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The recent elucidationof rare humangenetic disorders resulting frommutations in ectonucleotidepyrophosphotase/
phosphodiesterase (ENPP1), also known as plasma cell membrane glycoprotein 1 (PC-1), has highlighted the vital
importance of this molecule in human health and disease.
Generalised arterial calcification in infants (GACI), a frequently lethal disease, has been reported in recessive
inactivatingmutations in ENPP1. Recent findings have also linked hypophosphataemia to a lack of NPP1 function.
A number of human genetic studies have indicated that NPP1 is a vital regulator that influences a wide range of
tissues through various signalling pathways and when disrupted can lead to significant pathology.
The function of Enpp1has beenwidely studied in rodentmodels, where both themutant tiptoewalking (ttw/ttw)
mouse and genetically engineered Enpp1−/− mice show significant alterations in skeletal and soft tissue
mineralisation, calcium/phosphate balance and glucose homeostasis. These models therefore provide important
tools with which to study the potential mechanisms underpinning the human diseases associated with altered
NPP1.
This review will focus on the recent advances in our current knowledge of the actions of NPP1 in relation to
bone disease, cardiovascular pathologies and diabetes. A fuller understanding of the mechanisms through
which NPP1 exerts its pathological effects may stimulate the development of novel therapeutic strategies
for patients at risk from the devastating clinical outcomes associated with disrupted NPP1 function.

© 2012 Elsevier Inc. All rights reserved.
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Introduction

Rare human genetic disorders resulting from loss-of-function
mutations in the ectonucleotide pyrophosphotase/phosphodiesterase
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(ENPP1) gene, also known as plasma cell membrane glycoprotein 1
(PC-1), have highlighted the importance of this molecule in human
health and disease. Generalised arterial calcification in infants (GACI)
and severe hypophosphataemia have been reported in recessive
inactivatingmutations in the ENPP1 gene [1–4]. Together with the asso-
ciation between polymorphisms in ENPP1 and ALPL, the gene encoding
for tissue non-specific alkaline phosphatase (TNAP), and reduced bone
size and mineral density in the Caucasian population [5] these findings
indicate that the ENPP1 gene is required for normal inhibition of ectopic
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mineralisationwhile also being essential for mineralisation in the bone.
Furthermore, levels of ENPP1 expression have been reported to be
elevated in humans showing high levels of insulin resistance [6–8]
suggesting an important role in glucose homeostasis and insulin signal-
ling. These human studies indicate that the NPP1 protein is a vital regu-
lator that influences a wide range of tissues through various signalling
pathways and when disrupted can lead to significant pathology.

The function of NPP1 has been widely studied in rodent models,
where both the mutant tiptoe walking (ttw/ttw) mouse [9–14], and
the transgenically engineered Enpp1−/− mice [15,16], show changes
in skeletal and soft tissue mineralisation, calcium/phosphate and glu-
cose homeostasis, mimicking the diseases seen in human subjects.
Furthermore, by acting remotely on the balance of circulating min-
erals and glucose, NPP1 has a wider reaching impact on both skeletal
and soft tissue structure and metabolism. This review will focus on
the recent advances in current understanding of the role of the
NPP1 protein in these pathways and outline the importance of this
research in bone diseases, cardiovascular diseases and diabetes.

Genetics and function of NPP1

The nucleoside pyrophosphatase/phosphodiesterases (NPPs) are
an important group of enzymes with an extensive functional range
that are distributed widely and are highly conserved between species.
In humans the NPP family consists of 5 proteins of which NPP1 and
NPP3 show similar structure and function and the genes encoding
for these two proteins have been mapped to human chromosome
6q22-23 [17,18]. Despite the close sequence homology of the NPP
genes between species it has been reported that the 5′ flanking region
is far less conserved, leading to different regulation and gene expres-
sion patterns in different species [19].

The NPP1 protein is a membrane spanning homodimer and, when
cleaved, the extracellular domain can function as a secreted circulating
protein. In a very revealing reviewBollen and colleagues have discussed
the biochemistry of the NPP family and have summarised the local-
isation of ENPP1 gene expression [19]. ENPP1 is expressed in a wide
range of tissues including cartilage, heart, kidney, parathyroid and
Fig. 1. Schematic showing the role of NPP1 in ATP hydrolysis and the downstream effects o
and PPi, although it is involved in further degradation of pyrophosphate bonds to generate
into Pi by TNAP and the transport of PPi and Pi through the cell membrane is mediated by
Pi by the hydrolysis of PEA and Pchol. PPi acts to inhibit hydroxyapatite formation, while Pi
regulating mineralisation.
skeletal muscle, and it is highly expressed in vascular smooth muscle
cells (VSMCs), osteoblasts and chondrocytes [20–22].

NPPs havewide substrate specificity, and the hydrolysis of pyrophos-
phate bonds (for example, in ATP) and phosphodiester bonds (for exam-
ple, in oligonucleotides) to produce nucleoside 5′-monophosphates
makesNPPs extremely important in extracellular nucleotidemetabolism
and extracellular signalling. NPP1 (EC3.1.4.1) is a 104 kDa type II trans-
membrane protein consisting of a small intracellular region (between
10 and 80 residues) and a larger extracellular domain (830 residues)
which contains the catalytic site [23]. Phosphodiesterases are classi-
fied as enzymes that hydrolyse diesters of phosphoric acid into
phosphomonesters, and can be classified into two main groups —

those that act on lipids or on nucleotides. Pyrophosphatases are
acid anhydride hydrolases that catalyse the breakdown of diphos-
phate bonds and are biologically important in the cleavage of ATP.
NPP1 hydrolyses ATP to generate either inorganic pyrophosphate
(PPi) plus AMP or inorganic phosphate (Pi) plus ADP in a two
stage process via either ADP or a phosphate bound intermediate,
respectively (Fig. 1) [19,24]. It has also been reported that NPPs
can convert AMP into adenosine and Pi [25,26] although conflicting
reports suggest that AMP competitively inhibits NPP activity [27].
All of the products of these hydrolysis reactions are essential in
cellular signalling and function, the effects of which vary between
tissues.

Basic mechanisms of bone formation and the role of NPP1 in
skeletal mineralisation

In order to understand the functions of NPP1 it is important to
appreciate the physiological process of mineralisation in bone. This
relies on the deposition of hydroxyapatite (HA) onto a collagenous
matrix, and is a highly regulated process that requires the correct
concentration of calcium (Ca2+) and Pi to precipitate as HA crystals.
Mineralisation is thought to be a two stage process, the first of
which occurs within matrix vesicles (MVs) [28] where the conditions
are optimal for the initial precipitation of HA. The second stage con-
sists of the propagation of HA formation onto the extracellular matrix
n bone mineralisation. The primary function of NPP1 is the hydrolysis of ATP into AMP
ADP, adenosine and Pi (secondary reactions denoted by dotted lines). PPi is converted
ANK and PiT-1 respectively. Within the matrix vesicle PHOSPHO1 can generate further
promotes this process, thus the balance of these two mediators is highly important in
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(ECM) following the disruption of the MVs. While Pi acts to promote
precipitation of HA crystals, PPi has a dual role as an inhibitor of
HA formation and a precursor to Pi. The ratio of Pi to PPi is controlled
by a complex interaction between the following enzymes: NPP1,
tissue-non-specific alkaline phosphatase (TNAP), phosphoethanolamine/
phosphocholine phosphatase (PHOSPHO1), type III sodium-dependent
Pi co-transporter 1 (PiT-1) and ankylosis protein (ANK) (Fig. 1) [29–35].
NPP1 extracellularly generates PPi and AMP by hydrolysis of ATP
[36]. Intracellular to extracellular channelling of Pi and PPi is medi-
ated by ANK [37,38] and PiT-1. TNAP, which hydrolyzes PPi in the
ECM to release Pi and PHOSPHO1, which hydrolyses phosphocholine
(Pchol) and phosphoethanolamine (PEA) to produce Pi inside the
MVs, act to control the presence of each substrate during the two
stages of mineralisation [35]. Further feedback signalling allows
mediation of the mineralisation process; both Pi and PPi inhibit
the enzymatic activity of TNAP [39], and both exogenous Pi and PPi
induce osteopontin (OPN), a bone sialoprotein which inhibits min-
eral formation through limiting HA crystal precipitation and growth
[30,32,39].

The link between defective NPP1 expression and altered min-
eralisation was initially demonstrated in the mutant “tiptoe walking”
(ttw/ttw) mouse model. These animals are homozygous for a GRT
substitution resulting in the introduction of a stop codon in the
NPP1 coding sequence. The subsequent truncated protein leads to
the loss of a vital calcium binding domain and two putative glycosyl-
ation sites [13]. The ttw/ttw mouse phenotype includes the postnatal
development of progressive ankylosing intervertebral and peripheral
joint hyperostosis, as well as spontaneous arterial and articular carti-
lage calcification and increased vertebral cortical bone formation
[9,11–14]. Transgenic mice that are homozygous for a disruption in
Exon 9 of the Enpp1 gene exhibit abnormalities that are almost iden-
tical to those present in ttw/ttw mice [15]. These include decreased
levels of extracellular PPi, with phenotypic features including signifi-
cant alterations in bone mineralisation in long bones and calvariae,
and pathologic, severe peri-spinal soft tissue and arterial calcification
[16,30,32].

The calvariae of Enpp1−/− mice are hyper-calcified in vivo, and
calvarial osteoblasts derived from Enpp1−/− mice show reduced
extracellular PPi levels, and a concomitant increase in calcification in
vitro [30]. These abnormalities can be rescued by transfection with
NPP1 but not with NPP3. A significant reduction in the mineralisation
inhibitor OPN has also been observed in Enpp1−/− osteoblasts, indi-
cating that NPP1 not only has a direct effect on PPi concentration,
but also has an indirect effect on the process of calcification by regu-
lating the expression of other cellular regulators [32].

Enpp1−/− mice also show significant defects in long-bone miner-
alisation [16,40]. Enpp1−/− mice have reduced trabecular bone mass
(Fig. 2) and cortical thickness of both the tibia and femur, char-
acterised by disruption of the structural and mechanical properties,
the severity of which increases with age [40]. This is likely to be a
Fig. 2. Disruption of long bone mineralisation in Enpp1−/− mice. Micro-computed to-
mography CT analysis of the femur of a (A) wild-type and (B) Enpp1−/− mouse at
22 weeks of age. These reconstructions illustrate decreased trabecular bone mass in
the Enpp1−/− mice as reported in Mackenzie et al. [40].
direct effect of lack of NPP1 activity, but the reduced body weight
observed in Enpp1−/− mice will reduce the loading on the bones
and thus may also have an effect on their structure.

Previous evaluation of the mineralisation of bones from 10-day-
old Enpp1−/− and [Enpp1−/−; Akp2−/−] double knockout mice has
indicated that the effects of Enpp1 ablation on an Akp2 null back-
ground is site-specific [16]. Thus, in contrast to the normalisation of
the degree of mineralisation seen in the joints, calvariae, vertebrae
and soft tissues as a consequence of ablating both NPP1 and TNAP
function, the long bones of these double knockout mice appeared to
remain hypomineralised. Furthermore, calcified nodule formation
and mineral deposition are inhibited to a higher extent in osteoblasts
isolated from Enpp1−/− bone marrow than calvarial osteoblasts
isolated from the same animal, further indicating that loss of NPP1
activity affects skeletal sites in a site-specific manner [16]. The
hypomineralisation observed in the long bones of Enpp1−/− mice
may be related to relatively low levels of endogenous PPi when com-
pared to the calvaria [16]. Thus, in long bones, the complete deletion
of NPP1 activity would further reduce extracellular PPi to abnormally
low levels. This would result in insufficient PPi substrate for TNAP to
generate Pi for normal mineral formation.

It has been widely reported that PPi functions to regulate both
osteoblast and chondrocyte differentiation. However, it has recently
been shown that NPP1 regulates osteoblastic gene expression and
cellular differentiation in calvarial osteoblasts independent of PPi
and Pi [41]. Nam and colleagues have provided evidence that NPP1
is an inducer of osteoblast differentiation, demonstrating that FGF-2
signalling induces Enpp1 expression in pre-osteoblasts but not in dif-
ferentiated osteoblasts. Furthermore, MC3T3E1(C4) cells that over-
expressed Enpp1 showed enhanced osteoblastic gene expression. Con-
versely, defective osteoblast differentiation was observed in both
calvariae extracted from Enpp1−/−mice andMC3T3E1(C4) cells treated
with Enpp1 targeting short hairpin RNAs. Therefore inhibition of osteo-
blast differentiation due to lack of NPP1 activity may also contribute to
the reduced mineralisation in the long bones observed in Enpp1−/−

mice.
Wild-type mice show reduced bone resorption with advancing

age which is consistent with the attainment of the adult skeleton.
Interestingly Enpp1−/− mice maintain similar levels of osteoclast
activity at 6 and 22 weeks of age, indicating an increase in functional
activity of osteoclasts [40], the cells that mediate bone resorption.
Furthermore, treatment of ttw/ttw mice with calcitonin, a known in-
hibitor of osteoclast function and putative suppressor of osteoblastic
bone formation, has been shown to reverse the osteopenic phenotype
[14]. This study indicates that accelerated periosteal bone formation
in ttw/ttw mice is suppressed by calcitonin but does not assess the
role of osteoclasts in the correction of the osteopenic phenotype.

The role of NPP1 in soft tissue calcification

Ectopic calcification occurs throughout the body causing clinical
complications particularly when seen in the aorta, cardiac valves
and in the myocardium, where mineralisation is a serious risk factor
in cardiovascular disease. It is also observed in tendons, cartilages
and ligaments where severe osteoarthritis and ankylosis can occur.
Mutations in the ENPP1 gene have been associated with several rare
human diseases, demonstrating the importance of NPP1 inmaintaining
normal tissue function [1,3,4,42]. There is a complex interaction
between a wide range of molecular and genetic factors that inhibit cal-
cification of the soft tissue and a breakdown in these pathways can lead
to severe pathology. These genetic factors have been recently reviewed
[43] therefore this review will focus on the roles of NPP1 in ectopic
calcification in human disease, and the relevant rodent models used to
study these pathological conditions.

The study of diseases such as GACI and pseudoxanthoma elasticum
(PXE), which show overlapping clinical pathology in a wide range of

image of Fig.�2


Fig. 3. Aortic calcification in Enpp1−/− mice. Alizarin red staining of the aorta of a (A)
wild-type and (B) Enpp1−/− mouse at 22 weeks of age. Severe calcification of the aortic
arch is observed in the Enpp1−/− mouse.
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tissues [42], has highlighted the extent of pathology caused by disrupted
ENPP1 expression.

Generalised arterial calcification of infancy and pseudoxanthoma
elasticum: disease models of ectopic tissue calcification

Generalised arterial calcification of infancy (GACI) is a rare autoso-
mal recessive disease characterised by calcification of large and
medium-sized arteries and arterial stenosis caused by intimal prolif-
eration (Fig. 4). Most affected children die within the first 6 months
of life from the sequelae of end-organ damage including myocardial
infarction [44]. In a subset of patients, peri-articular calcification of
the greater joints also occurs. The finding of low systemic levels of in-
organic pyrophosphate in one affected proband [45] due to defective
activity of the PPi-generating enzyme NPP1 [2] prompted the search
for mutations in the NPP1 encoding gene, and indeed, most of the
patients known so far with the classical GACI phenotype were found
to carry bi-allelic mutations in ENPP1 [46]. The understanding of the
disease as caused by the deficiency of an inhibitor of hydroxyapatite
crystal deposition, namely inorganic pyrophosphate, has paved the
way for the use of bisphosphonates, i.e., synthetic analogues of PPi
to effectively treat GACI patients [46,47]. The retrospective observa-
tional analysis of 55 subjects affected by generalised arterial calcifica-
tion of infancy by Rutsch and colleagues showed that treatment with
bisphosphonates was associated with a regression of the calcifications
and an increased survival rate [46]. However, spontaneous regression
of ectopic calcifications also occurs in GACI patients [48,49]. Most
Fig. 4.Manifestations of generalised arterial calcification of infancy. Increased echogenicity o
the age of 8 days (ultrasonography, suprasternal view) (A). Calcification of the disrupted la
(haematoxylin-eosin, 10×) (B).
recently, mutations in ENPP1 were also detected in a subset of pa-
tients with generalised arterial calcification and pseudoxanthoma
elasticum: up to date, a total of four patients have been described,
who presented typical signs of GACI in infancy andwho later developed
typical signs of PXE, including angioid streaks of the retina and
pseudoxanthomatous skin lesions [42,50]. Pseudoxanthoma elasticum,
a rare disease associated with soft tissue calcification at different sites
including the eye, the kidneys, the arterial wall and the skin had been
previously demonstrated to be caused by loss of function mutations
inABCC6 encodingMRP6, a transport protein of hitherto unknown func-
tion [51,52]. Interestingly, ABCC6mutations have also been found to be
associated with the GACI phenotype [42]. The finding of genocopy and
phenocopy in GACI and PXE points to a close relationship between
these two diseases and suggests common downstream mediators of
ectopic tissue calcification in MRP6 and NPP1 deficiency [43].

Mouse models elucidating the role of NPP1 in tissue calcification

It has been widely described that mouse models with disrupted or
genetically ablated Enpp1 expression show high levels of ectopic cal-
cification and subsequent cardiovascular pathology and hyperostosis
of the joints [9,11,13–16,30,32,40]. Given that NPP1 is the primary
producer of PPi, an important inhibitor of HA crystallisation and chon-
drocyte differentiation [53], it is unsurprising that widespread soft
tissue calcification is observed when NPP1 function is disrupted.

In the mutant mouse model, designated the ttw/ttwmouse, a phe-
notype including postnatal development of progressive ankylosing
intervertebral and peripheral joint hyperostosis; increased vertebral
cortical bone formation; spontaneous articular cartilage and arterial
calcification is observed [9,11–14]. This mouse model provides a use-
ful model for ossification of posterior lateral ligament (OPLL), a
human condition characterised by pathological cartilage calcification
in the spine and disrupted phosphate metabolism, associated with
single nucleotide polymorphisms in the ENPP1 gene [54–56].

A number of studies have demonstrated that Enpp1−/− mice
develop extensive arterial calcification (Fig. 3) [57]. The regulation of
the phenotypic transition of VSMCs during aortic calcification is likely
to involve reduced NPP1 activity and subsequent PPi levels, with
Enpp1−/− VSMCs showing an up-regulation of molecules associated
with chondrogenic, osteoblastic and osteocytic phenotypes [57].
Recent research has also demonstrated that NPP1 activity modulates
arterial calcification through the mediation of receptor for advanced
glycation of end-products (RAGE) signalling [58]. Membrane bound
RAGE promotes nuclear factor-kappaB (NF-κB) and oxidative stress
signalling, causing an up-regulation of aortic matrix remodelling.
This signalling pathway has been implicated in patients suffering
from aortic aneurisms and calcific aortic valve stenosis (CAVS)
[59,60]. The production of sRAGE – a soluble endogenous suppressor
of RAGE signalling – has been shown to be reduced in Enpp1−/− aortic
ring cultures. Additionally, treatment of cultures with sRAGE inhibits
f the calcified aortic arch in an infant carrying bi-allelic mutations in ENPP1, who died at
mina elastica interna and intima proliferation of the aorta of another infant with GACI

image of Fig.�3
image of Fig.�4
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calcification and chondrogenic trans-differentiation [58]. Further-
more, the Rage−/−/Enpp1−/− double knockout mouse shows reduced
arterial calcification when compared to the Enpp1−/− mouse. It is,
however, important to note that this double knockout mouse did not
show a rescue of skeletal phenotype seen in Enpp1−/− mice,
suggesting that the changes in RAGE signalling mediated by loss of
NPP1 activity may be specific to vascular smooth muscle cells.

The generation of PPi by NPP1 also upregulates OPN expression,
which can further inhibit mineralisation [61–64]. The complex inter-
play between OPN and NPP1 during ectopic calcification is confound-
ed by the pro-atherogenic activity of OPN [65,66], and the recent
finding that NPP1 promotes atherosclerotic plaque formation through
OPN [20]. Furthermore, recent studies by Cote and colleagues have
demonstrated that over-expression of ENPP1 can also induce miner-
alisation in human valve interstitial cells [67]. The authors show not
only that ENPP1 expression is increased in human stenotic valve
samples, but also that when over-expressed in vitro, NPP1 acts to in-
crease apoptosis and mineralisation through a mechanism involving
disrupted signalling of the P2Y2 and PI3-kinase/Akt pathways. These
data indicate that expression of ENPP1 must be maintained within a
physiological range, and when altered, either by a reduction or in-
crease in ENPP1 expression, ectopic mineralisation may occur. Thus
the precise role that NPP1 plays in modulating vascular calcification
has yet to be fully defined, and requires further investigation.

Calcium phosphate homeostasis

The recent demonstration of elevated expression and circulating
levels of fibroblast growth factor 23 (FGF-23) in Enpp1−/− mice [40]
is consistent with human genetic studies that have shown that muta-
tions in ENPP1 can cause hypophosphataemic rickets resulting from
increased levels of FGF-23 [4]. These findings add to a growing number
of single gene mutations whose activation impairs bone mineralisation
and leads to changes in Fgf-23 gene transcription [68]. As well as in
ENPP1, mutations in other regulators of phosphate homeostasis, includ-
ing phosphate regulating endopeptidase homolog, X-linked (PHEX) and
dentin matrix protein-1 (DMP1), cause hypophosphatemic disorders
and stimulate expression of FGF-23 [69,70]. This indicates that levels
of bone metabolism and systemic phosphate homeostasis are tightly
coordinated.

FGF-23 is a phosphaturic hormone that controls phosphate ho-
meostasis, calcium homeostasis and bone mineralisation. FGF-23
binds to FGF receptors (mainly FGFR1) and the co-receptor KLOTHO
in the kidney and promotes excretion of Pi, which leads to reduced
serum Pi [71,72] and stimulation of Cyp24 and inhibition of Cyp27b1
in the kidney to reduce circulating 1,25(OH)2D levels. Thus, the
decreases in circulating calcium and phosphate levels reported in
Enpp1−/− mice are consistent with increased FGF-23 [40]. The mech-
anism whereby Fgf-23 gene transcription in bone is stimulated by
NPP1 inactivation has yet to be defined, however, recent studies
have indicated that alterations in matrix mineralisation induced by
other single gene mutations in osteoblasts lead to stimulation of
Fgf-23 expression via FGF receptor activation [73]. It is not clear
whether the increase in FGF-23 observed in Enpp1−/− bone is intrinsic
and due to pathways similar to Phex and Dmp1mutations [69,70] or as
a result of distinct signalling pathways. The increases in serum FGF-23
levels reported in Enpp1−/− mice [40] may regulate the Enpp1−/−

bone phenotype through the bone–kidney axis or through local effects
on bone cells. There is also controversial evidence that indicates that
FGF-23 may directly affect skeletal mineralisation, independent of
phosphate homeostasis [74], which further confounds the relation-
ship between NPP1 and FGF-23 in Enpp1−/− mice. Further research
is required in order to fully elucidate the mechanisms through which
NPP1 and FGF-23 are acting to modulate bone mineralisation.

Furthermore, the role of the FGF-23/KLOTHO axis in mediating
vascular calcification is a subject of increasing interest. Although the
interaction between NPP1 and FGF-23 has not been investigated
during vascular calcification it is interesting to note that there is an
association between FGF-23 levels and calcium accumulation in the
aorta and coronary arteries of patients with chronic kidney disease
(CKD) [75–77]. Indeed, elevated FGF-23 levels in patients with CKD
have also been associated with the presence of widespread athero-
sclerosis [78] and left ventricular hypertrophy [79,80]. High levels
of ectopic calcification and disrupted bone structure have been de-
scribed in Fgf-23−/− mice [81,82], similar to the phenotype described
in Enpp1−/− mice. Fgf-23 over-expressing mice also show a disrupted
bone phenotype, with no ectopic calcification [83–85]. Recent evi-
dence suggests that FGF-23 plays a protective role in vascular smooth
muscle cells [86] but the precise actions of FGF-23, and its possible re-
lationship with NPP1, during vascular calcification remain unclear
and require further investigation.

Insulin signalling and glucose homeostasis

The link between NPP1 and insulin signalling was first described
in a seminal study by Maddux and colleagues nearly two decades
ago. NPP1 activity was shown to be increased in dermal fibroblast
cultures from patients with non-insulin-dependent type 2 diabetes
and severe insulin resistance [6]. Defective insulin-stimulated auto-
phosphorylation of the insulin receptor (IR) was also observed in
these cells, leading to the hypothesis that NPP1 acts as an inhibitor
of the IR [87]. Subsequently, NPP1 has been shown to directly interact
with the receptor α-subunit of the IR, blocking the insulin signalling
pathway [88]. Additional studies in humans have also revealed that
increased NPP1 expression in muscle correlates with increased body
mass index and decreased insulin stimulation of muscle glucose
transport [7,89], indicating a possible link between levels of NPP1 in
muscle and insulin resistance.

Studies in animal models have shown that NPP1 regulates insulin
signalling in both in vitro and in vivo settings. Transgenic mice with
liver specific over-expression of human ENPP1 show insulin resis-
tance and glucose intolerance, although the animals are not overtly
diabetic [90]. However, transgenic mice with human ENPP1 over-
expressed in both liver and muscle have fed and fasting hyper-
glycaemia with hyperinsulinaemia, suggesting that NPP1 may play a
role in the insulin resistance and hyperglycaemia of type 2 diabetes.
These findings have been further supported by murine studies dem-
onstrating that in the presence of a high-fat diet, Enpp1 over-
expression in adipocytes induces fatty liver, hyperlipidaemia, and
dysglycaemia, thus recapitulating key manifestations of the metabolic
syndrome [91].

The majority of animal studies to date have focused on the effects
on insulin signalling induced by over-expression of Enpp1. However a
study by Zhou and colleagues [92] investigated the biological effect of
NPP1 suppression. This research demonstrated that knockdown of
Enpp1with siRNA significantly increases insulin-stimulated Akt phos-
phorylation in HuH7 human hepatoma cells. In vivo studies utilising
the db/db mouse model of diabetes revealed that db/db mice treated
with Enpp1-1 short hairpin RNA adenovirus showed reduced hepatic
Enpp1 mRNA levels and decreased fed and fasting plasma glucose,
with a concomitant improved oral glucose tolerance. Taken together,
these results demonstrate that suppression of Enpp1 expression im-
proves insulin sensitivity, supporting the proposition that NPP1 inhi-
bition is a potential therapeutic approach for the treatment of type 2
diabetes.

Multiple linkage studies have associated the chromosome locus
mapping ENPP1, to insulin resistance [90,93,94], hyperglyceridaemia
[95], childhood and adult obesity and increased risk of type 2 diabetes
[8]. Furthermore, specific polymorphisms have been identified, of
which Lys121Gln (K121Q) [96] is the most widely investigated. Over-
expression of the NPP1 Gln121 variant in vitro has been shown to
have increased IR inhibition activity in cell lines representing the
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liver (HepG2) and skeletal muscle (L6) when compared to the over-
expression of the Lys121 variant [93]. This study showed that the
Gln121 has a higher affinity to the IR, leading to a stronger inhibition
of autophosphorylation. In the pancreatic B-cell line INS1E, over-
expression of the Gln121 variant induced a significant increase in apo-
ptosis, and almost abolished glucose induced insulin secretion, however
the mechanism by which NPP1 mediates this reduction was not inves-
tigated. It is of particular interest that the over-expression of ENPP1
alone, regardless of the variant, induced an 80% reduction in insulin
secretion in INS1E cells, and a 20% and 50% decrease in IR autophospho-
rylation in HepG2 and L6 cells respectively [93].

Despite the existing evidence from in vitro studies on the increased
susceptibility to insulin resistance of the Gln121 variant, there are now
an increasing number of population association studies that show con-
flicting data about the linkage of this variant to insulin resistance, type 2
diabetes and obesity, which was extensively reviewed by Goldfine
et al. [97]. Two recent studies have shown no association of Gln121
with type 2 diabetes in the Iranian and northern Chinese populations
while previous studies on a Finnish population showed a strong linkage
to early onset type 2 diabetes [98]. However, the largest Lys121Gln
meta-analysis in type 2 diabetes to date, conducted on European
populations, showed a modest increase of the Gln allele to risk of type
2 diabetes [99]. It is therefore likely that ethnic origin and environmen-
tal factors influence the development of type 2 diabetes, therefore
confounding the role of NPP1 as a risk factor.

A fuller appreciation of the role of NPP1 in regulating insulin sig-
nalling and glucose homeostasis in newly defined metabolic tissues
such as bone, as well as in established endocrine organs such as the
pancreas and liver, is essential for the advancement of new potential
strategies for the prevention and control of diabetes.

Conclusions

NPP1 is known to play vital roles in calcium/phosphate regulation,
and repression of soft tissuemineralisation, aswell asmaintaining skel-
etal structure and function. A greater understanding of the actions of
NPP1 in novel pathways such as insulin signalling in bone, in concur-
rence with the full elucidation of the mechanisms underpinning and
connecting the known effects of NPP1, may stimulate the development
of novel therapeutic treatments for patients with bone diseases, cardio-
vascular pathologies and diabetes.
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