Dressings and topical agents for arterial leg ulcers

Citation for published version:
Broderick, C, Pagamenti, F & Forster, R 2020, 'Dressings and topical agents for arterial leg ulcers',
Cochrane Database of Systematic Reviews, pp. CD001836.
https://doi.org/10.1002/14651858.CD001836.pub4

Digital Object Identifier (DOI):
10.1002/14651858.CD001836.pub4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Cochrane Database of Systematic Reviews

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Dressings and topical agents for arterial leg ulcers

Review information

Review type: Intervention
Review number: 371C
Authors
Cathryn Broderick\(^1\), Fania Pagnamenta\(^2\), Rachel Forster\(^1\)
\(^1\)Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
\(^2\)The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK

Contact person
Cathryn Broderick
Assistant Managing Editor
Usher Institute of Population Health Sciences and Informatics
University of Edinburgh
Teviot Place
Edinburgh
EH8 9AG
UK
E-mail: cathryn.broderick@ed.ac.uk

Dates
Assessed as Up-to-date: 28 January 2019
Date of Search: 28 January 2019
Next Stage Expected: 28 January 2021
Protocol First Published: Issue 4, 1999
Review First Published: Issue 1, 2003
Last Citation Issue: Issue 6, 2015

What’s new

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 May 2019</td>
<td>New citation: conclusions not changed</td>
<td>New search run. One new study included, 19 studies excluded, two new studies assessed as ‘awaiting classification’ and four new ongoing studies identified. New author joined review team. Text updated to reflect current Cochrane standards. ‘Summary of findings’ table added. No change to conclusions.</td>
</tr>
<tr>
<td>31 May 2019</td>
<td>Updated</td>
<td>New search run. One new study included, 19 studies excluded, two new studies assessed as ‘awaiting classification’ and four new ongoing studies identified.</td>
</tr>
</tbody>
</table>

History
Abstract

Background

It is estimated that up to 1% of people in developed countries have a chance of suffering from a leg ulcer at some time in their life. The majority of leg ulcers are associated with circulation problems; poor blood return in the veins causes venous ulcers (around 70% of ulcers) and poor blood supply to the legs causes arterial ulcers (around 22% of ulcers). Treatment of arterial leg ulcers is directed towards correcting the poor arterial blood supply, for example by correcting arterial blockages (either surgically or pharmaceutically). If the blood supply has been restored, these arterial ulcers can heal following principles of good wound care. Dressings and topical agents make up a part of good wound care for arterial ulcers but there are many products available and it is unclear what impact these have on ulcer healing. This is the third update of a review first published in 2003.

Objectives

To determine whether topical agents and wound dressings affect healing in arterial ulcers. To compare healing rates and patient-centred outcomes between wound dressings and topical agents.

Search methods

Selection criteria

Randomised controlled trials (RCTs), or controlled clinical trials (CCTs) evaluating dressings and topical agents in the treatment of arterial leg ulcers were eligible for inclusion. We included participants with arterial leg ulcers irrespective of method of diagnosis. Trials that included participants with mixed artery-venous disease and diabetes were eligible for inclusion if the results were presented separately. All wound dressings and topical agents were eligible for inclusion in this review. We excluded trials which did not report on at least one of the primary outcomes (time to healing, proportion completely healed, or change in ulcer area).

Data collection and analysis

Two review authors independently extracted information on the participants' characteristics, the interventions, and outcomes using a standardised data extraction form. Disagreements between the review authors were resolved through discussion. We presented the data narratively due to differences in the included trials. We used GRADE to assess the certainty of the evidence.

Main results

Two trials met the inclusion criteria. One compared 2% ketanserin ointment in polyethylene glycol (PEG) with PEG alone, twice a day in 40 participants with arterial leg ulcers for eight weeks or until healing, whichever was sooner. One compared topical application of blood derived concentrated growth factor (CGF) with standard dressing (polyurethane film or foam); both applied weekly for six weeks in 61 participants. Both were small trials with inadequate reporting of the results and were of low methodological quality. Short follow-up times (six and eight weeks) meant it would be difficult to capture sufficient healing events to allow comparisons to be made.

One trial demonstrated accelerated wound healing in the ketanserin group, compared with the control group. In the trial comparing CGF with standard dressings, 66.6% (6/9) of diabetic arterial ulcers showed more than 50% decrease in ulcer size compared to 6.7% (2/30) of ulcers treated with standard dressing. Numbers of participants with diabetic arterial ulcers were only reported in the CGF group (9/31), diabetic arterial ulcer specific data were not reported separately for the standard
dressing group. We assessed this as very-low certainty evidence due to the small numbers of studies and arterial ulcer participants, inadequate reporting of methodology and data, and short follow-up period.

Only one trial reported side effects (complications), stating no participant experienced these during follow-up (six weeks, low-certainty evidence). It should also be noted that ketanserin is not licensed in all countries for use in humans. Time to ulcer healing and patient satisfaction and quality of life were not reported by either study.

Authors' conclusions

There is insufficient evidence to determine whether the choice of topical agent or dressing affects the healing of arterial leg ulcers.

Plain language summary

Dressings and topical agents for arterial leg ulcers

What is the research question?

Does the choice of topical agents or wound dressings affect the healing of arterial leg ulcers?

Background

People with blood circulation problems in their legs can develop leg ulcers with adults having approximately a 1% chance of suffering from a leg ulcer at some time in their life. The majority of ulcers (around 70%), result from poor blood flow in the veins and are treated by compression (venous leg ulcers). Arterial leg ulcers (around 22% of ulcers), occur because of poor blood supply to the legs when there is a block in a leg artery or narrowing of the arteries (atherosclerosis). Without treatment of the underlying poor arterial blood supply, ulcers take a long time to heal or may never heal. These ulcers are treated to promote healing and protect from infection by covering them with dressings, or using creams or ointments (topical agents), or both. A variety of types of dressings can be used depending on whether the primary intention is to treat infection, reduce ulcer pain, manage exudate if present (the fluid that can leak from these ulcers) and so promote healing.

Study characteristics and key results

We found two small studies that presented data for approximately 49 participants with arterial leg ulcers (search conducted January 2019). Both included participants with other kinds of ulcers and it is not clear what proportion of participants were diabetic. Neither study described the methods fully, both presented limited results for the arterial ulcer participants, and one did not compare with an arterial ulcer control group. The follow-up periods were limited to six and eight weeks which is too short a time to measure healing. Therefore, the data that were available were incomplete and can not be generalised to the greater population of people who suffer from arterial leg ulcers.

One study randomised participants to either 2% ketanserin ointment in polyethylene glycol (PEG) or PEG alone, administered twice a day over eight weeks. This study reported increased wound healing in the ketanserin group, when compared with the control group. It should be noted that ketanserin is not licensed for use in humans in all countries.

The second study randomised participants to either topically applied growth factors isolated from the participant's own blood (concentrated growth factors (CGF)), or standard dressing; both applied weekly for six weeks. This study reported that 66.6% of CGF treated diabetic arterial ulcers showed more than 50% decrease in ulcer size compared to 6.7% of ulcers treated with standard dressing.

Only one study mentioned side effects and reported that no participant experienced side effects during follow-up (six weeks). Time to ulcer healing and patient satisfaction and quality of life were not reported in either of the two included studies.

Certainty of the evidence

There is insufficient evidence to determine whether the choice of topical agent or dressing affects the healing of arterial leg ulcers. The overall certainty of the available evidence was downgraded to very low and low due to poor reporting of study methods, small numbers of studies and participants with arterial disease; few results were reported and the follow-up period was short, making it impossible to determine whether there was any real difference in the number of ulcers healed between the groups.

Background

Description of the condition

Leg ulceration is a common, chronic condition that is painful and reduces health-related quality of life. A systematic review estimated that 0.12% to 1.1% of the adult population suffered from lower-limb ulcers (Graham 2003). The major causes of ulceration include venous insufficiency, arterial disease, and diabetes. Although the majority of leg ulcers are due to venous disease, a significant number (around 22%) of patients have arterial insufficiency, and ulcers can be of mixed aetiology (10 to 20%), e.g. due to arterial and venous disease, or diabetes with arterial disease (Harding 2015; SIGN 2010). Arterial leg ulcers are due to inadequate blood supply to the skin. This may be caused by narrowing of the arteries to the legs (atherosclerosis). It is essential to differentiate between arterial and venous ulcers, as the mainstay of treatment for venous leg ulcers is compression therapy (SIGN 2010; O'Meara 2012), which if applied to arterial leg ulcers may lead to skin necrosis or potentially even to amputation (Callam 1987).

Diagnosis of arterial insufficiency, or peripheral arterial disease (PAD), is made by taking a medical history. The most common accompanying complaint is pain, which may occur during exercise, such as walking. When cramping pain occurs in the leg after exercise, and resolves on resting, it is called intermittent claudication. This complaint can progress until
eventually the patient complains of pain even at rest.

In order to assess how much blood flow there is in a leg, tests are often undertaken to confirm the presence or absence of arterial disease. Generally the first evaluation is the ankle brachial pressure index (ABPI) and if this test results in an ABPI of less than 0.7, compression treatment is inadvisable, and these patients are referred to vascular specialists who can order further tests, such as duplex ultrasound or arteriography (Grey 2006). The ABPI threshold differs between literature for arterial leg ulcers and generally ranges between 0.6 and 0.7. The diagnosis of PAD is complicated in diabetic patients as neuropathy can mask symptoms, and non-compressible vessels can result in inaccurate ABI readings (Brownrigg 2016).

The key to treatment of arterial insufficiency is to improve the blood supply and, therefore, surgery is often required in order to bypass or clear the blockage. In a number of patients this may not be possible due to the patient’s preference, patient’s age and general health, and diffuse distal arterial disease, where the vessels to be reconstructed are very small. Non-surgical options might include good wound care, patient exercise to increase blood supply to the leg, pharmaceutical interventions, or physical therapies such as hyperbaric oxygen. This review only considers the use of wound dressings and topical agents in the treatment of arterial ulcers.

Description of the intervention

Dressings are usually placed over the ulcer. Ever since Winter 1962 observed in pigs that an acute wound covered by an occlusive dressing healed more rapidly than one exposed to air, clinicians have tried to create the ideal wound-healing environment by applying dressings that limit the loss of water vapour from the wound. However, it is not clear whether a moist wound environment is best for all wounds regardless of aetiology (their cause). In some arterial leg ulcer damage (for example with dry black toes or dry black heels) best practice recommends keeping the ulcers dry, until the dead tissue separates naturally from the healthy tissue. According to the British National Formulary (BNF), the main requirements of a dressing are to keep the wound moist with exudate, but not macerated, free of infection and reduced slough, free of toxic chemicals or fibres, at the optimal healing temperature, undisturbed, and at an optimal pH level (BNF 2013). In the UK, the BNF has classified dressings into categories to aid clinicians in selecting appropriate products. Different countries may use different systems for classifying dressings and topical agents. In addition, there are a number of topical agents which aim to change the wound environment, for example cadexomer iodine, honey, phenytoin, silver and ketanserin. Topical agents are often used in combination with dressings and provide an antimicrobial and antibacterial environment (SIGN 2010). Other therapies that have been used to treat arterial ulcers include hyperbaric oxygen, vacuum therapy and skin grafting. These are not considered in this review.

How the intervention might work

Dressings have the ability to allow excess exudate to be removed from the wound surface, provide a moist micro-environment, reduce ulcer pain, act as a semi-permeable membrane, be impermeable to micro-organisms and to provide thermal insulation (BNF 2013; SIGN 2010). There is a large array of dressings, not all have all the above abilities, however dressings should be sterile and contaminant free (i.e. leave no dressing material in the wound), should not cause an allergic reaction and should not cause trauma when removed. Different topical agents also have different modes of action and can act to reduce or prevent infection, facilitate cleansing and debridement, and also reduce platelet aggregation in the capillaries and improve blood flow (Rooman 1991; Vanhoucke 1998).

Why it is important to do this review

Although there are many types of dressings and topical agents available, there is currently little evidence to suggest if they affect the rate of healing in arterial ulcers.

Objectives

To determine whether topical agents and wound dressings affect healing in arterial ulcers. To compare healing rates and patient-centred outcomes between wound dressings and topical agents.

Methods

Criteria for considering studies for this review

Types of studies

Randomised controlled trials (RCTs) or controlled clinical trials (CCTs) evaluating dressings and topical agents in the treatment of arterial leg ulcers. Trials using allocation processes which are transparent before assignment such as open list of random numbers, case record, day of the week, surname and so forth, were eligible for inclusion in the review.

Types of participants

Men and women of any age with an arterial leg ulcer, irrespective of the method of diagnosis used. Trials that included participants with mixed arterio-venous disease and diabetes were eligible for inclusion if the results for participants with uncomplicated arterial disease (sometimes called pure arterial disease) were presented separately.

Types of interventions

Interventions of interest included any dressing or topical agent applied to arterial leg ulcers. Comparisons were against either no dressing/topical agent, or against other dressings or local agents. Placebo comparators were accepted as well, but it was not possible to describe any comparator as a true placebo, as
every local agent will have an effect on the rate of moisture loss from the surface of the ulcer, and thus may potentially have an impact on healing. Studies that included compression treatments for all participants were excluded as compression is a treatment generally specific to venous ulcers, and can be harmful when applied to arterial ulcers. Compression treatments can be used safely in patients with an ABPI ≥ 0.8 but patients with moderate to severe arterial disease will generally have an ABPI lower than 0.7 and should be referred to an appropriate specialist (SIGN 2010). These kinds of trials were therefore excluded as they are most likely studies with primarily venous ulcers.

Trials in which concurrent interventions were used, for example drug treatment or advice on exercise, were also eligible for inclusion in the review, and any concurrent interventions recorded.

Types of outcome measures

In order to be included in the review a trial report had to provide at least one of the primary outcomes (i.e. healing data).

Primary outcomes

(a) Time to complete ulcer healing/proportion of ulcers completely healed in trial period

The complete healing of an ulcer is a definitive endpoint which can be measured, and is likely to be the outcome of greatest interest to patients and, therefore, should be the primary outcome measure of any treatment.

(b) Change in ulcer area over time

Although the primary outcome of interest is the complete ulcer healing rate (defined as the number of participants achieving complete healing), some trials report changes in ulcer area over time. These are less valid indicators of effectiveness, as the rate of decrease of ulcer area may vary during the healing process without resulting in complete ulcer healing. In addition, expressing outcomes as either a percentage of initial ulcer area healed, or absolute area healed may lead to bias, favouring either the small or large ulcer group where there are different ulcer sizes in the treatment groups at baseline. Both percentage and absolute healing rates were used where reported and attempts made to describe the direction of any potential bias due to poor baseline comparability.

Secondary outcomes

(a) Complications and morbidity

Some of the treatments have the potential to affect the participant adversely. Complications (e.g. discomfort, skin damage, pain, clinical infection and amputation) were noted wherever reported and compared between interventions.

(b) Patient satisfaction and quality of life data

Generic or specific measures of quality of life.

Studies reporting only interim outcome measures of ulcer improvement, such as ‘appearance of granulation tissue’ were excluded from the review, as the relationship between the appearance of healthy tissues (or disappearance of unhealthy tissue) and ulcer healing is unclear.

Search methods for identification of studies

Electronic searches

The Cochrane Vascular Information Specialist conducted systematic searches of the following databases for randomised controlled trials and controlled clinical trials without language, publication year or publication status restrictions:

- the Cochrane Vascular Specialised Register via the Cochrane Register of Studies (CRS-Web searched on 28 January 2019);
- the Cochrane Central Register of Controlled Trials (CENTRAL) Cochrane Register of Studies Online (CRSO 2019, issue 1);
- MEDLINE (Ovid MEDLINE® Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE® Daily and Ovid MEDLINE®) (searched from 1 January 2017 to 28 January 2019);
- Embase Ovid (searched from 1 January 2017 to 28 January 2019);
- CINAHL Ebsco (searched from 1 January 2017 to 28 January 2019);
- AMED Ovid (searched from 1 January 2017 to 28 January 2019).

The Information Specialist modelled search strategies for other databases on the search strategy designed for CENTRAL. Where appropriate, they were combined with adaptations of the highly sensitive search strategy designed by the Cochrane Collaboration for identifying randomised controlled trials and controlled clinical trials (as described in the Cochrane Handbook for Systematic Reviews of Interventions Chapter 6, Lefebvre 2011). Search strategies for major databases are provided in Appendix 1.

The Information Specialist searched the following trials registries on 28 January 2019:

- the World Health Organization International Clinical Trials Registry Platform (who.int/trialsearch);
- ClinicalTrials.gov (clinicaltrials.gov).

Searching other resources

References of relevant studies were reviewed for other studies of interest that could be included.

Data collection and analysis
Selection of studies
For the update of this review, screening of abstracts and titles was performed initially using Covidence software (CB and MS), followed by independent assessment of potentially relevant abstracts and full-text articles (CB and MS) in terms of their relevance and design, according to the selection criteria. We obtained full versions of articles if, from the initial assessment, they appeared to satisfy the inclusion criteria and checked them to identify whether they met the inclusion criteria. We resolved any disagreement by discussion.

Data extraction and management
Two review authors independently extracted details of the studies (CB and FP). If data were missing from reports then the review authors attempted to contact the study authors to obtain the missing information. Studies published in duplicate would have been included only once. For the included study, data were collected on trial setting (country, and whether primary or secondary care), length of follow-up, number of participants (or limbs or ulcers) randomised, inclusion criteria, exclusion criteria, description of interventions and co-interventions, baseline characteristics of groups for important variables (e.g. ulcer size, duration), results, intention-to-treat analysis, number and reason for withdrawals, source of funding, use of an a priori sample size/power calculation.

Assessment of risk of bias in included studies
Two review authors (CB and FP) independently evaluated the included study for quality, using the Cochrane Collaboration’s tool for assessing risk of bias (Higgins 2011a). This tool provides judgments made on six domains, which include randomisation sequence generation, allocation concealment methods, blinding (participants, personnel and outcome assessors), incomplete outcome data, selective outcome reporting, and other relevant biases. Evaluations of low risk, unclear risk, and high risk were performed for each domain for the included study. Any disagreements between review authors were resolved through discussion.

Measures of treatment effect
We planned to base analysis on an intention-to-treat basis and therefore all randomised participants of interest from the included studies were to be included in the analysis. We planned to compile the outcomes that were dichotomous in nature into a meta-analysis and calculate odds ratios (ORs) with 95% confidence intervals (CIs). For continuous data, we planned a meta-analysis using mean differences with standard deviations (SDs) and 95% CIs.

Unit of analysis issues
The unit of analysis for this review was the individual participant. For studies that included participants with more than one ulcer, we planned to perform a sensitivity analysis to determine if such studies had a large impact on the effect size.

Dealing with missing data
Where data were missing from the included study, we attempted to contact study authors.

Assessment of heterogeneity
A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. We planned to obtain P values comparing the test statistic with a Chi² statistic distribution. To help readers assess the consistency of results of studies in a meta-analysis, RevMan 5 software (Review Manager 2014) includes the I² statistic that describes the percentage of total variation across studies due to heterogeneity rather than by chance (Higgins 2003). A value of 0% indicates no observed heterogeneity and larger values show increasing heterogeneity.

Assessment of reporting biases
To assess reporting bias, we planned to create funnel plots for meta-analyses containing 10 or more included studies (Sterne 2011). As only two studies were included in this review no assessment of reporting bias could be undertaken.

Data synthesis
We intended to make the following comparisons:
- all dressings versus no dressing;
- all occlusive or semi-occlusive dressings versus traditional dressings (such as gauze);
- occlusive or semi-occlusive dressings versus occlusive or semi-occlusive dressings (e.g. foam dressing versus film dressing; hydrocolloid dressing versus hydrogel dressing etc.);
- topical agents versus no topical application;
- topical agents versus placebo or control;
- topical agents versus topical agents;
- topical agents versus dressings.

We planned to utilise data for these comparisons in meta-analyses, but where synthesis in this manner was inappropriate a systematic narrative overview was planned. We planned to use fixed-effect models where heterogeneity was low, but if the I² value was greater than 50%, we planned to use a random-effects model.

Subgroup analysis and investigation of heterogeneity
Trials using allocation processes which are transparent before assignment such as open list of random numbers, case record, day of the week, surname and so forth, were eligible for inclusion in the review, and where necessary these would be subjected to subgroup analysis of trials with adequate allocation concealment.
Sensitivity analysis

We planned that studies using allocation processes which are transparent before assignment (open list of random numbers, case record, day of the week, surname) would undergo sensitivity analysis. We planned for studies that involved participants with more than one ulcer being treated within the study to be subjected to sensitivity analysis to determine if these studies have a large impact on the effect size. We also planned for studies of low quality, as judged by the level of risk of bias, to undergo sensitivity analysis to determine their impact on the results. Due to the limited number of studies identified we did not carry out any sensitivity analyses.

Summary of findings and assessment of certainty of the evidence

We created a ‘Summary of findings’ table to present the main results using Review Manager ‘Summary of findings table wizard’ (Review Manager 2014), and based on methods described in Chapter 11 of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011b). We included the outcomes: time to complete healing, change in ulcer area over time; complications and comorbidity; and patient satisfaction and quality of life data. We included a narrative summary of the findings as we were not able to carry out any data synthesis. We used the GRADE approach to assess the certainty of the evidence for each outcome as high, moderate, low, or very low based on the risk of bias, inconsistency, indirectness, imprecision, and publication bias (Atkins 2004; Higgins 2011b). See Summary of findings table 1.

Results

Description of studies

Results of the search

See Figure 1.

For this update, we included one new study (Santoro 2018). Four new studies were assessed as ongoing (NCT02583958; NCT02839226; NCT03275831; NCT03468816), and two as ‘awaiting classification’ (Capoano 2017; NCT00658983).

Two studies which were previously ‘awaiting classification’ were reassessed as excluded (Gibson 1995; Morely de Benzaquen 1990). A further 17 studies were assessed as excluded (Augustin 2016; Barouti 2015; Castell 2016; Hanumanthappa 2012; JPRN-UMIN000033048; Meaume 2014; Meaume 2017; Mo 2015; Moffatt 2014; Morimoto 2013; NCT01036438; NCT01449422; NCT02046226; Purcell 2017; Raposio 2015; Romanelli 2016; Woo 2012).

Included studies

Summary details of the included studies are given in the Characteristics of included studies table.

The trial by Rooman and Janssen (Rooman 1991), compared 2% ketanserin ointment in PEG with PEG alone used as a control, applied twice daily, for eight weeks. For participants with purely arterial disease, there were 19 allocated to the ketanserin group and 21 to the control (PEG alone) group. This multi-centre study recruited 299 participants with decubitus ulcers: 80 had pressure ulcers; 134 had venous ulcers; 45 had diabetic ulcers; and 40 had arterial ulcers. The method of identifying the sample was not described - this can have an impact on the transferability of the results to other settings as the degree of arterial impairment was not reported for either group. Wound area as a function of time was the only outcome reported for the arterial leg ulcers subgroup and from the graph, time to 50% healing could be determined.

Santoro 2018 included 61 participants with non-healing ulcers (31 in CGF group and 30 in the standard dressing group). These were of mixed aetiology including venous ulcers, arterial diabetic ulcers, neuropathic ulcers, traumatic ulcers and vasculitic ulcers. Topical application of concentrated growth factors (CGF) was compared with application of the standard dressing of polyurethane film or foam, both applied weekly for six weeks. Numbers of participants with arterial diabetic ulcers in the CGF group were reported but it was not possible to determine the number of arterial diabetic ulcers in the standard dressing group. CGF was an autologous preparation obtained from the participants’ own blood and believed to be rich in platelet-derived growth factors (PDGF), such as transforming growth factor (TGF) beta1 and 2, fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF) and stem cells. Ulcer size was calculated using MOWA graphics software (MOBILE Wound Analyzer).

Excluded studies

Summary details of excluded studies are given in the Characteristics of excluded studies table.

For this update an additional 19 studies (20 reports) were excluded (Augustin 2016; Barouti 2015; Castell 2016; Gibson 1995; Hanumanthappa 2012; JPRN-UMIN000033048; Meaume 2014; Meaume 2017; Mo 2015; Moffatt 2014; Morely de Benzaquen 1990; Morimoto 2013; NCT01036438; NCT01449422; NCT02046226; Purcell 2017; Raposio 2015; Romanelli 2016; Woo 2012). This includes two studies which were previously ‘awaiting classification’ but now excluded as we have been unable to obtain the full texts for these (Gibson 1995; Morely de Benzaquen 1990).

This made a total of 82 excluded studies. The main reason for exclusion (32 studies) was because outcome data were not presented by ulcer aetiology (Armstrong 1996; Augustin 2016; Bale 1998; Barouti 2015; Castell 2016; Daltrey 1981; Fumal 2002; Harding 2001; Janssen 1989; Kalis 1993; Krupski 1991; Meaume 2014; Meaume 2017; Mian 1991; Milward 1991; Mo 2015; Morimoto 2013; Motta 2004; Purcell 2017; Raposio 2015; Romanelli 2016; Sibbald 2011; Steed 1991; Svedman 1983; Tarvainen 1988; Thomas 1989; Vin 1997; Vuerstaek 2006; Woo 2012; Wagner 1990; Weed 2004; Zykova 2014). The majority of these studies could have been included if the authors had given subgroup data by ulcer type.
aetiology. Twenty-three studies were excluded because not enough information was given to determine if arterial ulcers were included (Bassetti 1970; Casoni 2001; Chaloner 1992; Falabella 1998; Gago 2002; Hanumanthappa 2012; Ishibashi 1990; Jørgensen 2003; Kordestani 2008; Larsen 1997; Leaper 1986; Luongo 2003; Moss 1984; Munter 2006; NCT01036438; NCT01449422; Nylors 1982; Pendse 1993; Polignano 2001; Quatresooz 2006; Serra 2005; Wollina 1997). Seventeen studies did not report outcomes that were in the scope of the review, i.e. healing data (Altman 1976; Armstrong 1997; Banks 1997; Boxer 1969; Da Costa 1997; Gibson 1986; Holm 1990; Holst 1998; Jansen 2009; Johnson 1992; Jørgensen 2009; JPRN-UMIN000033048; Knighton 1988; Knighton 1991; Stromberg 1984; Varelias 2006; Wu 1996). Of the remaining 10 studies, Hartman 2002 was not an RCT, one study included identical interventions between the comparison groups (Gamborg Nielsen 1989), one study included only a single participant with an arterial ulcer, which did not have a comparator (Huber 1991), one study included a treatment that is no longer available (Leaper 1991), a single study applied the treatment to the skin around the ulcer and not the ulcer directly (Neander 2004), one excluded study participants with "deep arterial disease" (Senet 2011), and for Schmutz 1997, we could not obtain a copy of the study, but it had previously been excluded from the Cochrane Review: Dressings for healing venous leg ulcers, "Report of design of trial no results given. Author contacted but no reply" (Palfreyman 2006). We were also unable to obtain full copies of Gibson 1995 or Morely de Benzaquen 1990. Finally, although NCT02046226 meets the inclusion criteria, the study was terminated due to lack of recruitment.

Ongoing studies

Four new ongoing studies were identified (NCT02583958; NCT02839226; NCT03275831; NCT03468816). See Characteristics of ongoing studies for further details.

Risk of bias in included studies

A graphical description of risk of bias of the included studies can be seen in Figure 2 and Figure 3.

Allocation (selection bias)

Neither Rooman 1991 nor Santoro 2018 describe the randomisation method within the text. It is unclear how people were allocated to the two groups, whether allocation sequence was randomly generated or if allocation was concealed, leading to a rating of 'unclear' for selection bias.

Blinding (performance bias and detection bias)

Rooman 1991 describe their trial as double-blind, using a placebo control, but the steps taken to ensure that clinicians and participants were unaware of the treatment (ketanserin or control) were not described. Rooman 1991 did not report how successful this blinding was, nor if the people assessing the wound, by taking wound tracings, were blinded. Santoro 2018 did not mention blinding of participants, personnel or outcome assessors. Performance and detection bias for both studies were rated as 'unclear'.

Incomplete outcome data (attrition bias)

Attrition bias was rated as 'low', as all participants in the Rooman 1991 study appeared in the analyses. There was no discussion of dropouts or loss-to-follow-up. As only the arterial ulcer data for the intervention group and not the control group are reported, attrition bias for Santoro 2018 is rated as 'unclear'.

Selective reporting (reporting bias)

All outcomes that were discussed in the methods were reported on, which led to a 'low' rating for reporting bias in both studies. These outcomes include granulation issue, degree of re-epithelialisation, wound surface area and a global assessment of the evolution of the ulcer in Rooman 1991; and wound size and side effects in Santoro 2018.

Other potential sources of bias

In Rooman 1991, an 'unclear' rating was given for other sources of bias as there was no a priori power calculation performed, and with low numbers of participants with arterial ulcers (40 in total; 19 receiving treatment and 21 receiving control), the results may not be powered to answer the study questions of this review. A rating of 'unclear' risk of other bias was also given to Santoro 2018, as results are presented as a conference abstract (not peer reviewed), it is not clear if the use of the MOWA graphics software is validated and the study included a small number of arterial ulcer participants (exact number unclear).

Effects of interventions

Primary outcomes

Time to complete ulcer healing/proportion of ulcers completely healed in trial period

Not reported.

Change in ulcer area over time

In the Rooman 1991 study, the only outcome given by ulcer aetiology was wound area as a function of time, which was presented in a graph. Rooman 1991 predicted that participants receiving ketanserin would reach 50% healing at 3.5 weeks and the placebo/control group at 6.3 weeks meaning that the ketanserin-treated participants healed nearly twice as fast (“1.8 fold” (Rooman 1991)) as the control-treated participants, which was reported by Rooman 1991 as statistically significant at P < 0.01. It should be noted that the average ulcer size at the start of the trial was larger in the placebo group compared with the ketanserin group, which could bias the results, even though the wound area was a...
percentage of the initial size (ketanserin 9.41 cm²; control 11.03 cm²).

Santoro 2018 used the primary outcome of wound reduction of at least 50% surface and volume of lesion after six weeks treatment. They report that this was achieved in 19/31 (61.3%) of the CGF group compared to 2/30 (6.7%) in the standard dressing control group. In the CGF group, nine participants were participants with arterial diabetic ulcers and 6/9 (66.6%) showed at least 50% reduction in ulcer size. The subgroup data for diabetic arterial ulcers within the standard dressing group is not reported so it is not possible to directly compare with the appropriate control group.

We used the GRADE approach to assess the certainty of evidence of this outcome and it was rated as very low-certainty evidence (see Summary of findings table 1).

Secondary outcomes
Complications and morbidity
Not reported by Roman 1991, Santoro 2018 reported that no participant presented with side effects during follow-up.

We used the GRADE approach to assess the certainty of evidence of this outcome and it was rated as low-certainty evidence (see Summary of findings table 1).

Patient satisfaction and quality of life data
Not reported.

Discussion
Summary of main results
Roman 1991, evaluated the use of 2% ketanserin ointment in PEG compared with the PEG alone control group in 299 participants, of which, only 40 were due to arterial disease. We were able to evaluate outcomes from the study as it gave subgroup analysis for the 40 arterial ulcer participants alone. The only outcome to report by ulcer aetiology was wound area as a function of time, which determined that ketanserin ointment accelerated the healing of arterial ulcers nearly twice as fast compared with the PEG alone control group. Santoro 2018 evaluated the use of an autologous preparation from the participants’ own blood which contained concentrated growth factors (CGF) compared with standard dressing (polyurethane film or foam), both applied weekly for six weeks. Data for diabetic arterial ulcers were presented separately but only for the treatment group so we are unable to compare with the appropriate control group. Roman 1991 did not report adverse effects and Santoro 2018 reported that no participants presented with side effects.

Whilst the results of the included trials might appear positive, the inadequate reporting of results, in combination with the lack of reporting of methods used in the trial, (e.g. method of allocation), means that we cannot confidently conclude that there is an accelerated healing due to either ketanserin 2% ointment when compared with PEG alone, or CGF compared with standard dressing. In addition, the follow-up time was too short (at six and eight weeks) to be able to capture sufficient healing events to allow comparisons to be made. The lack of inclusion and exclusion criteria in the included trials means that the method of identifying arterial ulcers is unclear, and reduces the generalisability of the results. Also, it should be noted that ketanserin is not licensed in all countries for use in humans. We assessed the certainty of the evidence for ulcer healing as very low and for complications and morbidity as low. Time to ulcer healing and patient satisfaction and quality of life were not reported.

Overall completeness and applicability of evidence
Both included studies (Roman 1991; Santoro 2018), were of relatively low methodological quality, gave little explanation of methods, and offered very little outcome data for the arterial ulcer subgroup. There were few participants and the follow-up time was inadequate. In addition, we were unable to extract the data specific to the diabetic arterial ulcer standard dressing (control) group. Therefore, the data that were available were incomplete and can not be generalised to the greater population of people who suffer from arterial leg ulcers.

There are many underlying reasons why so little, high-quality evidence is presented for this topic. Venous ulcers are far more prevalent than arterial ulcers, so gaining enough participants for a trial in only arterial ulcers is much more difficult. Trials in wound care will always be faced with participants who vary in a large number of respects, for example the size and duration of the ulcer, the degree of arterial impairment, and concurrent treatments such as wound cleansing, exercise, nutrition and other self-care activities. The variability in patient characteristics means that an investigation examining which treatment option to use needs to use a study design that takes into account the differences between people. A randomised controlled trial (RCT) is the most powerful study design, however, designing a double-blind RCT in dressing efficacy is also challenging due to difficulty controlling the variables associated with co-morbidities, calculating sample sizes to achieve statistical significance, recruiting enough participants, challenges with validating infection, inflammation and wound sizes, and challenges with validating subjective assessments such as comfort and user friendliness. In the UK, dressings are considered ‘medical devices’; they are CE marked (Conformité Européenne or European Conformity), therefore safe to be used in the context for which they have been designed, but they are not submitted to rigorous trial processes like pharmaceutical products (i.e. drugs). There is therefore little incentive to fund large trials. This lack of research is hindered by limited legislation, as manufacturers are not required by law to provide evidence of efficacy (Madden 2012). Therefore simply recommending further RCTs or controlled clinical trials (CCTs) may not be helpful. We suggest instead that alternative methodologies are explored to provide some guidance to clinicians on the best way to care for arterial leg ulcers.

Quality of the evidence
Using GRADE criteria, the certainty of evidence was rated as low to very low, due to small numbers of relevant studies, inadequate reporting of the results and too short a follow-up time (six or eight weeks) to be able to capture sufficient healing events to allow comparisons to be made. As discussed above there is also very little outcome data for the arterial ulcer subgroup. The methodological quality was deemed to be low because the majority of bias domains received an ‘unclear’ rating due to inadequate reporting. Only two domains of six were rated as ‘low’ risk in Rooman 1991: attrition bias and reporting bias. Only one domain was rated as ‘low’ risk in Santoro 2018: reporting bias. The study randomisation methods and allocation concealment were not discussed. No indication of methods of blinding were given. Outcome assessors were not identified as being blinded, and the low number of participants could bias the results. Essential information about how and where the participants were recruited was not given, neither were full inclusion and exclusion criteria.

Potential biases in the review process

Precautions that were taken to prevent reviewer biases in the review process included independent, duplicate inclusion and exclusion of identified studies, performing risk of bias and data extraction. For this particular review, a concern with bias lies in the fact that many studies did not indicate whether their included participants had arterial disease or did not indicate any diagnostic criteria that would allow the readers to determine arterial disease. This could have led to studies not being included that did in fact meet the inclusion criteria. To combat this issue, the review authors assessed studies carefully and any uncertainties were discussed between them.

Agreements and disagreements with other studies or reviews

No other systematic reviews have been identified at this time that evaluate healing of arterial leg ulcers when comparing different dressings or topical agents.

A systematic review that was published in 2006 evaluated the effects of different dressings on venous leg ulcers when applied under compression bandages (Palfreyman 2006). Although a total of 42 studies were included in the review, the authors could not conclude superiority of any one type of dressing over another. This review has since been split into four separate reviews to look at specific dressing types to determine any effect of alginate dressings (O’Meara 2013), foam dressings (O’Meara 2013b), hydrocolloid dressings (Ribeiro 2014), and hydrogel dressings (Ribeiro 2013). The foam and the alginate dressing reviews still found no difference in dressing type on ulcer healing. The hydrocolloid and hydrogel reviews are still in preparation and currently only have a protocol provided. While no conclusions regarding arterial ulcers can be drawn from these reviews, they provide relevant information on the topic of dressings for ulcers as well as the current state of knowledge and research.

Authors' conclusions

Implications for practice

There is insufficient evidence, to determine whether the choice of topical agent or dressing affects the healing of arterial leg ulcers.

Implications for research

This review has indicated a lack of evidence to support or reject the use of dressings or topical agents in the healing of arterial leg ulcers. As indicated in the Overall completeness and applicability of evidence section there are many issues that inhibit designing and performing RCTs for the issue of dressings and topical agents for ulcers. We recommend that alternative methodologies are explored to satisfy the requirement for developing a body of knowledge that is useful to clinicians. Recommending further RCTs or CCTs on this topic precludes an understanding of the challenges faced by the researcher in the ability to balance the control of variables with the application of the findings to the variety of arterial leg ulcer patients.

Nevertheless, there is a requirement for the following studies in the healing of arterial leg ulcers:

- comparison between various modern dressings;
- comparison between wound dressings alone versus topical agents applied underneath wound dressings.

These studies should have clear inclusion and exclusion criteria and sufficiently long follow-up to determine dressing effectiveness.

Acknowledgements

A special thank you to Marlene Stewart (MS) for screening and assessing articles identified by the searches. The review authors also thank the authors of previous versions of this review.

The review authors, and the Cochrane Vascular editorial base, wish to thank the following peer reviewers for their input:

- Ralph G DePalma MD, FACS, Special Operations Officer, VA Office of Research and Development, Department of Veteran Affairs, Washington, US
- Karen Ma, UK
- Ahmed HS Ibrahim, Egypt

Contributions of authors

CB: evaluated studies for inclusion and exclusion, performed risk of bias, and managed the updating of the review text. FP: performed risk of bias, and assisted in the updating of the review text, with expert input for the background and discussion of the topic.
Declarations of interest

CB: none known. CB is employed as Assistant Managing Editor for Cochrane Vascular. Editorial tasks were carried out by other members of the Cochrane Vascular editorial base.

FP: has declared that she received payment for consultancy at the Molnycke Healthcare Key Opinion Leaders Group. This is a wound care company that supplies dressings, that are used in arterial leg ulcers. She received travel expenses and her institution received payment for speaking at NHI pressure ulcer session.

RF: none known

Differences between protocol and review

2019 update
The original protocol and previous versions of this review planned to report 'economic analysis'. This has now been removed as an outcome as the team and Cochrane Vascular editorial base do not have the required expertise to present a full economic analysis of interventions. Any information provided on cost in future updates will be reported in the discussion if appropriate.

2015 update
In the Nelson 2007 version of the review, Hartman 2002 was classified as an included study. However, on further investigation into the trial design, it was determined that the control group was not adequate to be determined an RCT or CCT. Hartman 2002 was therefore reclassified as an excluded study.

In the Types of interventions section we have added 'compression' interventions as exclusionary criteria as we felt it was an important distinction to make. Making this alteration did not effect the inclusion or exclusion of any previously considered studies.

Published notes

Characteristics of studies

Characteristics of included studies

Rooman 1991
Methods
- **Trial design:** double-blind, placebo-controlled study
- **Setting:** Belgium
- **Primary or secondary care:** not indicated
- **Intention-to-treat:** not indicated
- **Funding source:** not indicated
- **A priori sample size calculation:** not indicated

Participants
- **Number of participants:** a total of n = 299 participants with decubitus ulcers in study but only n = 40 with arterial disease (n = 19 ketanserin; n = 21 placebo/control); only the 40 with arterial disease are of interest in this review
- **Age (entire study population):** ketanserin 70.2 years; placebo/control 96.6 years
- **Gender (entire study population):** 89 males, 208 females, 2 not specified (ketanserin 44 males,106 females; placebo/control 45 males,102 females, 2 not specified)
- **Ulcer size (entire study population):** ketanserin 9.41 cm2; placebo/control 11.03 cm2
- **Ulcer age (entire study population):** ketanserin 412 days; placebo/control 480 days
- **Inclusion criteria:** not indicated, it was not clear how the diagnosis of 'arterial ulceration' was made
- **Exclusion criteria:** not indicated
- **Withdrawals:** not indicated

Interventions
- **Treatment:** 2% ketanserin ointment in PEG applied twice daily
- **Control:** PEG ointment (unclear how many times daily)
- **Follow-up:** 8 weeks or until healing, whichever was sooner

Outcomes
- Relative wound area as a function of time
- Other outcomes were reported, but they did not differentiate the results by ulcer aetiology

Notes
- No additional surgical interventions were mentioned.
- Both of the study authors were employed by Janssen Research Foundation; Janssen was a manufacturer/supplier of ketanserin

Risk of bias table
<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Described as a randomised study, but randomisation sequence generation not discussed</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Randomisation sequence generation not discussed</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Unclear risk</td>
<td>Double-blind, placebo controlled, but no description of placebo or methods</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Unclear risk</td>
<td>Blinding of outcome assessors not discussed</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>All participants appeared in analyses; no discussion of dropouts</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All identified outcomes reported on</td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Low number of participants with arterial ulcers, a total of 40 (19 treatment group; 21 control)</td>
</tr>
</tbody>
</table>
Methods
- **Trial design:** randomised
- **Setting:** Italy
- **Primary or secondary care:** not indicated
- **Intention-to-treat:** not indicated
- **Funding source:** not indicated
- **A priori sample size calculation:** not indicated

Participants
- **Number of participants:** 61 patients with non-healing ulcers (31 in CGF group and 30 in the standard dressing group)
- **Age (entire study population):** mean age 69.3 years
- **Gender (entire study population):** 50.8% male
- **Ulcer size (entire study population):** not indicated
- **Ulcer age (entire study population):** not indicated
- **Inclusion criteria:** patients with non-healing ulcers (venous, arterial diabetic, neuropathic, traumatic, vasculitic)
- **Exclusion criteria:** not indicated
- **Withdrawals:** not indicated

Interventions
- **Treatment:** topical application of concentrated growth factors (CGF) weekly
- **Control:** application of polyurethane film or foam weekly (standard dressing)
- **Follow-up:** 6 weeks

Outcomes
- **Primary endpoint:** reduction of at least 50% of surface and volume of lesions after 6 weeks treatment
- **Side effects**

Notes
- No additional surgical interventions were mentioned.
- Data taken from conference abstract which indicates that a larger study is underway although no details of this detected.
- Authors contacted to request further details 31 May 2019.
- No details on funding provided.

Risk of bias table
Bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>No details on randomisation methods provided in abstract</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>No details on allocation concealment provided in abstract</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Unclear risk</td>
<td>No details on blinding participants or personnel mentioned in abstract</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Unclear risk</td>
<td>No details on blinding of outcome assessors mentioned in abstract</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Unclear risk</td>
<td>Arterial ulcer data available for CGF group only not standard dressing group. Overall CGF and standard dressing data presented</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All expected outcomes reported</td>
</tr>
<tr>
<td>Other bias</td>
<td>Unclear risk</td>
<td>Wound size measured by Mobile Wound Analyser. It is not clear if this is validated. Data presented as conference abstract only. Low number of participants with arterial ulcers (9 treatment group; unclear number in control)</td>
</tr>
</tbody>
</table>

Footnotes

CGF: concentrated growth factor
PEG: polyethylene glycol

Characteristics of excluded studies

Altman 1976

Reason for exclusion
- Healing data not reported

Armstrong 1996

Reason for exclusion
- Outcome data not presented by ulcer aetiology

Armstrong 1997

Reason for exclusion
- Healing data not reported for the two people with arterial ulcers

Augustin 2016

Reason for exclusion
- Outcome data not presented by ulcer aetiology

Bale 1998

Reason for exclusion
- Outcome data not presented by ulcer aetiology

Banks 1997

Reason for exclusion
- Healing data not reported for the two people with arterial ulcers

Barouti 2015

Reason for exclusion
- Outcome data not presented by ulcer aetiology

Bassetti 1970

371C Dressings and topical agents for arterial leg ulcers

<p>| 15 / 46 |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boxer 1969</td>
<td>Healing data not reported</td>
</tr>
<tr>
<td>Casoni 2001</td>
<td>Not enough information given to determine ulcer aetiology; excluded severe peripheral atherosclerotic disease</td>
</tr>
<tr>
<td>Castell 2016</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Chaloner 1992</td>
<td>Not enough information given to determine ulcer aetiology; subjective outcome measures not within scope of review</td>
</tr>
<tr>
<td>Da Costa 1997</td>
<td>Healing data not reported</td>
</tr>
<tr>
<td>Daltrey 1981</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Falabella 1998</td>
<td>Not enough information given to determine ulcer aetiology</td>
</tr>
<tr>
<td>Fumal 2002</td>
<td>Arterial ulcers were included (along with neurological disorder-related, diabetes-related and drug intake-related) but outcomes were not given by ulcer aetiology</td>
</tr>
<tr>
<td>Gago 2002</td>
<td>Not enough information given to determine ulcer aetiology; outcome of maceration reduction not within scope of review</td>
</tr>
<tr>
<td>Gamborg Nielson 1989</td>
<td>Two groups had identical treatments</td>
</tr>
<tr>
<td>Gibson 1986</td>
<td>No data on healing presented</td>
</tr>
<tr>
<td>Gibson 1995</td>
<td>This study was previously awaiting classification but we have been unable to obtain a full text copy</td>
</tr>
<tr>
<td>Hanumanthappa 2012</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Reason for exclusion</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Harding 2001</td>
<td>Not enough information given to determine ulcer aetiology</td>
</tr>
<tr>
<td>Hartman 2002</td>
<td>Although 8% of the participants had arterial ulcers, the outcome data were not</td>
</tr>
<tr>
<td></td>
<td>presented by ulcer aetiology</td>
</tr>
<tr>
<td>Holm 1990</td>
<td>No data on healing presented</td>
</tr>
<tr>
<td>Holst 1998</td>
<td>No data on healing presented</td>
</tr>
<tr>
<td>Huber 1991</td>
<td>Only one person with an arterial ulcer; no comparator</td>
</tr>
<tr>
<td>Ishibashi 1990</td>
<td>Not enough information given to determine ulcer aetiology, only described as ‘leg</td>
</tr>
<tr>
<td></td>
<td>ulcer’</td>
</tr>
<tr>
<td>Jansen 2009</td>
<td>Outcome of wound pain not within scope of review</td>
</tr>
<tr>
<td>Janssen 1989</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Johnson 1992</td>
<td>Outcome of wound pain not within scope of review</td>
</tr>
<tr>
<td>Jørgensen 2003</td>
<td>Not enough information given to determine ulcer aetiology</td>
</tr>
<tr>
<td>JPRN-UMIN000033048</td>
<td>Outcome of bacterial load is not within the scope of this review</td>
</tr>
<tr>
<td>Jørgensen 2009</td>
<td>Outcome of wound pain and intervention comparison with local best practice not within</td>
</tr>
<tr>
<td></td>
<td>the scope of the review</td>
</tr>
<tr>
<td>Kalis 1993</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Reason for Exclusion</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Knighton 1988</td>
<td>Includes ulcers of mixed aetiology and does not give outcome data by aetiology</td>
</tr>
<tr>
<td>Knighton 1991</td>
<td>No data on healing presented</td>
</tr>
<tr>
<td>Kordestani 2008</td>
<td>Not enough information given to determine ulcer aetiology, only described as ‘leg ulcer’</td>
</tr>
<tr>
<td>Krupski 1991</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Larsen 1997</td>
<td>Not enough information given to determine ulcer aetiology, and subjective performance outcomes not within scope of review</td>
</tr>
<tr>
<td>Leaper 1986</td>
<td>Described as ulcers of ‘mixed aetiology’ with not enough information given to determine specific aetiology</td>
</tr>
<tr>
<td>Leaper 1991</td>
<td>The treatment Sherisorb is no longer available</td>
</tr>
<tr>
<td>Luongo 2003</td>
<td>Not enough information given to determine ulcer aetiology</td>
</tr>
<tr>
<td>Meaume 2014</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Meaume 2017</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Mian 1991</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Milward 1991</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Mo 2015</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Moffatt 2014</td>
<td></td>
</tr>
<tr>
<td>Study Reference</td>
<td>Reason for Exclusion</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Morely de Benzaquen 1990</td>
<td>This study was previously awaiting classification but we have been unable to obtain a full text copy</td>
</tr>
<tr>
<td>Morimoto 2013</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Moss 1984</td>
<td>Not enough information given to determine ulcer aetiology; "Forty-two outpatients with chronic leg ulcers, mostly presumed to be venous..."</td>
</tr>
<tr>
<td>Motta 2004</td>
<td>Outcomes not given by aetiology; unclear if arterial ulcers were included; outcomes of bacterial load not within scope of our review</td>
</tr>
<tr>
<td>Munter 2006</td>
<td>Not enough information to determine if arterial only leg ulcers were included; dressing compared with local best practice not within scope of review</td>
</tr>
<tr>
<td>NCT01036438</td>
<td>Not enough information given to determine ulcer aetiology, but compression used so most likely venous</td>
</tr>
<tr>
<td>NCT01449422</td>
<td>Not enough information given to determine ulcer aetiology, but compression used so most likely venous</td>
</tr>
<tr>
<td>NCT02046226</td>
<td>Meets inclusion criteria but terminated due to lack of recruitment (seven recruited participants did not complete study)</td>
</tr>
<tr>
<td>Neander 2004</td>
<td>Intervention was applied to skin around ulcer, not ulcer</td>
</tr>
<tr>
<td>Nyfors 1982</td>
<td>Not enough information given to determine ulcer aetiology; excluded severe peripheral atherosclerotic disease</td>
</tr>
<tr>
<td>Pendse 1993</td>
<td>Not enough information given to determine ulcer aetiology</td>
</tr>
<tr>
<td>Polignano 2001</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Reason for exclusion</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>Purcell 2017</td>
<td>Not enough information given to determine ulcer aetiology; used compression bandages; outcomes of angiogenesis not within scope of review</td>
</tr>
<tr>
<td>Quatresooz 2006</td>
<td>Not enough information given to determine ulcer aetiology</td>
</tr>
<tr>
<td>Raposio 2015</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Romanelli 2016</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Schmutz 1997</td>
<td>Unable to obtain study paper. Excluded from Cochrane review: Dressing for healing venous leg ulcers, "Report of design of trial no results given. Author contacted but no reply" (Palfreyman 2006)</td>
</tr>
<tr>
<td>Senet 2011</td>
<td>Excluded patients with "deep arterial disease"</td>
</tr>
<tr>
<td>Serra 2005</td>
<td>Not enough information given to determine ulcer aetiology, only described as 'vascular ulcers'</td>
</tr>
<tr>
<td>Sibbald 2011</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Steed 1991</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Stromberg 1984</td>
<td>Outcomes not within scope of review; data presented on 'successes' which included 'appearance of granulation tissue' or 'reduction in area'</td>
</tr>
<tr>
<td>Svedman 1983</td>
<td>Although arterial ulcers were included outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Tarvainen 1988</td>
<td>Outcome data not presented by ulcer aetiology; included compression bandages</td>
</tr>
<tr>
<td>Thomas 1989</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Reason for exclusion</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Reason for exclusion</td>
<td>Outcome data not presented by ulcer aetiology, also it is unclear if participants with arterial disease did not have mixed venous/arterial disease</td>
</tr>
<tr>
<td>Varelias 2006</td>
<td>Reason for exclusion</td>
</tr>
<tr>
<td>Reason for exclusion</td>
<td>Outcomes not within scope of review: immunohistochemical analysis for MMP-2, -9 and TIMP-2 expression</td>
</tr>
<tr>
<td>Vin 1997</td>
<td>Reason for exclusion</td>
</tr>
<tr>
<td>Reason for exclusion</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Vuerstaek 2006</td>
<td>Reason for exclusion</td>
</tr>
<tr>
<td>Reason for exclusion</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Wagner 1990</td>
<td>Reason for exclusion</td>
</tr>
<tr>
<td>Reason for exclusion</td>
<td>Outcome data not presented by ulcer aetiology; outcomes not within scope of review</td>
</tr>
<tr>
<td>Weed 2004</td>
<td>Reason for exclusion</td>
</tr>
<tr>
<td>Reason for exclusion</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Wollina 1997</td>
<td>Reason for exclusion</td>
</tr>
<tr>
<td>Reason for exclusion</td>
<td>Not enough information given to determine ulcer aetiology</td>
</tr>
<tr>
<td>Woo 2012</td>
<td>Reason for exclusion</td>
</tr>
<tr>
<td>Reason for exclusion</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
<tr>
<td>Wu 1996</td>
<td>Reason for exclusion</td>
</tr>
<tr>
<td>Reason for exclusion</td>
<td>No data on healing</td>
</tr>
<tr>
<td>Zykova 2014</td>
<td>Reason for exclusion</td>
</tr>
<tr>
<td>Reason for exclusion</td>
<td>Outcome data not presented by ulcer aetiology</td>
</tr>
</tbody>
</table>

Footnotes

Characteristics of studies awaiting classification

Capoano 2017
Methods

Trial design: unclear
Setting: Italy
Primary or secondary care: secondary
Funding source: not mentioned

Participants

Patients (n = 100) with ulcers of the legs

Interventions

1) 50 patients treated with conventional therapies;
2) 50 patients treated with autologous leuco-platelet concentrate (LPC) and hyaluronic acid (HIAFF, Hyalofill-F®) as a scaffold

Outcomes

Area of lesion
Limb salvage
Neovascularisation

Notes

Unclear if study was randomised or if all participants had arterial ulcers.
Additional information requested from contact author 23 May 2019

NCT00658983

Methods

Trial design: RCT
Setting: unclear
Primary or secondary care: unclear
Funding source: Medtronic, Johnson & Johnson

Participants

Chronic lower leg ulcer

Interventions

Autologous platelet enriched gel
Metalloproteinase inhibitor

Outcomes

Wound healing

Notes

Unclear if participants include arterial ulcers.
Additional information requested from contact investigator 30 May 2019

Footnotes

LPC: leuco-platelet concentrate
RCT: randomised controlled trial

Characteristics of ongoing studies

NCT02583958
<table>
<thead>
<tr>
<th>Study name</th>
<th>Assessment of efficacy and safety for a new wound dressing URGO 310 3166 in the local treatment of venous or mixed leg ulcers: a European RCT</th>
</tr>
</thead>
</table>
| **Methods** | Trial design: RCT
Setting: France
Primary or secondary care: unclear
Funding source: Laboratoires URGO |
| **Participants** | People with venous or mixed leg ulcers |
| **Interventions** | Intervention: URGO 310 3166 dressing
Comparison: Aquacel Extra hydrofibre dressing |
| **Outcomes** | Relative regression of wound surface area
Percentage of debrided wounds
Adverse events
QoL |
| **Starting date** | October 2014 |
| **Contact information** | Principal investigator: Sylvie Meaume, MD; Hospital Rothschild, Paris, France; sylvie.meaume@rth.aphp.fr |
| **Notes** | Status: recruiting; estimated completion date June 2017 |

NCT02839226
<table>
<thead>
<tr>
<th>Study name</th>
<th>Safety and efficacy of topical AR/101 compared with placebo, in accelerating granulation tissue formation of hard-to-heal wounds</th>
</tr>
</thead>
</table>
| **Methods** | Trial design: RCT
| | Setting: Israel
| | Primary or secondary care: unclear
| | Funding source: Arava Bio Tech Ltd. |
| **Participants** | People with hard-to-heal wound(s) of different etiologies including arterial ulcers, diabetic ulcers and venous ulcers, of at least 3 months duration |
| **Interventions** | People with wounds of $\geq 5 \text{ cm}^2$ and $\leq 100 \text{ cm}^2$ of at least 3 months duration that fail to respond to treatment with SoC during the screening run-in phase will be enrolled into the study. Eligible participants with wounds will be randomised and treated topically with AR/101 + SoC or placebo + SoC once daily for up to 14 days |
| **Outcomes** | Comparison of the formation of new granulation tissue according to a Granulation Score
| | Percentage of participants ready for skin grafting or healing by secondary intention
| | Percent of participant responders of equal or more than 75% granulation tissue during two weeks of treatment
| | Mean time to response (equal or more than 75% of granulation tissue) during treatment |
| **Starting date** | August 2016 |
| **Contact information** | Sourasky Medical Center, Tel Aviv, Israel, 96105
| | Contact: Eyal Gur, MD Gur@tlvmc.gov.il; Tamar Tennenbaum, MD tamar@arava-bio.com |
| **Notes** | Status: unknown (recruitment not yet started) |

NCT03275831
Study name
A pilot study to investigate the efficacy of PluroGel in healing venous and mixed aetiology leg ulcers

Methods
- Trial design: RCT
- Setting: UK
- Primary or secondary care: unclear
- Funding source: Medline Industries

Participants
People with venous and mixed aetiology leg ulcers

Interventions
Participants will be randomised at week 2 to receive either topical PluroGel or Intrasite gel (an alternative topical hydrogel product)

Outcomes
- Change in wound size
- Change in average percent reduction of slough in wound bed over 4 week treatment
- Participant evaluation
- Staff evaluation

Starting date
8 January 2018

Contact information
Aneurin Bevan University Health Board, Newport, South Wales, United Kingdom, NP20 4SZ
Cardiff & Vale University Health Board, Cardiff, Wales, United Kingdom, CF14 4XN
Contact: Keith G Harding, keith.harding@wic.wales
Contact: Nicola Ivins, Nicky.Ivins@wic.wales

Notes
Status: recruiting

NCT03468816
<table>
<thead>
<tr>
<th>Study name</th>
<th>Wound dressing with moisture sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Trial design: RCT</td>
</tr>
<tr>
<td></td>
<td>Setting: Sweden</td>
</tr>
<tr>
<td></td>
<td>Primary or secondary care: unclear</td>
</tr>
<tr>
<td></td>
<td>Funding source: Vårdcentralen Åby</td>
</tr>
<tr>
<td>Participants</td>
<td>People with leg ulcers</td>
</tr>
<tr>
<td>Interventions</td>
<td>Six participants will be recruited in the study and two different sensors will be compared in a cross-over design. After inclusion the leg ulcer will be dressed with a sensor of type A or type B</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Sensor activation</td>
</tr>
<tr>
<td></td>
<td>Complications</td>
</tr>
<tr>
<td></td>
<td>Level of usability</td>
</tr>
<tr>
<td>Starting date</td>
<td>1 April 2018</td>
</tr>
<tr>
<td>Contact information</td>
<td>Contact: MD. Berglind mari.berglind@regionostergotland.se</td>
</tr>
<tr>
<td></td>
<td>Hudkliniken Recruiting</td>
</tr>
<tr>
<td></td>
<td>Linköping, Region Östergötland, Sweden</td>
</tr>
<tr>
<td>Notes</td>
<td>Status: recruiting</td>
</tr>
</tbody>
</table>

Footnotes
QoL: quality of life
RCT: randomised controlled trial
SoC: standard of care

Summary of findings tables

1 Summary of findings
Topical agents compared with placebo or standard dressing for arterial ulcers

Patient or population: participants with arterial ulcers

Settings: not indicated

Intervention: topical agent

Comparison: placebo or standard dressing

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Illustrative comparative risks* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of participants (studies)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to ulcer healing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neither study reported on time to ulcer healing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in ulcer area over time (6 - 8 weeks)</td>
<td>Rooman 1991 reported participants receiving ketanserin would reach 50% healing at 3.5 weeks and the placebo/control group at 6.3 weeks.</td>
<td>Santor 2018 reported wound reduction of at least 50% of surface and volume of lesion in 6/9 (66.6%) of the CGF group. Only all-patient data is presented for the standard dressing group 2/30 (6.7%)</td>
<td></td>
<td>⊕⊝⊝⊝</td>
<td>very low c</td>
</tr>
<tr>
<td>Complications and morbidity (6 - 8 weeks)</td>
<td>Not reported by Rooman 1991.</td>
<td>Santor 2018 reported that no patient presented with side effects during follow-up</td>
<td></td>
<td>⊕⊕⊝⊝</td>
<td>low d</td>
</tr>
<tr>
<td>Patient satisfaction and quality of life data</td>
<td>Neither study reported patient satisfaction and quality of life</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The basis for the assumed risk (e.g. the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CGF: concentrated growth factor; **CI:** confidence intervals; **PEG:** polyethylene glycol

GRADE Working Group grades of evidence

- **High certainty:** Further research is very unlikely to change our confidence in the estimate of effect.
- **Moderate certainty:** Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.
- **Low certainty:** Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.
- **Very low certainty:** We are very uncertain about the estimate.

Footnotes

a Rooman 1991 involved 299 participants, of which, 40 were due to arterial disease. Santor 2018 involved 61 participants. 9/31 participants in the CGF group had diabetic arterial ulcers, but it is not clear how many arterial ulcers were in the standard dressing group.

b Rooman 1991 evaluated the use of 2% ketanserin ointment in PEG compared with the PEG alone control group. Santor 2018 evaluated the use of topical application of CGF compared with standard dressing.

c We downgraded from high to very low due to imprecision (very small numbers of participants with arterial ulcers); short follow up period; and concerns over risk of bias (inadequate methods reporting and details on participants, inadequate reporting of subgroup data).

d We downgraded from high to low due to imprecision (very small numbers of participants with arterial ulcers) and concerns over risk of bias (inadequate methods reporting).

Additional tables

References to studies

Included studies

Rooman 1991

[CRSSTD: 2621889]

Rooman RP, Janssen H. Ketanserin promotes wound healing: clinical and preclinical results. Progress in Clinical and
Santoro 2018

Excluded studies
Altman 1976

Armstrong 1996

Armstrong 1997

Augustin 2016

Bale 1998

Banks 1997

Barouti 2015

Bassetti 1970

Boxer 1969
Boxer AM, Gottesman N, Bernstein H, Mandl I. Debridement of dermal ulcers and decubiti with collagenase. Geriatrics 1969; 24(7):75-86. [CRSREF: 2621904]

Casoni 2001

Castell 2016

Chaloner 1992
Chaloner DM, Milward PA, Skitt PJ. A community-based clinical trial of three dressings in the treatment of leg ulceration. In:
Da Costa 1997
[CRSSTD: 2621909]

Daltrey 1981
[CRSSTD: 2621911]

Falabella 1998
[CRSSTD: 2621913]

Fumal 2002
[CRSSTD: 2621915]

Gago 2002
[CRSSTD: 2621917]

Gamborg Nielson 1989
[CRSSTD: 2621919]

Gibson 1986
[CRSSTD: 2621921]

Gibson 1995
[CRSSTD: 2622021]

Hanumanthappa 2012

Harding 2001
[CRSSTD: 2621923]

Robinson B, Harding K, Thomas S, Cherry G. Does the dressing make a difference? A comparative cost-effectiveness clinical trial of two modern primary dressings on leg ulcers. In: European Wound Management Association Conference;
1997, 27-29 April; Milan, Italy. 1997:63-4. [CRSREF: 2621926]

Hartman 2002
[CRSSTD: 2621928]

Holm 1990
[CRSSTD: 2621930]

Holst 1998
[CRSSTD: 2621932]

Huber 1991
[CRSSTD: 2621934]

Ishibashi 1990
[CRSSTD: 2621936]

Jansen 2009
[CRSSTD: 2621938]

Janssen 1989
[CRSSTD: 2621940]

Johnson 1992
[CRSSTD: 2621942]

Johnson CR, Repper J. A double-blind, placebo controlled study of lidocaine/prilocaine cream (EMLA (R) 5%) used as topical analgesic for cleansing and re-dressing of leg ulcers. Astra Zeneca 1992. [CRSREF: 2621943]

Jørgensen 2003
[CRSSTD: 2621944]

JPRN-UMIN000033048

Jørgensen 2009
[CRSSTD: 2621946]

Kalis 1993
[CRSSTD: 2621948]

Knighton 1988
[CRSSTD: 2621950]

Knighton 1991
[CRSSTD: 2621952]

Kordestani 2008
[CRSSTD: 2621954]

Krupski 1991
[CRSSTD: 2621956]

Larsen 1997
[CRSSTD: 2621958]

Leaper 1986
[CRSSTD: 2621960]

Leaper 1991
[CRSSTD: 2621962]

Luongo 2003
[CRSSTD: 2621964]

Meaume 2014

Meaume 2017

Mian 1991
[CRSSTD: 2621966]

Milward 1991
[CRSSTD: 2621968]
371C Dressings and topical agents for arterial leg ulcers

Mo 2015

Moffatt 2014

Morely de Benzaquen 1990
[CRSSTD: 2622023]

Morimoto 2013

Moss 1984
[CRSSTD: 2621970]

Motta 2004
[CRSSTD: 2621972]

Munter 2006
[CRSSTD: 2621974]

NCT01036438
NCT01036438. Evaluating the efficacy of an absorbent foam dressing containing silver (Mepilex Ag) versus the same dressing without silver used on subjects with venous leg ulcers or mixed ulcers. clinicaltrials.gov/ct2/show/NCT01036438 (first received 21 December 2009).

NCT01449422
NCT01449422. Clinical trial to evaluate the efficacy, tolerance and acceptability of URGO dressing vs a hydrofibre in the local management of venous or predominantly venous mixed leg ulcers. clinicaltrials.gov/ct2/show/NCT01449422 (first received 10 October 2011).

NCT02046226

Neander 2004
[CRSSTD: 2621976]

Nyfors 1982
[CRSSTD: 2621978]

Pendse 1993
[CRSSTD: 2621980]

Polignano 2001

32 / 46

** Purcell 2017**

** Quatresooz 2006**

[CRSSTD: 2621985]

** Raposio 2015**

** Romanelli 2016**

** Schmutz 1997**

[CRSSTD: 2621987]

** Senet 2011**

[CRSSTD: 2621989]

** Serra 2005**

[CRSSTD: 2621991]

** Sibbald 2011**

[CRSSTD: 2621993]

Sibbald RG, Coutts P, Woo KY. Reduction of bacterial burden and pain in chronic wounds using a new polyhexamethylene biguanide antimicrobial foam dressing-clinical trial results. Advances in Skin and Wound Care 2011;24(2):78-84. [CRSREF: 2621994]

** Steed 1991**

[CRSSTD: 2621995]

** Stromberg 1984**

[CRSSTD: 2621997]

** Svedman 1983**

[CRSSTD: 2621999]

Tarvainen 1988
[CRSSTD: 2622001]

Thomas 1989
[CRSSTD: 2622003]

Varelias 2006
[CRSSTD: 2622005]

Vin 1997
[CRSSTD: 2622007]

Vuerstaek 2006
[CRSSTD: 2622009]

Wagner 1990
[CRSSTD: 2622011]

Weed 2004
[CRSSTD: 2622013]

Wollina 1997
[CRSSTD: 2622015]

Woo 2012
Woo KY, Coutts PM, Sibbald RG. A randomized controlled trial to evaluate an antimicrobial dressing with silver alginate powder for the management of chronic wounds exhibiting signs of critical colonization. Advances in Skin and Wound Care 2012;25(11):503-8.

Wu 1996
[CRSSTD: 2622017]

Zykova 2014
[CRSSTD: 2622019]

Studies awaiting classification

Capoano 2017

NCT00658983
NCT00658983. Autologous platelet enriched gel versus metalloproteinase inhibitor in the healing of chronic lower leg ulcers. clinicaltrials.gov/ct2/show/NCT00658983 (first received 16 April 2008).

Ongoing studies

NCT02583958
NCT02583958. Assessment of efficacy and safety for a new wound dressing URGO 310 3166 in the local treatment of venous or mixed leg ulcers: a European, randomised clinical trial. clinicaltrials.gov/ct2/show/NCT02583958 (first received 22 October 2015).

NCT02839226

NCT03275831
NCT03275831. A pilot study to investigate the efficacy of PluroGel in healing venous and mixed aetiology leg ulcers. clinicaltrials.gov/ct2/show/NCT03275831 (first received 8 September 2017).

NCT03468816
NCT03468816. Wound dressing with moisture sensor. clinicaltrials.gov/ct2/show/NCT03468816 (first received 19 March 2018).

Other references

Additional references

Atkins 2004

BNF 2013

Brownrigg 2016

Callam 1987

Covidence

Graham 2003

Grey 2006

Harding 2015

Higgins 2003

Higgins 2011a

Higgins 2011b

Lefebvre 2011

Madden 2012

O'Meara 2012

O'Meara 2013

O'Meara 2013b

Palfreyman 2006

Review Manager 2014

Ribeiro 2013

Ribeiro 2014

SIGN 2010

Sterne 2011

Vanhoutte 1988

Winter 1962

Other published versions of this review
Forster 2015

Nelson 2003

Nelson 2007

Classification pending references

Data and analyses

Figures

Figure 1

1 study included in previous version of review
2 studies previously assessed as 'Awaiting classification' reassessed as 'excluded'

5922 reports identified by database searches

4695 reports imported into Covidence after duplicates removed

4661 reports screened after duplicates removed

4428 reports not relevant

208 reports not relevant
17 studies (18 reports) excluded with reasons
2 new studies (2 reports) added to 'Awaiting classification'
4 new studies (4 reports) added to 'Ongoing studies'

233 reports screened in duplicate (full-text or abstract as required)

1 NEW study (1 report) included

1 study included in qualitative synthesis

Caption
Study flow diagram.

Figure 2
Risk of bias graph: review authors’ judgements about each risk of bias item presented as percentages across all included studies.

Figure 3

Risk of bias summary: review authors’ judgements about each risk of bias item for each included study.

Sources of support

Internal sources
- No sources of support provided

External sources
- Chief Scientist Office, Scottish Government Health Directorates, The Scottish Government, UK
 The Cochrane Vascular editorial base is supported by the Chief Scientist Office

Feedback

Appendices

1 Database search strategies

<table>
<thead>
<tr>
<th>Source</th>
<th>Search strategy</th>
<th>Hits retrieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTRAL via CRSO</td>
<td>#1 MESH DESCRIPTOR Leg Ulcer EXPLODE TREES 1 1658</td>
<td>1557</td>
</tr>
<tr>
<td></td>
<td>#2 MESH DESCRIPTOR Skin Ulcer EXPLODE ALL TREES 2405</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#3 ((arter* or foot or leg or lower or mixed) adj3 ulcer*):TI,AB,KY 2677</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#4 #1 OR #2 OR #3 3756</td>
<td></td>
</tr>
</tbody>
</table>
#5 MESH DESCRIPTOR Biological Dressings EXPLODE ALL TREES
32
#6 MESH DESCRIPTOR Occlusive Dressings EXPLODE ALL TREES
449
#7 MESH DESCRIPTOR HYDROGELS EXPLODE ALL TREES 305
#8 MESH DESCRIPTOR ALGINATES EXPLODE ALL TREES 232
#9 dressing*:TI,AB,KY 4199
#10 (ActivHeal or Allevyn or Avazorb or Biatain or Copa or LyoFoam or PermaFoam or PolyMem or Suprasorb or Tegaderm or Tielle or Transobent or Trufoam or UrgoCell):TI,AB,KY 244
#11 (hydrocolloid* or alginate* or hydrogel*):TI,AB,KY 2114
#12 (foam or bead or film*):TI,AB,KY 5673
#13 (tulle or gauze):TI,AB,KY 825
#14 (non adj2 adher*):TI,AB,KY 909
#15 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 14998
#16 MESH DESCRIPTOR Administration, Topical EXPLODE ALL TREES 14404
#17 MESH DESCRIPTOR Anti-Infective Agents, Local EXPLODE ALL TREES 8227
#18 MESH DESCRIPTOR Anti-Bacterial Agents EXPLODE ALL TREES 27517
#19 MESH DESCRIPTOR Anti-Inflammatory Agents EXPLODE ALL TREES 41974
#20 MESH DESCRIPTOR GLUCOCORTICOIDS EXPLODE ALL TREES 16978
#21 MESH DESCRIPTOR ESTROGENS EXPLODE ALL TREES 7217
#22 MESH DESCRIPTOR ENZYMES EXPLODE ALL TREES 28651
#23 MESH DESCRIPTOR Growth Substances EXPLODE ALL TREES 25458
#24 MESH DESCRIPTOR COLLAGEN EXPLODE ALL TREES 2294
#25 #17 OR #18 OR #19 OR #20 OR #21 OR #22 OR #23 OR #24 129058
#26 #16 AND #25 5837
#27 (topical adj2 (steroid* or corticosteroid* or glucocorticoid*)):TI,AB,KY 1909
#28 (topical adj2 (oestrogen or estrogen)):TI,AB,KY 42
#29 (topical adj2 enzym*):TI,AB,KY 11
#30 (topical adj2 growth factor*):TI,AB,KY 31
#31 (topical adj2 collagen):TI,AB,KY 39
#32 (topical adj2 silver):TI,AB,KY 47
#33 (topical adj3 (agent* or preparation* or therap* or treatment*)):TI,AB,KY 7477
#34 MESH DESCRIPTOR OINTMENTS EXPLODE ALL TREES 1788
#35 MESH DESCRIPTOR HONEY EXPLODE ALL TREES 136
#36 honey:TI,AB,KY 486
#37 (ointment* or lotion* or cream*):TI,AB,KY 10198
#38 #27 OR #28 OR #29 OR #30 OR #31 OR #32 OR #33 OR #34 OR #35 OR #36 OR #37 17152
#39 #15 OR #26 OR #38 33816
#40 #4 AND #39 3756
<table>
<thead>
<tr>
<th>Database</th>
<th>Search Terms</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinicaltrials.gov</td>
<td>Leg Ulcer OR Skin Ulcer OR arterial leg ulcers OR foot ulcer OR mixed ulcer</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>OR dressing OR dressings OR hydrogel OR alginates OR Anti-Infective Agents OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-Bacterial Agents OR Anti-Inflammatory Agents OR GLUCOCORTICOIDS OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESTROGENS OR ENZYMES OR Growth Substances OR COLLAGEN</td>
<td></td>
</tr>
<tr>
<td>ICTRP Search Portal</td>
<td>Leg Ulcer OR Skin Ulcer OR arterial leg ulcers OR foot ulcer OR mixed ulcer</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>OR dressing OR dressings OR hydrogel OR alginates OR Anti-Infective Agents OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-Bacterial Agents OR Anti-Inflammatory Agents OR GLUCOCORTICOIDS OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESTROGENS OR ENZYMES OR Growth Substances OR COLLAGEN</td>
<td></td>
</tr>
<tr>
<td>Medline (Ovid MEDLINE® Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE® Daily and Ovid MEDLINE®) 1946 to present 2017, 2018 and 2019 only</td>
<td>1160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 exp Leg Ulcer/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 exp Skin Ulcer/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 ((arter* or foot or leg or lower or mixed) adj3 ulcer*).ti,ab.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 or/1-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 exp Biological Dressings/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 exp Occlusive Dressings/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 exp HYDROGELS/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 exp ALGINATES/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 dressing*,ti,ab.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 (ActivHeal or Allevyn or Avazorb or Biatain or Copa or LyoFoam or PermaFoam or PolyMem or Suprasorb or Tegaderm or Tielle or Transobent or Trufoam or UrgoCell).ti,ab.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 (hydrocolloid* or alginate* or hydrogel*).ti,ab.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 (foam or bead or film*).ti,ab.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 (tulle or gauze).ti,ab.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 (non adj2 adher*).ti,ab.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 or/1-14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 exp Administration, Topical/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 exp Anti-Infective Agents, Local/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 exp Anti-Bacterial Agents/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19 exp Anti-Inflammatory Agents/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 exp GLUCOCORTICOIDS/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 exp ESTROGENS/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22 exp ENZYMES/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 exp Growth Substances/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 exp COLLAGEN/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 or/17-24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 16 and 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 (topical adj2 (steroid* or corticosteroid* or glucocorticoid*)).ti,ab.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 (topical adj2 (oestrogen or estrogen)).ti,ab.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29 (topical adj2 enzym*).ti,ab.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 (topical adj2 growth factor*).ti,ab.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31 (topical adj2 collagen).ti,ab.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 (topical adj2 silver).ti,ab.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33 (topical adj3 (agent* or preparation* or therap* or treatment*)).ti,ab.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34 exp OINTMENTS/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35 exp HONEY/</td>
<td></td>
</tr>
</tbody>
</table>
371C Dressings and topical agents for arterial leg ulcers

<table>
<thead>
<tr>
<th>EMBASE 2017, 2018 and 2019 only</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 exp leg ulcer/</td>
</tr>
<tr>
<td>2 exp skin ulcer/</td>
</tr>
<tr>
<td>3 ((arter* or foot or leg or lower or mixed) adj3 ulcer*).ti,ab.</td>
</tr>
<tr>
<td>4 or/1-3</td>
</tr>
<tr>
<td>5 exp biological dressing/</td>
</tr>
<tr>
<td>6 exp occlusive dressing/</td>
</tr>
<tr>
<td>7 exp hydrogel/</td>
</tr>
<tr>
<td>8 exp alginic acid/</td>
</tr>
<tr>
<td>9 dressing*.ti,ab.</td>
</tr>
<tr>
<td>10 (ActivHeal or Allevyn or Avazorb or Biatain or Copa or LyoFoam or PermaFoam or PolyMem or Suprasorb or Tegaderm or Tielle or Transobent or Trufoam or UrgoCell).ti,ab.</td>
</tr>
<tr>
<td>11 (hydrocolloid* or alginate* or hydrogel*).ti,ab.</td>
</tr>
<tr>
<td>12 (foam or bead or film*).ti,ab.</td>
</tr>
<tr>
<td>13 (tulle or gauze).ti,ab.</td>
</tr>
<tr>
<td>14 (non adj2 adher*).ti,ab.</td>
</tr>
<tr>
<td>15 or/1-14</td>
</tr>
<tr>
<td>16 exp topical drug administration/</td>
</tr>
<tr>
<td>17 exp topical antiinfective agent/</td>
</tr>
<tr>
<td>18 exp antiinfective agent/</td>
</tr>
<tr>
<td>19 exp antiinflammatory agent/</td>
</tr>
<tr>
<td>20 exp glucocorticoid/</td>
</tr>
<tr>
<td>21 exp estrogen/</td>
</tr>
<tr>
<td>22 exp enzyme/</td>
</tr>
<tr>
<td>23 exp growth promotor/</td>
</tr>
<tr>
<td>24 exp collagen/</td>
</tr>
<tr>
<td>25 or/17-24</td>
</tr>
<tr>
<td>26 16 and 25</td>
</tr>
</tbody>
</table>

41 / 46
27 (topical adj2 (steroid* or corticosteroid* or glucocorticoid*)).ti,ab.
28 (topical adj2 (oestrogen or estrogen)).ti,ab.
29 (topical adj2 enzym*).ti,ab.
30 (topical adj2 growth factor*).ti,ab.
31 (topical adj2 collagen).ti,ab.
32 (topical adj2 silver).ti,ab.
33 (topical adj3 (agent* or preparation* or therap* or treatment*)).ti,ab.
34 exp ointment/
35 exp honey/
36 honey.ti,ab.
37 (ointment* or lotion* or cream*).ti,ab.
38 or/27-37
39 15 or 26 or 38
40 4 and 39
41 randomized controlled trial/
42 controlled clinical trial/
43 random$.ti,ab.
44 randomization/
45 intermethod comparison/
46 placebo.ti,ab.
47 (compare or compared or comparison).ti.
48 ((evaluated or evaluate or evaluating or assessed or assess) and (compare or compared or comparing or comparison)).ab.
49 (open adj label).ti,ab.
50 ((double or single or doubly or singly) adj (blind or blinded or blindly)).ti,ab.
51 double blind procedure/
52 parallel group$.ti,ab.
53 (crossover or cross over).ti,ab.
54 ((assign$ or match or matched or allocation) adj5 (alternate or group$1 or intervention$1 or patient$1 or subject$1 or participant$1)).ti,ab.
55 (assigned or allocated).ti,ab.
56 (controlled adj7 (study or design or trial)).ti,ab.
57 (volunteer or volunteers).ti,ab.
58 trial.ti.
59 or/41-58
60 40 and 59
61 (2017* or 2018* or 2019*).em.
62 60 and 61
63 from 62 keep 2001-2433

CINAHL 2017, 2018 and 2019 only
S55 S53 AND S54
S54 EM 2017 OR EM 2018 OR 2019 EM
S53 S39 AND S52
S52 S40 OR S41 OR S42 OR S43 OR S44 OR S45 OR S46 OR S47 OR S48 OR S49 OR S50 OR S51
S51 MH "Random Assignment"
S50 MH "Single-Blind Studies" or MH "Double-Blind Studies" or MH
"Triple-Blind Studies"
S49 MH "Crossover Design"
S48 MH "Factorial Design"
S47 MH "Placebos"
S46 MH "Clinical Trials"
S45 TX "multi-centre study" OR "multi-center study" OR "multicentre study" OR "multicenter study" OR "multi-site study"
S44 TX crossover OR "cross-over"
S43 AB placebo*
S42 TX random*
S41 TX trial*
S40 TX "latin square"
S39 S4 AND S38
S38 S15 OR S25 OR S37
S37 S26 OR S27 OR S28 OR S29 OR S30 OR S31 OR S32 OR S33 OR S34 OR S35 OR S36
S36 TX ointment* or lotion* or cream*
S35 TX honey
S34 (MH "Honey")
S33 (MH "Ointments")
S32 topical N3 (agent* or preparation* or therap* or treatment*)
S31 topical N2 silver
S30 topical N2 collagen
S29 topical N2 growth factor*
S28 topical N2 enzym*
S27 topical N2 (oestrogen or estrogen)
S26 topical N2 (steroid* or corticosteroid* or glucocorticoid*)
S25 S16 AND S24
S24 S17 OR S18 OR S19 OR S20 OR S21 OR S22 OR S23
S23 (MH "Collagen")
S22 (MH "Growth Substances+")
S21 (MH "Enzymes+")
S20 (MH "Estrogens+")
S19 (MH "Glucocorticoids+")
S18 (MH "Antiinflammatory Agents+")
S17 (MH "Antiinfective Agents, Local+")
S16 (MH "Administration, Topical+")
S15 S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12 OR S13 OR S14
S14 TX non N2 adher*
S13 TX tulle or gauze
S12 TX foam or bead or film*
S11 TX hydrocolloid* or alginate* or hydrogel*
S10 TX ActivHeal or Allevyn or Avazorb or Biatain or Copa or LyoFoam or PermaFoam or PolyMem or Suprasorb or Tegaderm or Tielle or Transobent or Trufoam or UrgoCell
S9 TX dressing*
S8 (MH "Alginates")
371C Dressings and topical agents for arterial leg ulcers

- S7 (MH "Hydrogel Dressings")
- S6 (MH "Occlusive Dressings")
- S5 (MH "Biological Dressings")
- S4 S1 OR S2 OR S3
- S3 TX (arter* or foot or leg or lower or mixed) N3 ulcer*
- S2 (MH "Skin Ulcer+")
- S1 (MH "Leg Ulcer+")
<table>
<thead>
<tr>
<th>AMED 2017, 2018 and 2019 only</th>
<th>1 exp Skin Ulcer/</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ((arter* or foot or leg or lower or mixed) adj3 ulcer*).ti,ab.</td>
<td></td>
</tr>
<tr>
<td>3 or/1-2</td>
<td></td>
</tr>
<tr>
<td>4 dressing*.ti,ab.</td>
<td></td>
</tr>
<tr>
<td>5 (ActivHeal or Allevyn or Avazorb or Biatain or Copa or LyoFoam or PermaFoam or PolyMem or Suprasorb or Tegaderm or Tielle or Transobent or Trufoam or UrgoCell).ti,ab.</td>
<td></td>
</tr>
<tr>
<td>6 (hydrocolloid* or alginate* or hydrogel*).ti,ab.</td>
<td></td>
</tr>
<tr>
<td>7 (foam or bead or film*).ti,ab.</td>
<td></td>
</tr>
<tr>
<td>8 (tulle or gauze).ti,ab.</td>
<td></td>
</tr>
<tr>
<td>9 (non adj2 adher*).ti,ab.</td>
<td></td>
</tr>
<tr>
<td>10 or/1-9</td>
<td></td>
</tr>
<tr>
<td>11 exp Antiinflammatory agents/</td>
<td></td>
</tr>
<tr>
<td>12 exp Estrogens/</td>
<td></td>
</tr>
<tr>
<td>13 exp Enzymes/</td>
<td></td>
</tr>
<tr>
<td>14 exp Growth substances/</td>
<td></td>
</tr>
<tr>
<td>15 exp Collagen/</td>
<td></td>
</tr>
<tr>
<td>16 or/11-15</td>
<td></td>
</tr>
<tr>
<td>17 10 and 16</td>
<td></td>
</tr>
<tr>
<td>18 (topical adj2 (steroid* or corticosteroid* or glucocorticoid*)).ti,ab.</td>
<td></td>
</tr>
<tr>
<td>19 (topical adj2 (oestrogen or estrogen)).ti,ab.</td>
<td></td>
</tr>
<tr>
<td>20 (topical adj2 enzym*).ti,ab.</td>
<td></td>
</tr>
<tr>
<td>21 (topical adj2 growth factor*).ti,ab.</td>
<td></td>
</tr>
<tr>
<td>22 (topical adj2 collagen).ti,ab.</td>
<td></td>
</tr>
<tr>
<td>23 (topical adj2 silver).ti,ab.</td>
<td></td>
</tr>
<tr>
<td>24 (topical adj3 (agent* or preparation* or therap* or treatment*)).ti,ab.</td>
<td></td>
</tr>
<tr>
<td>25 exp Honey/</td>
<td></td>
</tr>
<tr>
<td>26 honey.ti,ab.</td>
<td></td>
</tr>
<tr>
<td>27 (ointment* or lotion* or cream*).ti,ab.</td>
<td></td>
</tr>
<tr>
<td>28 or/18-27</td>
<td></td>
</tr>
<tr>
<td>29 10 or 17 or 28</td>
<td></td>
</tr>
<tr>
<td>30 3 and 29</td>
<td></td>
</tr>
<tr>
<td>31 exp CLINICAL TRIALS/</td>
<td></td>
</tr>
<tr>
<td>32 RANDOM ALLOCATION/</td>
<td></td>
</tr>
<tr>
<td>33 DOUBLE BLIND METHOD/</td>
<td></td>
</tr>
<tr>
<td>34 Clinical trial.pt.</td>
<td></td>
</tr>
<tr>
<td>35 (clinic* adj trial*).tw.</td>
<td></td>
</tr>
<tr>
<td>36 ((singl* or doubl* or trebl* or tripl*) adj (blind* or mask*)).tw.</td>
<td></td>
</tr>
<tr>
<td>37 PLACEBOS/</td>
<td></td>
</tr>
<tr>
<td>38 placebo*.tw.</td>
<td></td>
</tr>
<tr>
<td>39 random*.tw.</td>
<td></td>
</tr>
<tr>
<td>40 PROSPECTIVE STUDIES/</td>
<td></td>
</tr>
<tr>
<td>41 or/31-40</td>
<td></td>
</tr>
<tr>
<td>42 30 and 41</td>
<td></td>
</tr>
<tr>
<td>43 ("2017" or "2018" or "2019").yr.</td>
<td></td>
</tr>
<tr>
<td>44 42 and 43</td>
<td></td>
</tr>
<tr>
<td>45 from 44 keep 1-7</td>
<td></td>
</tr>
</tbody>
</table>