. Sadayap-
pan. 2011. Predictive modeling in a polyhedral optimization space. In CGO. IEEE.
htps://doi.org/10.1109/CGO.2011.5764680

[30] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. 2001. Playing by the
rules: rewriting as a practical optimisation technique in GHC. ACM SIGPLAN.

[31] Ari Rasch, Michael Haidl, and Sergei Gorlatch. 2017. ATF: A Generic Auto-
Tuning Framework. In 19th IEEE International Conference on High Performance
Computing and Communications; 15th IEEE International Conference on Smart
City; 3rd IEEE International Conference on Data Science and Systems, HPCC/S-
martCity/DSS 2017, Bangkok, Thailand, December 18-20, 2017. 64ś71. htps:
//doi.org/10.1109/HPCC-SmartCity-DSS.2017.9

[32] Ricardo Nabinger Sanchez, José Nelson Amaral, Duane Szafron, Marius Pirvu,
andMark G. Stoodley. 2011. Using machines to learn method-speciic compilation
strategies. In CGO. IEEE. htps://doi.org/10.1109/CGO.2011.5764693

[33] Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim, and Richard W. Vuduc. 2012.
A performance analysis framework for identifying potential beneits in GPGPU
applications. In PPoPP. ACM. htps://doi.org/10.1145/2145816.2145819

[34] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. 2015.
Generating Performance Portable Code Using Rewrite Rules: From High-level
Functional Expressions to High-performance OpenCL Code. In Proceedings of the
20th ACM SIGPLAN International Conference on Functional Programming (ICFP
2015). ACM.

[35] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017. Lift: a func-
tional data-parallel IR for high-performance GPU code generation. In CGO.
htp://dl.acm.org/citation.cfm?id=3049841

[36] Kevin Stock, Louis-Noël Pouchet, and P. Sadayappan. 2012. Using machine
learning to improve automatic vectorization. ACM TACO 8, 4 (2012), 50. htps:
//doi.org/10.1145/2086696.2086729

[37] Michele Tartara and Stefano Crespi-Reghizzi. 2013. Continuous learning of
compiler heuristics. ACM TACO 9, 4 (2013), 46.

[38] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou, andMingyu
Chen. 2017. Understanding the GPU Microarchitecture to Achieve Bare-Metal
Performance Tuning. In Proceedings of the 22Nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’17). ACM, New York, NY,
USA, 31ś43. htps://doi.org/10.1145/3018743.3018755

https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1145/3033019.3033023
https://doi.org/10.1145/3033019.3033023
https://doi.org/10.1109/HiPC.2013.6799098
https://doi.org/10.1145/2086696.2086700
https://doi.org/10.1145/2086696.2086700
https://doi.org/10.1145/1242531.1242553
https://doi.org/10.1145/1242531.1242553
https://doi.org/10.1145/3168824
https://doi.org/10.1145/3192366.3192397
https://doi.org/10.1145/1555754.1555775
https://doi.org/10.1109/ISPASS.2012.6189201
https://doi.org/10.1109/ISPASS.2012.6189201
https://doi.org/10.1109/PACT.2013.6618822
https://doi.org/10.1145/1735688.1735696
https://doi.org/10.1145/1735688.1735696
https://doi.org/10.1145/2024724.2024754
https://doi.org/10.1145/2024724.2024754
https://doi.org/10.1109/CGO.2009.21
https://doi.org/10.1145/2903150.2903167
https://doi.org/10.1145/2903150.2903167
https://doi.org/10.1145/2628071.2628087
https://doi.org/10.1145/2628071.2628087
https://doi.org/10.1145/2063384.2063402
https://doi.org/10.1145/1878921.1878951
https://doi.org/10.1109/MCSoC.2015.10
https://doi.org/10.1145/2212908.2212937
https://doi.org/10.1109/HPCA.2014.6835955
https://doi.org/10.1145/2259016.2259042
https://doi.org/10.1145/2259016.2259042
https://doi.org/10.1109/CGO.2011.5764680
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.9
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.9
https://doi.org/10.1109/CGO.2011.5764693
https://doi.org/10.1145/2145816.2145819
http://dl.acm.org/citation.cfm?id=3049841
https://doi.org/10.1145/2086696.2086729
https://doi.org/10.1145/2086696.2086729
https://doi.org/10.1145/3018743.3018755

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	3.1 OpenCL
	3.2 Lift IR
	3.3 Rewriting
	3.4 Example

	4 Feature Extraction
	4.1 Parallelism
	4.2 Memory
	4.3 Control Flow and Synchronization
	4.4 Use of High-Level Semantic Information
	4.5 Summary

	5 Performance Model
	5.1 Output Variable
	5.2 Principal Component Analysis
	5.3 K-Nearest Neighbors Model
	5.4 Making Predictions

	6 Experimental Setup
	7 Feature and Model Analysis
	7.1 Features Analysis
	7.2 Benchmark diversity
	7.3 Performance Model Correlation
	7.4 Summary

	8 Optimization Space Exploration
	8.1 Model-based Exploration
	8.2 Space Exploration Speedups
	8.3 Detailed Results

	9 Related Work
	10 Conclusions
	References

