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Abstract 

Syntheses of the bimetallic uranium(III) and neptunium(III) complexes [(UI)2(L)], [(NpI)2(L)], and 

[{U(BH4)}2(L)] of the Schiff-base pyrrole macrocycles L are described. In the absence of single-crystal 

structural data, fitting of the variable-temperature solid-state magnetic data allows the prediction of polymeric 

structures for these compounds in the solid state. 

 

Introduction 

The understanding of the magnetic behavior of actinide complexes, in particular multimetallic systems, lags 

well behind that of 3d and 4f metals. This is because the strong spin−orbit interactions, strong electron 

correlations, ligand-field effects, and 5f/6d occupancy in these heavy 5f metal complexes make the prediction 

and understanding of the interactions difficult.
1
 While 4f metal cations with intrinsically high anisotropies 

have been used to great effect in the synthesis of single-molecule magnets (SMMs),
2
 the incorporation of 

actinide cations offers the prospect of much stronger magnetic exchange interactions than 4f cations and large 

anisotropies, so such complexes are potentially rewarding targets for the synthesis of high-TcSMMs. 

The nature of the 5f states in the actinide metals has already been shown to give rise to some extraordinary 

magnetic phenomena in inorganic materials such as unconventional superconductivity,
3
 but it is still difficult 

to provide a theoretical understanding of the most complex magnetic characteristics of these materials. As 

such, the study of simple bimetallic and oligonuclear actinide materials should provide important fundamental 

information. Studies of magnetic communication between two uranium centers are limited to binuclear 

complexes that incorporate discrete bridging ligands such as tert-butylimido,
4
 diketimido,

5
 N═C-2,2′:6′,2′′-

terpyridine,
6
 and both m- and p-diimides, ═NC6H4N═.

7
 Studies on bimetallic complexes of neptunium, the 

first of the transuranic elements, have yet to be reported. 

We have shown recently that macrocycle H4L can only accommodate one uranyl cation in the formation of 

[UO2(THF)(H2L)],
12, 13

 which contrasts with the wide variety of homobimetallic 3d metal complexes that can 

be synthesized.
14, 15

 Related ligands have also been used by Sessler and co-workers to bind the neptunyl 

[NpO2]
2+

 cation and have been developed for colorimetric sensing applications.
16

 We reasoned that binding 

two low-oxidation-state actinide cations in L would allow the study of the magnetic behavior of a simple 

binuclear system because, in the trivalent state, U
III

 is an f
3
 ion and Np

III
 is an f

4
 ion, so the total spin could be 

significant in complexes of either actinide. 

The reaction between UI3 and the potassium salt K4L in tetrahydrofuran (THF) at −78 °C afforded a green 

slurry, which became red upon warming to 25 °C (Scheme 1). After workup, a dark-red, toluene-soluble 

powder of [(UI)2(L)] (1), was isolated in 90% yield.
17

 We have also synthesized the permethyl analogue of 1 

(R = H, R′ = Me), 1a, and the unmethylated analogue1b, in which R = R′ = H. The reaction of 1 with KBH4 in 
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THF at 50 °C formed cleanly the binuclear uranium(borohydride) complex [{U(BH4)}2(L)] (2) in 79% yield, 

which was isolated as a dark-red, toluene-soluble powder.
18

 Furthermore, the addition of solid K4L in portions 

to a THF slurry of NpI3(THF)4 at 25 °C afforded a dark-red-brown, toluene-soluble crystalline powder of 

[(NpI)2(L)] (3).
19

 This represents a rare example of a Np
III

 coordination complex and, to our knowledge, the 

first bimetallic Np
III

 complex. In the lower oxidation states (III+ and IV+), the coordination and 

organometallic chemistry of neptunium is dominated by homoleptic halides and amides such as NpI3(THF)4 

and [Np(N{SiMe3}2)3],
8
 neptunocene [Np

IV
(η

8
-C8H8)2] and K[Np

III
(η

8
-C8H8)2],

9
 [Cp3Np], and a handful of 

mixed halide amide or organometallic halide complexes such as CpNpCl3,
10

 and adducts of heterocyclic N-

donor chelators of relevance to the biological uptake of Np in place of Fe
III

.
11

 

 

 

Scheme 1. Synthesis of Binuclear U
III

 and Np
III

 Complexes of the Schiff-Base Pyrrolic Macrocycles H4L, 

H4L′, and H4L′′ 

 

All of the complexes have been fully characterized (see the Supporting Information, SI), and the FTIR 

spectrum of the borohydride region of 2 displays absorptions at 2451, 2211, and 1187 cm
−1

, which suggests μ3 

coordination of the hydrides to the metal, similar to that seen in [U(BH4)4(THF)2] and [U(BH4)4].
20 

Unfortunately, we have been unable to grow single crystals suitable for X-ray structural analysis of any of 

these complexes and so cannot provide definitive structural information. 
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The geometry of these molecules is potentially interesting because there is the possibility that the two An
III

 

cations can undergo magnetic superexchange coupling through a bridging halide or borohydride.
21

 Three 

possible structures that should exhibit distinct magnetic exchange behavior are shown schematically in Figure 

1. The two mononuclear structures suggested are based on the variety of structural types shown for d-block 

metal complexes of L.
15

 The absence of coordinating solvents and the fact that the products do not crystallize 

readily are indications that these materials may be polymeric in the solid state (Figure 1c). 

Variable-temperature magnetic susceptibility studies were carried out on 1−3 in the temperature range 2−300 

K in applied fields of 1 and 7 T. The results for 1 and 2, obtained at 1 T, are shown in Figure 1. If the U
III

 ions 

are magnetically isolated (Figure 1a), the ligand field will dominate the magnetic behavior in the whole 

temperature range, defined by an effective Hamiltonian in an axial ligand field HLF′ =   2
0
O2

0
 +   2

2
O2

2
 with a 

|Jz = ±
1
/2, ±

3
/2  pseudo quartet ground state (see the SI). Although this model can qualitatively reproduce the 

trend displayed by magnetization measurements at different fields, electron paramagnetic resonance 

measurements would be desirable to provide the most sensitive technique to test the wave function 

composition. If a U
III

U
III

 pair is present (Figure 1b), the effective Hamiltonian can be written as Hdim = HLF′(1) 

+ HLF′(2) +   J1J2 where   is the exchange integral, J is the total angular momentum operator, and the 

indices 1 and 2 label the two U
III

 sites. Numerical full diagonalization of Hdim shows that the experimental 

susceptibility curves cannot be reproduced within these models in the whole temperature range and 

antiferromagnetic exchange must be considered to reproduce the high-temperature 1/χ values. The dashed 

lines in Figure 1correspond to a parameter choice of  = 3.5 K and   2
0
 = 172 K in the case of 1 and  = 2 K 

and   2
0
 = 82 K in the case of 2. However, this dimeric model does not reproduce the low-temperature 

behavior because the exchange splitting between the nonmagnetic singlet ground state and the excited states 

of the dimeric units is too large, resulting in a maximum of χ(T). A small amount of paramagnetic impurity in 

the sample would generate a Curie tail deviation from the humped curve, but no kink is visible in the 

experimental χ(T) curves. More complex magnetic associations, such as tetramers, have also been considered 

and found to be inconsistent with the measured susceptibility curves. 

In the case of the polymeric chain structure (Figure 1c), the magnetic system cannot be constrained to a finite 

dimensionality and a mean-field (MF) approach is best suited to treat exchange interactions. The inverse 

susceptibility can then be written as 1/χ = 1/χ0 − λ, where χ0 is the single-ion susceptibility and λ is determined 

by the antiferromagnetic exchange integrals over different sites. The solid lines in Figure 1 are the results of 

MF calculations, for  2
0
 = 172 K and λ = 26.1 mol of U/emu for the iodide 1 and   2

0
 = 82 K and λ = 17.6 mol 

of U/emu for borohydride 2. The good agreement between experimental observations and calculated values is 

strong evidence that these materials are polymeric in the solid state. This conclusion is not affected by the 

particular choice of the ground state because the same result regarding exchange interactions would be 

obtained for a |Jz = ±
9
/2  doublet ground state. 
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Figure 1. (a−c) Schematic structures possible for 1 and 2 (X = I, BH4) and magnetic susceptibility data for 1 

(circles) and 2 (diamonds) as a function of the temperature. 1/χ vs T is plotted in the inset, and the calculated 

data for the structure are (a) dotted line, (b) dashed line, and (c) solid line. 

 

 

Figure 2. Magnetic susceptibility data for 3 (squares) as a function of the temperature. An expansion of the 

reciprocal susceptibility at low temperatures is shown in the inset. The full and dashed lines are the calculated 

ligand-field susceptibility for two different energy spectra of Np
III

. 
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The variable-temperature data for the Np complex 3, measured in a 1 T field between 2 and 300 K, are shown 

in Figure 2. The reciprocal susceptibility (shown in the inset) is essentially linear above 20 K and points 

toward an effective magnetic moment of 2.43 μB. Although this is apparently compatible with a |Jz = ±4  

ground-state doublet (dashed line), a better fit of the low-temperature part is obtained by considering a 

different scenario, namely, a |Jz = ±3 ground-state level separated by 206 K from the first excited |Jz = ±2  

level (full black line). The slight remaining discrepancy between the experiment and calculations below 5 K 

may be attributed to either the influence of nonaxial ligand-field terms, which can give rise to a nonmagnetic 

singlet or to magnetic superexchange between the 5f centers. While it is impossible to be more precise on this 

point with the limited available data, a comparison with the magnetic behavior of 1 and 2 allows us to infer 

that the superexchange coupling in 3, be it dimeric or polymeric, is at least 1 order of magnitude smaller. This 

feature can be attributed to the smaller radial extension of the 5f shell with increasing f electron number. 

In conclusion, the synthesis of the binuclear [(AnX)2(L)] complexes of the Schiff-base pyrrole macrocycle L 

(An = U, Np, X = I; An = U, X = BH4) is straightforward, but the complexes do not crystallize, even for three 

different variants of the ligand. The solid-state structures are suggested by variable-temperature magnetometry 

to be polymeric and display relatively strong antiferromagnetic coupling between the metal centers. 
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