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Towards A Query Language for Annotation Graphs

Steven Bird�, Peter Bunemany and Wang-Chiew Tany

�Linguistic Data Consortium, University of Pennsylvania, 3615 Market Street, Philadelphia, PA 19104, USA
yDepartment of Computer Science, University of Pennsylvania, 200 South 33rd Street, Philadelphia, PA 19104, USA

Abstract
The multidimensional, heterogeneous, and temporal nature of speech databases raises interesting challenges for representation and query.
Recently, annotation graphs have been proposed as a general-purpose representational framework for speech databases. Typical queries
on annotation graphs require path expressions similar to those used in semistructured query languages. However, the underlying model
is rather different from the customary graph models for semistructured data: the graph is acyclic and unrooted, and both temporal and
inclusion relationships are important. We develop a query language and describe optimization techniques for an underlying relational
representation.

1. Introduction
In recent years, annotated speech databases have grown

tremendously in size and complexity. In order to main-
tain or access the data, one invariably has to write special
purpose programs. With the introduction of a general pur-
pose data model, the annotation graph (Bird and Liberman,
1999), it is possible to abstract away from idiosyncrasies
of physical format. However, this does not magically solve
the maintenance and access problems. In this paper, we
contend that some form of query language is essential for
annotation graphs, and we report our research on such a
language.

Query languages for databases have two, sometimes
conflicting, purposes. First they should express – as natu-
rally as possible – a large number of data extraction and re-
structuring tasks. Second, they should be optimizable. This
means that they should be based on a few efficiently im-
plemented primitives; they should also make it easy to dis-
cover optimization strategies that may involve query rewrit-
ing, execution planning and indexing. The relational alge-
bra and its practical embodiment, SQL, are examples of
such languages, however they are unsuitable for annota-
tion graphs first because it is difficult (or impossible – de-
pending on the version of SQL) to express many practical
queries, and second because the optimizations that are nec-
essary for annotation graph queries are not in the repertoire
of standard relational query optimizations.

The recent development of query languages for
semistructured data (Buneman et al., 1996; Quass et al.,
1995; Deutsch et al., 1998) offer more natural forms
of expression for annotation graphs. In particular,
these languages support regular path patterns – regular
expressions on the labels in the graph – to control the
matching of variables in the query to vertices or edges in
the graph. While regular path patterns are useful, the usual
model of semistructured data, that of a labeled tree, is not
appropriate for annotation graphs. In particular, it fails to
capture the quasi-linear structure of these graphs, which is
essential in query optimization.

After reviewing some existing languages for linguistic
annotations, we present the annotation graph model, its re-
lational representation, and some relational queries on an-
notation graphs. Then we develop a new query language for

annotation graphs that allows complex pattern matching. It
is loosely based on semistructured query languages, but the
syntax simplifies the problem of finding regions of the data
that bound the search. Finally, we describe an optimization
method that exploits the quasi-linear structure of annotation
graphs.

2. Query Languages for Annotated Speech
If linguistic annotations could be modeled as simple hi-

erarchies, then existing query languages for structured text
would apply (Clarke et al., 1995; Sacks-Davis et al., 1997).
However, it is possible to have independent annotations of
the same signal (speech or text) which chunk the data dif-
ferently. As a simple example, the division of a text into
sentences is usually incommensurable with its division into
lines. Such structures cannot be represented using nested,
balanced tags.

The fundamental problem faced by any general purpose
query language for linguistic annotations is the navigation
of these multiple intersecting hierarchies. In this section we
consider two query languages which address this issue.

2.1. The Emu query language

The Emu speech database system [www.shlrc.mq.
edu.au/emu] (Cassidy and Harrington, 1996; Cassidy and
Harrington, 1999) provides tools for creation and analysis
of data from annotated speech databases. Emu annotations
are arranged into levels (e.g. phoneme, syllable, word), and
levels are organized into hierarchies. Emu supports mul-
tiple independent hierarchies, such that any specific level
may participate in more than one orthogonal structure. An
example is shown in Figure 1 (Cassidy and Bird, 2000).

A database of such annotations can be searched using
the Emu query language. The language has primitives for
sequence, hierarchy and “association”, as illustrated below.

[Phonetic=a|e|i|o|u] – matches a disjunction of
items on the phonetic level

[Phonetic=vowel -> Phonetic=stop] – matches a
sequence of vowel followed immediately by stop.

[Word!=dark ˆ Phoneme=vowel] matches an word not
labelled dark immediately dominating vowel.



sh iy hv

she

ae dcl

had

y axr dcl

your

d aa r kcl k s uw q

dark suit

NP NP

S

VP
L%

L-

Intonational

Intermediate

Syntax

Word

Phonetic h#

H*

Word

Tone

Figure 1: Intersecting Hierarchies in Emu

[Word!=x => Tone=H*] Find any word associated1

with a H* tone

Note that the language lacks a wildcard, and Word!=x

serves this purpose in the absence of any actual word x.
More complex queries are built up using nesting. There

is no (non-atomic) disjunction or negation in the language.
An example of a nested query follows; here, the query finds
any syllable dominating a stop that precedes a vowel which
is associated to a high tone.

[Syllable=S ˆ
[Phonetic=stop ->

[Phonetic=vowel => Tone=H*]]]

Cassidy has shown how expressions of this query lan-
guage can be translated into a first-order query language, in
this case, SQL (Cassidy, 1999).

In the Emu query language, the dominance relation is
symmetric. (A separate type hierarchy is used to order the
levels.) This property makes it possible to navigate a path
through multiple hierarchies without using variables. For
example, The following expression finds an NP which dom-
inates a word dark that is dominated by an intermediate
phrase that bears an L- tone.2

[ syntax=NP ˆ [ word=dark ˆ intermediate=L- ]]

These expressions correspond to the “where” clause of
a conventional query language. The Emu query language
lacks an explicit “select” clause. Rather the selected mate-
rial is the left-most element of the where clause, by default,
or else the single element distinguished with a hash prefix.
The query result is a column of these elements, and this is
typically processed with an external statistics package.

2.2. The MATE query language

The MATE project is developing standards and tools for
annotating spoken dialogue corpora [mate.nis.sdu.dk].
Like Emu, MATE supports intersecting hierarchies; Fig-
ure 2 illustrates four hierarchies built over the same dia-
logue transcript (Carletta and Isard, 1999). These hierar-
chies happen to intersect at their fringe, however this need
not be the case.

1This “association” can have either a temporal interpretation
as overlap (Bird and Klein, 1990) and an atemporal interpretation
as some essentially arbitrary binary relation; both interpretations
are encompassed by our model.

2We are grateful to Steve Cassidy for providing this example.
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Figure 2: Intersecting Hierarchies in MATE

MATE uses XML to represent these structures. Each
node in Figure 2 corresponds to an XML element, and the
node labels correspond to an attribute of the element or
its content. For example, swamp could be represented as
<word id="A6" num="sing">swamp</word>, and np

could be represented as <phrase type="np"/>. In the
query language (Mengel et al., 1999), we can pick out these
elements with the following expressions:

($w word); $w.orth ˜ "swamp"
($p phrase); $p.type ˜ "np"

Hierarchical relationships, like the one between game

and move or between move and swamp, are represented us-
ing nesting of XML elements or by hyperlinks. The query
language has a transitive dominance relation ˆ which nav-
igates down through nested structures and hyperlinks. For
example, we can find noun phrases dominating the word
“swamp” with the expression:

($p phrase) ($w word);
($p.type ˜ "np")
&& ($w.orth ˜ "swamp")
&& ($p ˆ $w)

Each element spans an extent of textual material, and
the query language supports a variety of temporal compar-
isons on these extents, reminiscent of Allen’s temporal re-
lations (Allen, 1983). So long as two hierarchies intersect
at their terminals (and not at non-terminals) then their non-
terminals will be comparable using these temporal expres-
sions. However, the language directly supports queries on
intersecting hierarchies. For example, we can find a word
which is simultaneously a repair and a preposition, where
1ˆ is the immediate dominance relation:3

($w word) ($ph phrase) ($r repair) ($d disfluency);
($r 1ˆ $w) && ($ph 1ˆ $w)
&& ($ph type ˜ "prep") && ($d 1ˆ $r)

Unlike the Emu query language, the formal and com-
putational properties of the MATE query language, vis-à-
vis relational and semistructured query languages, are un-
explored.

This concludes our brief survey of query languages for
annotated speech. Other query languages exist; these two
were chosen because of their interesting approach to the
problem of intersecting hierarchies.

3We thank David McKelvie for furnishing this example.



3. Annotation Graphs
Annotation Graphs were presented by Bird and Liber-

man as follows. Here we consider just the so-called “an-
chored” variety.

Definition 1 An anchored annotation graph G over a la-
bel set L and timelines hTi;�ii is a 3-tuple hN;A; �i con-
sisting of a node set N , a collection of arcs A labeled with
elements of L, and a time function � : N *

S
Ti, which

satisfies the following conditions:

1. hN;Ai is a labeled acyclic digraph containing no
nodes of degree zero;

2. for any path from node n1 to n2 in A, if �(n1) and
�(n2) are defined, then there is a timeline i such that
�(n1) �i �(n2);

3. If any node n does not have both incoming and outgo-
ing arcs, then � : n 7! t for some time t.

Note that annotation graphs may be disconnected or
empty, and that they must not have orphan nodes. It follows
from the above definition that every node has two bounding
times, and we will make use of this property later. It also
follows from the definition that timelines partition the node
set.

The formalism can be illustrated with an application
to a simple speech database, the TIMIT corpus of read
speech (Garofolo et al., 1986). This database contains
recordings of 630 speakers of 8 major dialects of Amer-
ican English, each reading 10 phonetically rich sentences
[www.ldc.upenn.edu/Catalog/LDC93S1.html]. Fig-
ure 3 shows part of the annotation of one of the sentences.
The file on the left contains word transcription, and the file
on the right contains phonetic transcription. Part of the cor-
responding annotation graph is shown underneath. Each
node displays the node identifier and the time offset (in
16kHz sample numbers). The arcs are decorated with type
and label information. The type W is for words and the type
P is for phonetic transcriptions.

Observe that all the nodes in Figure 3 have time val-
ues. This need not be the case. For example, in the CALL-
HOME telephone speech corpus [www.ldc.upenn.edu/
Catalog/LDC96S46.html], times are only available for
speaker-turn boundaries (see Figure 4).

train/dr1/fjsp0/sa1.wrd: train/dr1/fjsp0/sa1.phn:
2360 5200 she 0 2360 h#
5200 9680 had 2360 3720 sh
9680 11077 your 3720 5200 iy
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36720 41839 water 11077 12019 dcl
41839 44680 all 12019 12257 d
44680 49066 year ...
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Figure 3: TIMIT Annotation Data and Graph Structure

Annotations expressed in the annotation graph data
model can be trivially recast as a set of relational tables
(Cassidy and Bird, 2000), just as can be done for
semistructured data (Florescu and Kossmann, 1999). We
employ three relations: arc, time and label. The arc
relation is a four-tuple containing an arc id, a source node
id, a target node id, and a type. The time relation maps
(some of) the node ids to times. The label relation maps
the arc ids to labels.

Figure 5 gives an instance of this schema for the TIMIT
data of Figure 3 (enriched with the information shown in
Figure 1. The names of key attributes are underlined. Fig-
ure 6 shows the graph representation for this data. Note
that intersecting hierarchies find a natural expression in this
model.

4. Some Example Queries
Interesting cases for query are those that involve more

than one of these primitives. Here are some simple queries
to select subsets of the data.

1. Find word arcs whose phonetic transcription contains
a ’d’ and ends with a ’k’.

2. Find phonetic arcs which immediately precede a
vowel that overlaps a high tone.

3. Find words dominating a vowel which overlaps a high
tone.

These queries can be interpreted against the fragment
shown in Figure 7.

Such queries have a first-order interpretation in
graphlog (Consens and Mendelzon, 1990). We employ a
datalog syntax and the relations in Figure 5. We begin by
defining some auxiliary relations.

First we define a path relation that is sensitive to arc
types. Two nodes X and Y are connected by a path of type
T if there is a sequence of zero or more arcs, all of type T,
beginning at X and ending at Y.

path(X,X,T) :- arc(_,X,_,T)
path(X,X,T) :- arc(_,_,X,T)
path(X,Y,T) :- arc(_,X,Z,T), path(Z,Y,T)

An arc A “structurally includes” an arc B if there is a
path from the start node of A to the start node of B, and a
path from the end node of B to the end node of A.

s_incl(A, B) :- arc(A, X1, Y1, _),
arc(B, X2, Y2, _),
path(X1, X2, _),
path(Y2, Y1, _)

Finally, an arc A “temporally overlaps” an arc B if the
start node of A precedes the end node of B, and the start
node of B precedes the end node of A. (See section 6. for
details of the precedence relation.)
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Figure 7: An Annotation Graph Fragment



962.68 970.21 A: He was changing projects every couple of weeks and he
said he couldn’t keep on top of it. He couldn’t learn the whole new area

968.71 969.00 B: %mm.
970.35 971.94 A: that fast each time.
971.23 971.42 B: %mm.
972.46 979.47 A: %um, and he says he went in and had some tests, and he
was diagnosed as having attention deficit disorder. Which

980.18 989.56 A: you know, given how he’s how far he’s gotten, you know,
he got his degree at &Tufts and all, I found that surprising that for
the first time as an adult they’re diagnosing this. %um

989.42 991.86 B: %mm. I wonder about it. But anyway.
991.75 994.65 A: yeah, but that’s what he said. And %um
994.19 994.46 B: yeah.
995.21 996.59 A: He %um
996.51 997.61 B: Whatever’s helpful.
997.40 1002.55 A: Right. So he found this new job as a financial
consultant and seems to be happy with that.

1003.14 1003.45 B: Good.

15
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Figure 4: CALLHOME Telephone Speech Data and Graph Structure
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Figure 5: The Arc, Time and Label Relations
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Figure 6: Annotation Graph for Extended TIMIT Example



ovlp(A, B) :- arc(A, X1, Y1, _), arc(B, X2, Y2, _),
time(X1, X1t), time(X2, X2t),
time(Y1, Y1t), time(Y2, Y2t),
X1t � Y2t, Y1t � X2t

Now we can provide translations for the three queries
listed above.

1. Find word arcs whose phonetic transcription contains
a ’d’ and ends with a ’k’. We assume a relation path/3
which is the transitive closure of arc/4.

ans(A) :- arc(A, X, Y, word),
path(X, X1, phonetic),
arc(A1, X1, X2, phonetic), label(A1, d),
path(X2, X3, p),
arc(A2, X3, Y, phonetic), label(A2, k)

2. Find phonetic arcs which immediately precede a
vowel that overlaps a high tone:

ans(A) :- arc(A, X, Y, phonetic),
arc(A1, Y, Y1, phonetic), label(A1, [aeiou]),
arc(A2, Z, Z1, tone), label(A2, h*)
ovlp(A1, A2)

3. Find words dominating a vowel which overlaps a high
tone:

ans(A) :- arc(A, _, _, word),
arc(A1, _, _, phonetic), label(A1, [aeiou]),
arc(A2, _, _, tone), label(A2, h*),
s_incl(A, A1), ovlp(A1, A2)

While it is possible to give queries a first-order inter-
pretation, the language is quite cumbersome, and we seek a
more natural way to describe annotation graphs.

5. Query Syntax
In this section we introduce a query syntax which pro-

vides first an abbreviated notation for the queries expressed
previously in datalog. Most importantly, the syntax allows
us to recognize certain crucial optimizations.

5.1. Queries over arc data

The fundamental unit on which our query language is
built is the arc. We form the join of the arc and label
relations from Figure 5 and adopt names for our attributes.
A query that finds the arc identifiers, types and labels of all
edges in timeline tl1 is shown below:

select ans(E,T,L)
where [id: E, type: T, label: L] <- tl1

We follow the datalog convention of using uppercase
symbols for variables and lowercase symbols for constants.
The notation [id: E, type: T, label: L] is
used for arcs and describes a arc pattern: it is matched
against the arcs in the timeline tl1 and binds the variables
E,T,L for each match to the arc data in the timeline.
For each such match it constructs a tuple ans(E,T,L)

in the output. Arc patterns may contain constants, e.g.
[id: E, type: word, label: L] and there is no
constraint on their width. In this sense they are ”ragged” or
”semistructured” tuples.

[id: E, start: X, end: Y, type: T, name: N,
xref: X, lex-id: L, annotator: SB]

Since attributes are distinguished by name rather than
position, it is safe (and often convenient) to omit them when
we do not need to constrain their value, or bind a variable.

To query over a collection of timelines timit we use
cascaded bindings:

select ans(E,L)
where TL <- timit

[id: E, start: X, end: Y, label: L, type: word] <-TL
time(Y) - time(X) < 8000

This selects the edge identifiers and labels (the names of the
words) from all words in the timit corpus of a suitably short
duration.

The form of this query follows a standard syntax for
semistructured query languages (see (Abiteboul et al.,
2000)). We shall concentrate here on the development
of a syntax for patterns that specify paths and assume a
standard syntax, e.g. select ans(E,L), for returning
results of the query.

5.2. Path patterns

Each arc has a start and end node. We can specify two
adjacent arcs by requiring the start node of one arc to be the
end node of another

[id: E1, start: X, end: Y, type: T1, label: L1] <- db
[id: E2, start: Y, end: Z, type: T2, label: L2] <- db

In this fashion we can specify any sequence of arcs.
However we shall use an abbreviated syntax [ ... ].[

... ] to specify the concatenation of edges, that is, the
dot is an associative pattern concatenation operation. Thus
the previous pair of patterns binds the same variables as the
following single pattern

[id: E1, start: X, end: Y, type: T1, label: L1] .
[id: E2, end: Z, type: T2, label: L2] <- db

Within edge patterns we also allow arbitrary predicates.
For example: [type: T, T = word or T = ph],
[start: X, stop: Y, time(Y) - time(X) >

200]. Predicates may also use attribute names as values.
For example, [type: word], [type: X, X =

word], [type=word] are equivalent.
A sequence of arcs (phonemes, syllables, phrases, etc)

is represented in our model using a concatenated sequence
of arc patterns. To specify path patterns of arbitrary length
we also allow arbitrary regular expressions on arcs. An
arbitrary path of word arcs is represented by [type =

word]* and an arbitrary path of word or phoneme arcs by
([type = word]|[type = phoneme])*. Care must be
taken in interpreting variables inside a Kleene * or a union.
The rule is that such variables must be bound elsewhere in
the program. We cannot bind variables inside a union or
Kleene *. Thus [type: T]* is illegal.

Suppose we have a path pattern [type: word]* and
we want to refer to the first node on the path. The pat-
tern [start: X, type: word]* is illegal. (Even if
it were legal this pattern could only only match paths of
length 0 or 1.) To allow the binding of nodes outside of
an edge pattern we take single variables in the sequence to
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Figure 8: An Annotation Graph whose Description Re-
quires Variables

denote nodes. For example, X.[type: T].Y is equiva-
lent to [start: X, type: T, end: Y]. Moreover,
X.[type: word]*.Y binds X to the first node and Y to
the last node on a path of word arcs. Now consider the
following example:

X.[type = parse, label = sentence].Y <- db (a)
X.[type = word]*.[type = word, label = opera]
.[type = word]*.Y <- db

This matches the start and end node of any sequence that
contains the word opera. Another possibility is shown
below.

X.[type = parse, label = sentence].Y <- db (b)
X’.[type = word, label = opera].Y’ <- db
time(X) <= time(X’) and time(Y’) <= time(Y)

However, (a) and (b) are not equivalent queries.
One might think, from example (a) above, that one

could dispense with node variables by having a parallel
composition operator. It turns out that there are many sit-
uations where this is impossible. The simplest instance is
shown in Figure 8.

The annotation graph in Figure 8 cannot be uniquely
described using parallel and serial composition. Instead,
we need a set of expressions as follows:

A.[label: W].B.[label: X].C.[label: Y].D <- db
A.[label: V].C <- db
B.[label: Z].D <- db

5.3. Arbitrary predicates on arcs
The bracket notation for describing arcs can also en-

close arbitrary predicates. Predicates expressing the (tem-
poral) overlap or inclusion of edges are particularly useful.
Example (b) above may be expressed as.

[id: E, type = parse, label = sentence] <- db
[type = word, label = opera, subinterval(E)] <- db

Note that subinterval(E) can be thought of as a
“method” of the edge, that is called when the pattern is
matched.

5.4. Abbreviations

The preceding syntax is quite general; it has little to
do with the specific conventions of linguistic data. Paths
typically, though not always, follow the same type. Labels
are also special. We propose the following syntactic sugar.
(The proposal is tentative, all sorts of variations are possi-
ble).

Given a database of arcs db, the notation db/t re-
stricts the database to those arcs of type t. Also the no-
tation :L is an abbreviation for label: l. For exam-
ple, X.[:L].Y <- db/word is shorthand for X.[label:

ba d e f

g
h

i

j
k

c

5 6321 4

Figure 9: A precedence graph

L, type: word].Y <- db. Using this, example (a)
becomes:

X.[:sentence].Y <- db/parse (a’)
X.[]*.[:opera].[]*.Y <- db/word

5.5. Horizontal path expressions

Find words with c.*t.* (our first query)

X.[].Y <- db/word
X.[:c].[]*.[:t].[]*.Y <- db/ph

Here’s a harder case, with a variable inside the scope
of a Kleene star. The predicate ovlp(E) is an “overlap”
predicate.

X.[].Y <- db/word
[id: E] <- db/background
X.[:c].[ovlp(E)]*.[:t].[]*.Y <- DB/ph

In this section we have paid little attention to the output
of a query. From the introductory examples, it should be
clear that it is straightforward to construct a set of tuples in
the same sense that datalog constructs a set of tuples. It is
also possible to extend the syntax to express the construc-
tion and augmentation of annotation graphs. The details
will be described elsewhere

6. Optimization: exploiting quasi-linearity
In the previous sections we developed a query language

for annotation graph data and showed how an analysis of
that language might help - in many practical cases – to lead
to tractable implementations. Here we show how we can
exploit the “almost sequential” notion of annotation graph
data to support these implementations. In particular, we
will show how to use the underlying temporal order to se-
lect a small fragment of the input data that will fit into main
memory, bypassing many of the database optimization is-
sues.

Consider the example in Figure 9. It shows a collec-
tion of nodes, where nodes a-f are timed and the rest are
untimed. All the untimed nodes are linked by arcs to other
nodes. In order to extract those portions of the database
that are needed to answer a query, we will typically need
to find efficiently all arcs contained in some arc or all arcs
that might overlap some arc. Such queries can be answered
by computing the transitive closure TA of the arc relation,
but this is likely to be an expensive proposition (O(n2) in
the number of nodes). An alternative is to store the two
relations below.4 The relation time contains, for every node
n, the maximum time ante of a timed node that precedes n

4Our approach has similarities with Allen’s “reference inter-
vals” (Allen, 1983).



time node timeline ante post
a T1 1 1

b T1 2 2

c T1 3 3

d T1 4 4

e T1 5 5

f T1 6 6

g T1 1 3

h T1 2 6

i T1 2 6

j T1 4 6

k T1 4 6

TA’ source target
h i

h j

j k

i k

h k

Figure 10: The Time and TA Relations

and the minimum time post of a timed node that precedes
n. If n is itself timed, the ante and post agree.5 It is a
consequence of the definitions in section 3. that these times
always exist. (Every node is bounded by some pair of timed
nodes.) Note that node is a key for the time relation, and
we shall refer to the attributes ante and post functionally, as
ante(n) and post(n).

The relation TA0 is defined by TA0
=

f(m;n)jTA(m;n) ^ post(m) > ante(n)g. This means
that the precedence relation TC can be reconstructed by
the query:

TC(m;n) : �post(m) < ante(n) _ TA0
(m;n)

With indexes on ante, post, and (source; target), this
predicate can be efficiently computed.

The point of this decomposition is that we expect the
relation TA0 to be relatively small. For example, in the
Switchboard database (Godfrey et al., 1992), the maxi-
mum size of TC for any timeline is approximately 1.9 mil-
lion, while while the sizes of time and TA0 are, for this
timeline, 1; 992 and 10; 585 respectively.6 Throughout the
whole database, the largest value of TA0 was 15; 286. Ev-
idently the decomposed representation will easily fit into
main memory, while keeping TC in main memory may
pose problems.

Finally, let us put together the ideas of the last two
sections. Consider example (a) of the previous section.
The important point is that all nodes are bounded by a
sentence arc. This suggests the following technique:

� Repeatedly match
X .[type = parse, label = sentence].Y

� For each match, obtain X 0
= ante(X) and Y 0

=

post(Y )

� Restrict the arc relation to arcs bounded by (X 0; Y 0
)

(use an index that supports range searches)

� Perform the query on the restricted relation (main
memory evaluation should be possible)

5Some saving in space could be achieved by having a separate
relation for the timed nodes.

6This computation is based on the version of Switchboard data
that is marked with time information at turn boundaries only.
Given an n-word turn, the size of the transitive precedence relation
is approximately n2=2.

7. Conclusions
Like semistructured data, annotation graphs have a nat-

ural representation in terms of nodes and arcs. A key fea-
ture of annotation graphs is that the arcs are organized into a
quasi-linear flow in the horizontal direction. As in the case
of semistructured data, we seek a natural query language
for accessing and transforming this data.

This paper has described progress on a query language
for annotation graphs. Path patterns and some abbreviatory
devices provide a convenient way to express a wide range of
queries. We exploit the quasi-linearity of annotation graphs
by partitioning the precedence relation, and we believe that
this will enable efficient temporal indexing of the graphs.

In ongoing work we are exploring hybrid structures and
languages which would permit both the vertical and hori-
zontal perspectives on semistructured data to co-exist. On
this view, a horizontal path expression could be embedded
inside a vertical path expression, or vice versa.
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