Is Naegleria fowleri an Emerging Parasite?

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.pt.2019.10.008

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Trends in Parasitology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Is *Naegleria fowleri* an Emerging Parasite?

Sutherland K. Maciver¹, Jose E. Piñero² and Jacob Lorenzo-Morales² *

¹ Centre for Discovery Brain Science, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Scotland, UK

*Correspondence: jmlorenz@ull.edu.es (J. Lorenzo-Morales)

Keywords: Meningoencephalitis; Amoebae; Climate change; Brain-eating

Abstract

Naegleria fowleri causes an uncommon but deadly disease called primary amoebic meningoencephalitis (PAM). There has been an increase of reported PAM cases, particularly since 2000. Although water is the dominant route of transmission of PAM, infection through soil/dust is a possible alternative route. We have observed differences in epidemiology between the southern US states and the Indian subcontinent (ISC). The patient age range is greater in ISC than the US, and there are more infections in ISC which are not water-associated. We show that PAM is under reported and argue that climate change will increase the incidence of PAM and the geographic range of *N. fowleri* will spread poleward.
Pathogenic amoebae

The obligate parasitic amoeba *Entamoeba histolytica* causes huge human mortality, but the free-living amoebae (FLA, see Glossary) in the same supergroup amoebazoa, *Acanthamoeba, Balamuthia* and *Sappinia*, are known to cause encephalitis in humans [1], while the excavate amoeba *Naegleria fowleri* (Box 1) causes meningoencephalitis [2]. Members of the amoeboflagellate genus *Naegleria* are common throughout the world, particularly in soils and freshwater. The genus was named to honour the German protozoologist Kurt Nägler [3] and currently contains about 50 recognised species. Only one of these, *N. fowleri*, named for Malcolm Fowler [4], is a confirmed human pathogen. Fowler and Carter first described the disease [2], which was later named primary amoebic meningoencephalitis (PAM) by Cecil Butt [5] (Box 2). The term “primary” is used as the amoebae are the root cause of the disease, and “meningoencephalitis” is an encephalitis that also involves inflammation of the meninges.

Is *Naegleria fowleri* an emerging pathogen?

An emerging infectious disease is defined as a disease whose incidence has increased in the past 20 years and which seems likely to increase further (CDC Atlanta). *N. fowleri* has been described as an emerging parasite by some [6], and an emerging medical threat by others [7]. We have searched the literature to find as many PAM cases as possible, looking for trends in reported infections. A previous survey of PAM laboratory-confirmed cases in the US between 1962 and 2008 showed variation from year to year but no overall increase in incidence was claimed [8], however looking at the worldwide data over a longer period (Figure 1A) we suggest that there has been an increase in reported cases, especially since 2000. However, we do not know if the incidence of the disease is actually increasing or if the increasing numbers of publications merely reflects its increasing recognition and notoriety, especially since the evocative name “brain-eating amoeba” has been adopted by the media and by some biologists [9]. Whatever the reason, we argue that PAM qualifies for labelling as an emerging infectious disease, since it seems inevitable that its actual incidence will increase due to climate change.

Patterns of primary amoebic meningoencephalitis

Much of what is known about PAM has been gleaned from cases in the USA, but differences between the world’s regions are to be expected due to local geography and human habits. We have found a difference in the patterns of PAM victims between the USA and the Indian subcontinent (ISC), USA victims tending to be younger than those from ISC (Figure 1B) with
the exception of victims under 1 years old, for which the recorded rate was 7 times greater in
ISC than in the USA. The age spread within the ISC is also greater than the USA population
(Figure 1B). The world-wide gender bias shows that there are more male than female cases
(Figure 1C) but we have found that this bias is greater in the ISC group, with 14 times more
males compared to 3 times more in the USA group. The typical US victim is a
young male who becomes exposed to *N. fowleri* in recreational situations. Boys are more likely
to play in water and to be more boisterous as they do so, immersing themselves and stirring up
lake sediments containing *N. fowleri* trophozoites and cysts, which explains the gender bias.
In the ISC, contact with *N. fowleri* seems to be through play but also through ablution rituals,
washing and a lack of chlorination, meaning that the general population is at risk from PAM,
not just those who play in natural bodies of water, for which chlorination is not feasible.

“Wet” vs “dry” infection

We calculate that where possible sources of *N. fowleri* have been reported, 93% of PAM cases
are described as infections that have resulted from exposure to water (314 cases out of 336).
Water is clearly the most frequent route of infection in most cases, but it has been argued that
people can also be infected through cyst-laden dust entering the nasal passages and then
excysting, leading to infection [10, 11]. These “dry infections” are particularly worrying since
there is little that people living in such areas can do to avoid cyst inhalation. Infections with
cysts (dry infections) account for 6.5% of PAM cases where possible sources are reported.
Cysts may also enter the nares through the nasolacrimal ducts when contaminated dust alights
on the eye. Although the dry infection route has been doubted by some [12] who point out that
N. fowleri cysts last about 5 minutes when desiccated [13], we have found that amoeba cysts
survive for years when dried in fine clay [14], and so it is likely that fine clay improves cyst
survival in air. We have found too that the dry infections tend to be in warm/hot regions (Figure
2). The incidence of nasal carriage, which is discussed later, is fortunately higher than the
development of PAM, suggesting that there may be a threshold effect in which large numbers
of activated amoebae are required to penetrate the epithelium and invade the brain, so that a
low cyst carriage does not represent a high risk. Physical trauma to the nasal epithelium may
also be important in PAM development through dry infection. Another marked difference
between PAM cases from the USA and the ISC is that the latter are more likely to have been
suspected dry infections (0% in USA vs 8% in ISC).

Where is *N. fowleri* and where is PAM?
N. fowleri is known to be distributed throughout all continents except Antarctica and is especially common in the warmer equatorial countries [15]. In temperate countries such as those in Northern Europe, *N. fowleri* is typically found in waters that are warmed either artificially (e.g. cooling towers from power stations) or naturally (e.g. geothermal areas). Cases of PAM are typically restricted to warm countries and their distribution correlates most strongly with areas where average annual temperatures lie between 15 – 18°C (Figure 2). Many have reported that PAM is highly seasonal away from equatorial regions [16]. The distribution of PAM largely reflects that of human populations within the warmer regions, although the ISC and Southeast Asia are notable exceptions, as here higher PAM incidence is found together with high temperatures. Many of the European recorded cases are not recent and have occurred in natural warm springs (e.g. City of Bath, England), or artificially heated areas such as power stations and baths (Belgium, Czech Republic), however more recent cases in Minnesota (white arrow, Figure 2) occurred far from other cases and in a natural lake, leading to concerns that *N. fowleri* may now be occurring further north due to climate change [17]. Another northerly case from N.E Pennsylvania [18] has been questioned [19].

It is important to understand what determines the distribution and abundance of *N. fowleri* in the environment and which niches these amoebae occupy within the ecosystems. This is known to be influenced by factors such as temperature, salinity, the availability of suitable prey organisms and the presence of amoeba pathogens, including some bacteria and viruses. A further, less-explored consideration is that of competition with other amoebae, especially other *Naegleria* species [20].

Temperature

N. fowleri is associated with elevated temperatures (Figures 2 & 3). It is found in regions where water/soils are warm, such as geothermal sources, or where human activities result in water bodies that are warm over extended periods. *N. fowleri* grows at temperatures of 30° - 46°C [21], but in biofilms it is reported that the amoebae need temperatures of 42°C to support growth and that 32°C was insufficient [22]. Amoebae remained viable for 24hrs at 49°C but were nonviable by 48 h [23]. Trophozoites and *N. fowleri* cysts can also survive for a few minutes to hours at 50-65°C, with cysts being more resistant to the effects of high temperatures than the trophozoites are [13]. *N. fowleri* trophozoites degenerate within hours below 10°C [13], while the cysts can survive at 4°C for six months [24] meaning that they can potentially overwinter in lakes/rivers and grow the following summer.
Salinity, osmotic tolerance

N. fowleri must be capable of tolerating human physiological ion concentrations to survive passage through the cribiform plate into the brain. The tonicity of human tissues is equivalent to 0.9% NaCl, and *N. fowleri* trophozoites are reported to remain viable up to 1.4% [23] or even 2% [25]. It therefore seems that *N. fowleri* is quite capable of adapting to survive the salinity of human tissue. Fresh-water amoebae adapt to higher salinity over time [26] and because the period of exposure and expression of disease symptoms is so short, this adaptation probably takes place with the individual amoebae causing the infection rather than their progeny. In mice, *N. fowleri* trophozoites are found within the olfactory bulb as early as 24hr after nasal inoculation [27].

The distribution of *N. fowleri* in water bodies

The availability of suitable prey is likely to be an important determinant of *N. fowleri* distribution in warm lakes (Figure 4). FLA are found in large numbers in floating biofilms at the meniscus with bacteria [28] and *N. fowleri* are enriched here too [29, 30]. Cyanobacteria are extensively grazed by protistans [31] especially amoebae [32]. *Naegleria* (and other FLA) are associated with cyanobacteria-dominated layers in a stratified lake [33] and *N. australiensis* is known to prey on a range of cyanobacteria (but not all) [34]. Cyanobacterial blooms can maintain a position in the water column as they can regulate their buoyancy through gas vesicles and trophozoites are able to crawl amongst these floating masses as they prey upon them. While *N. fowleri* trophozoites are found associated with these bacteria in the water column, free swimming *N. fowleri* flagellates are also found here. Amoebae prey on bacteria in two-dimensional biofilms much more efficiently than they can on cells in suspension [35] and the *N. fowleri* flagellate cannot feed at all, so that it is expected that much of their feeding and growth takes place on the lake floor within the sediment. Groundwater systems occupy vast volumes with huge biofilm potential, often with elevated temperatures. In Arizona *N. fowleri* has been found in groundwater [36], and the temperature varied between 13 and 46°C in the wells that draw on this water source [37, 38]. In Australia, too, the amoeba is found in groundwater and where this breaks the surface, such as in mound springs and bore holes [39]. Groundwater may well be the largest natural niche for *N. fowleri* and the most important reservoir for re-infection of surface waters (Figure 4).

Climate change and the rise of *N. fowleri*
Climate models predict that almost everywhere will become warmer, and a global rise in average temperatures has already been recorded. It is also predicted [40] that large areas will experience increased drought conditions (USA, Central America, Brazil, North Africa, the Mediterranean region, Australia, South China). Other areas (Northern Europe, Central East Africa, the Indian subcontinent, Northern Eurasia) will see increased precipitation which will cause increased erosion and eutrophication of freshwater courses. Perhaps counterintuitively both drought and increased precipitation may favour *N. fowleri* and the spread of PAM, through different mechanisms. Drought may make the use of rooftop rainwater systems more attractive in some areas and in others the use of artesian wells drawing on infected ground-water is expected to increase the risk of *N. fowleri* exposure and PAM. Concerns around the microbiological safety of roof-harvested rainwater have already been raised [41], and *N. fowleri* is often detected in roof-harvested rainwater tanks in Australia and South Africa [42]. Although there is an abundance of evidence to suggest that global warming is real, does this actually mean that the habitat favoured by *N. fowleri* is increasing together with a population increase? This amoeba seems to have an advantage over related organisms when temperatures are above 30°C (Figure 3). Many claims have been made in the literature of a connection between global warming and PAM [7, 16, 43]. Given the thermophilic nature of *N. fowleri* this is an attractively simple idea, but what is the evidence for this connection? It has been observed that in the US, the rate of PAM is distinctly seasonal [8,16] and this has also been reported in Australia [12] and in Karachi [44], but here screening for PAM is routinely undertaken only in the summer months, so the observed seasonality may have been exaggerated in Karachi. Several cases of PAM specifically mention that the patients had sought relief from the heat by immersing themselves in the water that has been blamed for their subsequent infection [45]. In general, the seasonality of PAM suggests a causal link between higher temperatures and greater incidence of disease, as indicated too by the geographic occurrences.

Are we only seeing the tip of a PAM iceberg?

There is a strong suspicion that PAM is very much more common than currently indicated, especially in the developing world where conditions for *N. fowleri* tend to be favourable and where PAM maybe masked by a myriad of other diseases and by economic deprivation. PAM is under-reported, as many cases are misdiagnosed as viral or bacterial meningoencephalitides and autopsies are not always carried out, either through lack of time or because family members deny permission [46]. With approximately 3 PAM cases typically reported annually in the
USA, it is estimated that there are likely to be a further 13 unreported cases [47]. Although PAM is considered a rare disease, it has been associated with outbreaks involving many deaths, for example, 16 individuals fell victim to PAM from a single swimming pool in what is now the Czech Republic [48] and an outbreak in Karachi during 2015 – 2017 has claimed at least 24 lives [49]. It is probable that, particularly in the developing world, many more such outbreaks have occurred and have gone unreported in the biomedical literature due to a lack of expertise in local medical staff [50]. A further reason why incidences of PAM may be high in the hot dry regions of Africa for example is the presence *N. fowleri* in the nares (nasal passages) of non-infected people.

Assessing the risk of PAM from nasal *N. fowleri* carriage

Although it is reported that the most common route of entry into the human host is through the nose by contact with trophozoite- laden water (wet infection), it is also possible that dry cysts in dust can infect (dry infection) [51]. Two cases from Northern Nigeria arose in the very dry conditions of the *harmattan season* [11], while *N. fowleri* was recovered from the air during the *harmattan* [52] and have been isolated from the nares of 2 out of 50 non-infected children during the *harmattan* in Zaria, Nigeria [53]. Additionally, a separate study some 400 miles away, in Borno State, Nigeria, found 3 out of 50 children carrying viable *N. fowleri* in their nares in [54], while none were found in the nares of 1039 people from the Brest region of Brittany, France [55], none in 262 students from Flinders, southern Australia [56], none in 1,551 army recruits from North Bohemia [57] and none in 500 children in Alexandria [58]. It seems highly probable that carriage of *N. fowleri* in the nares increases the risk of PAM, so that the incidence of the disease is likely to be very much greater in warm, dry regions such as Nigeria and India (Figure 2).

Concluding remarks

Many countries are already recording extreme temperatures and many people are seeking relief from the heat by immersing themselves in water that is often very warm and polluted by coliforms, perfect conditions for the growth of *N. fowleri*. People in some of the same areas practise cleansing rituals in which water is forced through the nares by specialised neti pot devices or other means. This is believed to be the cause of the alarming increase in the incidence of PAM in cities such as Karachi [7, 59]. However, it is very likely that other cities are also
experiencing silent outbreaks and that Karachi has become a known hotspot for PAM solely because of local expertise in PAM diagnoses. Sensitive education is needed to raise awareness of PAM, in the hope that simple alterations in practice, such as the use of water which has been boiled then cooled for neti pots, may prevent *N. fowleri* infections. We cannot presently state with certainty that *N. fowleri* is an actual emerging pathogen since we do not know unequivocally that the actual number of infections is increasing or has increased over the past 20 years, although this remains a distinct possibility (see Outstanding Questions). There does seem to be good reason to suspect that the number of *N. fowleri* cases will increase as the human population approaches its expected peak, especially in some of the regions where conditions seem most suitable for *N. fowleri* growth (UN Population Division 2017) and so the label of emerging pathogen is warranted on those grounds alone. We expect that the gender imbalance in cases will remain. Other free-living thermophilic amoebae, such as *Balamuthia mandrillaris* and some *Acanthamoeba* strains, also cause encephalitis and these too are expected to increase as temperatures increase, making awareness of pathogenic amoebae in general more important. A better understanding of the parameters that dictate the presence and abundance of the pathogens is needed. It is also clear that better options for their diagnosis, treatment and eradication are required.

Acknowledgements

Thanks to Dr David Apps (Edinburgh) for his critical appraisal of the manuscript. This work was funded by Amoebics Ltd, Edinburgh and by grant PI18/01380 from Instituto de Salud Carlos III, Spain and RICET [RD16/0027/0001 project, from Programa Redes Temáticas de Investigación Cooperativa, FIS (Ministerio Español de Salud, Madrid, Spain) and FEDER.

References

4. Carter, R. F. (1970) Description of a Naegleria sp. isolated from two cases of primary amoebic meningoencephalitis, and of the experimental pathological changes induced by it. *J. Pathol.*, 100, 217-244

Glossary

Amoeboflagellate: An amoeba that can transform reversibly into a flagellate. The genus Naegleria is a well-known amoeboflagellate.

Biofilm: A biofilm is a layer of cells usually dominated by bacteria which associate on a surface. An extracellular layer of proteins and polysaccharides is often produced by the community which may be grazed by eukaryotes such as amoebae which prefer to feed on surfaces.

Cerebrospinal fluid (CSF): The liquid percolating the brain and spinal cord.

Coliform: A group of gram-negative rod-shaped bacteria that ferment lactose. Faecal coliforms are coliforms typically present in the gut and faeces of birds and mammals.

Cribiform plate: A sieve-like extension of the ethmoid bone which supports the olfactory bulb of the brain.

Cyanobacteria: A group of photosynthetic bacteria that produce oxygen. They were known as the blue green algae although this term is now disfavoured as they are not algae.

Cyst: A resting non-dividing stage formed by many protists including Naegleria. The Naegleria cyst is usually has a single nucleus and a protective cell wall.
Dry infection and wet infection: A wet infection is defined by the patient receiving *N. fowleri* infection from an aqueous source introduced directly to the nares. A dry infection is defined as *N. fowleri* being introduced to the nares probably as cysts within inhaled dust or sand. For each PAM case, we have reviewed the literature and classified them as being either wet (usually) or dry where there is sufficient information as to how the disease was acquired. In most cases the source cannot be absolutely verified but we have been guided by the author’s opinion as to the most likely source or situation. While the majority of cases are wet, it is important not to exclude the possibility that dry infections can occur under specific conditions.

Flagellate: A cell that is capable of swimming through the possession of one or more flagella. The *Naegleria fowleri* flagellate stage typically has two flagella.

Free-living amoebae (FLA): Those amoebae capable of living without parasitizing metazoans but some of which have that ability. The term is used principally to differentiate this group from others such as Entamoebae (predominantly obligate parasites).

Fulminant: In this context a disease of rapid onset and escalation. From Latin fulmināre, to strike with lightning.

Geothermal: Heat originating from the Earth’s core produced by radioactive decay.

Groundwater: The water that lies beneath the Earth's surface in voids of various sizes between soil particles, in rock fissures and is subterranean lakes.

Harmattan season: The name given to the season between November and March in West Africa when dry and dusty air blows from the Sahara Desert.

Mound springs: Primarily an Australian phenomenon in which distinctive mounds are pushed up by springs gushing to the surface from groundwater.

Nares: The openings of the nose and nasal cavity.

Nasolacrimal ducts: Also called the “tear duct” they carry tears from the eye to the nasal cavity.

Neti pot: A devise used to facilitate the entry of water into the nares in an act of personal hygiene, as a religious act or both.

Trophozoite: The actively moving amoeboid stage of the organism.
Box 1. *Naegleria fowleri*, the pathogen

As is typical for the genus, *N. fowleri* exists in three distinct phases (Figure I): the resting cyst, a swimming flagellate and the active multiplying amoeba stage, also called the trophozoite [60]. Only the latter feeds and can invade the human host, although the flagellate is sometimes observed in cerebrospinal fluid (CSF) [45]. In active locomotion, the trophozoite is about 22µm in length and 7µm wide and the locomotory rate is about 45µm /min at 37°C [4]. The nucleus has a distinctive appearance with concentric nucleolus (inner) and karyosome (outer) regions. The flagellate is pear-shaped and 15µm long, with two apical flagella around 12µm in length. The presence of the flagellate stage has been used with other features to identify *N. fowleri* [61], but such identification is unsafe, as many strains do not produce flagellates under the conditions of this test [61, 62]. The cysts are between 7 and 15 µm in diameter and unlike some other *Naegleria*, do not have visible pores in the wall (although they have been observed under electron microscopy). The nucleus is often not visible in the cysts of *N. fowleri*, whereas it is in other *Naegleria*. Figure I shows how the stages are related to each other and the approximate times taken to transform between them under conducive conditions. *N. fowleri* can be differentiated from other FLA in brain tissue. *Acanthamoeba* is only rarely found in the CSF [1] and *Acanthamoeba* cysts are frequently seen in human brain tissue while *N. fowleri* cysts are not typically seen [63].

Figure I (in Box 1). The life cycle of *Naegleria fowleri*. The trophozoite at amoeboid stage is motile through its actin-based cytoskeleton and crawls around eating bacteria (or host cells in its parasitic mode). This is the reproductive stage and it can differentiate into a flagellate, or a cyst. The flagellate can swim through its two (usually) flagella that are microtubule-based. The cyst is a resting stage which is adopted during stressful situations such as suboptimal temperatures or lack of prey. The time taken to differentiate between these stages are shown.

Box 2. Primary amoebic meningoencephalitis (PAM), the disease.

PAM is usually described as being a rare disease and it is certainly rarely reported, as we have been able to find only 431 cases in the literature. However, there is a tendency for PAM to occur in outbreaks. 16 cases arose in one outbreak in a swimming pool [48] and 3 lethal PAM cases are suspected and only one confirmed over a 14-year period, in a “tiny population” centred around a Queensland cattle station [39]. These examples attest both to the under-diagnosed nature of PAM and to the persistence of the parasite in areas that suit it. The supposed rarity of the fulminant disease PAM must also be set against its depressingly high
mortality rate, and it is still usually diagnosed post-mortem [64]. There is a risk that outbreaks larger than those already documented may occur if vigilance fails.

Symptoms and diagnosis of PAM Patients often present with headaches, sore throat, blocked nose, fever, nausea, altered taste and smell perception and photophobia [59, 65]. Projectile vomiting may occur [46], caused by increased intracranial pressure activating the area postrema of the medulla oblongata. Lethargy and irritability often subside into unconsciousness and coma. PAM can easily be mistaken for other meningitis, and the symptoms of PAM and bacterial meningitis are very similar [66]. An early diagnosis is essential because of the very rapid development of the infection. High-powered microscopes are necessary to differentiate the motile amoebae in CSF from neutrophils and this should be done as soon as possible after lumber puncture, as the amoebae quickly degenerate outside the body unless treated carefully [67]. Skill is required to culture the amoebae from clinical samples, and this is a time-consuming activity. PCR diagnosis is effective if the correct primers are immediately available, but this is usually used to confirm a lethal infection rather than to guide clinical practise in treatment.

PAM is usually contracted through exposure to water, when the amoebae contact the nasal epithelium of the human host. The incubation period after exposure is 3-8 days, after which the disease develops rapidly, the patient typically dying 7-10 days after the first appearance of symptoms. There is no indication that PAM is infective between humans, although lab experiments suggest that mouse-to-mouse transmission of *N. fowleri* may occur [68].

A 95% mortality rate is often quoted for PAM [69] and we have found a rate of 94.6% based on the 431 cases analysed here, however among the 21 cases in which PAM was successfully treated, there are some in which the involvement of *N. fowleri* is questionable. For example, in the surviving PAM case in Allahabad, Pakistan, *N. fowleri* was only identified microscopically [70], this was also true in other apparently successful cases [71]. If we remove those apparently successful cases where there is reason to doubt the identity of the pathogen, the mortality rate rises to 96.4% for the cases analysed here.
Figure Legends

Figure 1. Global PAM status. A. Numbers of reported PAM cases from the literatures worldwide between 1961-2018. Years are from either when cases were recorded at hospitals, or in the absence of this information, the years of the publication of the report. The incidence of reports shows an increasing trend after around 2000 in world-wide totals whereas the USA report shows a less marked increase. B. USA age profile (blue) vs Indian subcontinent (ISC) age profile (orange) of PAM cases. There are more old victims from ISC than from the USA. C. World-wide gender and age bias. There are more male cases (blue) than female case (orange) but the overall age distribution is similar.

Figure 2. Worldwide distribution of reported PAM cases. Cases are clearly limited to the warmer parts of the world, but the extremely warm areas tend to show less cases in line with previous reports [15]. A recent northerly case [17] (white arrow) may suggest an expansion to the range in the US. However, it is noticeable that the dry infections (blue dots) appear to be associated with warmer areas than the wet infections (black dots). The atlas shows the annual average surface temperature (°C). Used by permission of The Center for Sustainability and the Global Environment, Nelson Institute for Environmental Studies, University of Wisconsin-Madison.

Figure 3 The temperature range of Naegleria sp. Note that the lower range for growth tends to be less well characterised than the upper temperature.

Figure 4. A summary of the habitats occupied by N. fowleri. The amoebae flourish in warm groundwater bodies [39]. *N. fowleri* exists in the warm groundwater in all three forms. The groundwater is taken to the surface by boreholes or by natural areas such as Australian mound ponds to infect warm rivers and lakes. Amoebae on the surface transform into cysts which may then be infective, especially when airborne. Amoebae may exist in the surface biofilm, in association with mid-water buoyant cyanobacteria and on and in the sediment. Flagellates are found throughout the water column.