
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Learning action effects in partially observable domains

Citation for published version:
Mourao, K, Petrick, R & Steedman, M 2010, Learning action effects in partially observable domains. in H
Coelho, R Studer & M Wooldridge (eds), ECAI 2010 - 19th European Conference on Artificial Intelligence,
Lisbon, Portugal, August 16-20, 2010, Proceedings.. IOS Press, pp. 973-974. https://doi.org/10.3233/978-1-
60750-606-5-973

Digital Object Identifier (DOI):
10.3233/978-1-60750-606-5-973

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
ECAI 2010 - 19th European Conference on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010,
Proceedings.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 29. Apr. 2024

https://doi.org/10.3233/978-1-60750-606-5-973
https://doi.org/10.3233/978-1-60750-606-5-973
https://doi.org/10.3233/978-1-60750-606-5-973
https://www.research.ed.ac.uk/en/publications/7b2e1964-1011-4996-90ca-b074bc12742d


Learning action effects in partially observable domains

Kira Mourão and Ronald P. A. Petrick and Mark Steedman 1

Abstract. We investigate the problem of learning action effects
in partially observable STRIPS planning domains. Our approach is
based on a voted kernel perceptron learning model, where action and
state information is encoded in a compact vector representation as
input to the learning mechanism, and resulting state changes are pro-
duced as output. Our approach relies on deictic features that assume
an attentional mechanism that reduces the size of the representation.
We evaluate our approach on a number of partially observable plan-
ning domains, and show that it can quickly learn the dynamics of
such domains, with low average error rates. We show that our ap-
proach handles noisy domains, conditional effects, and that it scales
independently of the number of objects in a domain.

1 INTRODUCTION AND MOTIVATION

Acquiring a domain model automatically through learning and ex-
perience gives an agent greater flexibility to handle unexpected sit-
uations, and avoids the need for a predefined world model. Existing
approaches either work within the space of transition rules to find a
“good” set, or all consistent sets, of rules [2, 3, 12, 15], or they op-
erate at the sensor level by constructing transition rules from actions
and robot sensor data coded as sets of objects or raw sensor readings,
and predicates derived from this data [7, 10]. The former, high-level,
methods have been applied to partially observable [2, 15] or non-
deterministic [12] domains, but are not applicable to domains which
are both noisy and partially observable; few are also able to learn
conditional effects. The latter, low-level, methods can learn in noisy,
partially observable domains, but the domains are much simpler,
without relations between objects, and sometimes without objects at
all. Here, we extend our previous work on learning action models in
noiseless, fully observable domains [11]. Our method learns the ef-
fects of STRIPS actions [4], extended to admit conditional effects,
in deterministic, noisy and partially observable versions of the more
complex domains typical of the high-level approaches.

2 REPRESENTATION

We learn action models from sequences of interleaved actions and
state observations. Each observation initially encompasses as much
of the world state as the agent is able to detect, with some parts of
the state potentially unobserved or corrupted by noise. We reduce
the size of each observation by only considering objects which can
be identified by a deictic reference [1], and then transform each ob-
servation into a vector to use as input to the learning model.

A deictic representation maintains pointers to objects of interest in
the world, with objects coded relative to the agent or current action.

1 University of Edinburgh, UK, email: kira.mourao@ed.ac.uk,
{rpetrick,steedman}@inf.ed.ac.uk

Figure 1. Computing deictic references: an example from the BlocksWorld
domain, in which an agent can manipulate a set of blocks on a table. Given
the action stack (A, B), i.e., stack block A on top of block B, the initial set

of objects of interest is {A, B}. The only object related to A or B is C,
since B is on C. Therefore the full set of objects of interest is {A, B, C}.

We take a similar approach to previous work applying deictic repre-
sentations to learn domain dynamics [3, 12]. For a given action in-
stance we construct the set of objects of interest, consisting of the set
of objects which are parameters of the action, and the objects which,
in the current state, are related to any object in the action parameters
(see Figure 1). This single step computation is in contrast to previous
approaches, where the set of objects under consideration is the full
transitive closure under all relations among objects. Also, whereas
previous approaches ignored objects if they were not uniquely de-
fined by deictic reference, we allow deictic references to any set of
objects that are indistinguishable relative to the action parameters.

An input vector representing the reduced state space is then con-
structed by assigning a bit for each action, 0-ary fluent, and for each
possible relation involving only the objects in the reduced state space.
The value of a bit is 1 (−1) if the corresponding fluent is true (false),
or if the corresponding action is (not) the current action. Bits for un-
observed or unused fluents are set to an arbitrary value N, which is
ignored during learning.

Vectors representing an action’s effects on a state are identical in
form to the input vectors, except that actions are excluded from the
vector, and bits are set to 1 (−1) if the corresponding fluent changes
(does not change). Bits corresponding to unobserved or unused flu-
ents are set to N.

3 LEARNING MODEL

The task of the learning mechanism is to learn the deterministic as-
sociations between action-state pairs and their effects. It is assumed
that the number and type of parameters of each action, predicate and
function are known. Action preconditions and effects are not known,
and effects may be conditional. Disjunctive effects are not allowed.
Instead, all effects are conjunctions of predicates, meaning it is suffi-
cient to learn the rule for each predicate separately. Using the vector
representation defined above, state transitions can be learnt using a
bank of classifiers, one for each bit of the output vector.

To address our learning problem we construct a variant of the
perceptron algorithm [13], using the voted perceptron [5], which is

ECAI 2010
H. Coelho et al. (Eds.)
IOS Press, 2010
© 2010 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-606-5-973

973



0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training examples

F
 s

co
re

ZenoTravel

5% obs, 0% noise

10% obs, 0% noise

15% obs, 0% noise

5% obs, 10% noise

10% obs, 10% noise

15% obs, 10% noise

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training examples

F
 s

co
re

Depots

5% obs, 0% noise

10% obs, 0% noise

15% obs, 0% noise

5% obs, 10% noise

10% obs, 10% noise

15% obs, 10% noise

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training examples

F
 s

co
re

Briefcase

5% obs, 0% noise

10% obs, 0% noise

15% obs, 0% noise

5% obs, 10% noise

10% obs, 10% noise

15% obs, 10% noise

Figure 2. Results of learning action models in standard planning domains. Error bars are 95% confidence intervals. In noiseless, fully observable domains,
models fully predict all test cases after less than 200 examples (results not shown). While observing only a small fraction of the state, without noise, the learning
model completely predicts the test set after 20000 examples, in many of the test cases: with 15% of the state observable, the F-score is not significantly different
from 1 (t-tests, p > 0.05) in any of our domains. With noise, the learnt models are clearly poorer, but some aspects of each domain are still learnt: with 15% of

the state observable, the F-score is significantly different from 1 for ZenoTravel (p = 0.004) and Briefcase (p = 0.046), but not for Depots (p > 0.05).

noise-tolerant [8] and computationally efficient, producing perfor-
mance close to the best performing maximal-margin classifiers (e.g.
SVMs) on similar problems. We use the DNF kernel [14], which al-
lows the perceptron to run over the feature space of all possible con-
junctions of bits in the input space, i.e., the space of possible rules.

4 EXPERIMENTS

We tested the learning model on standard planning domains from the
3rd International Planning Competition (IPC): Depots, ZenoTravel
and DriverLog; a standard BlocksWorld domain; and Briefcase, a
domain with conditional effects. Sequences of random actions and
resulting states were generated from PDDL domain descriptions [9]
and used as training and testing data.2 Specific problems from the
IPC were used to set the sizes of the initial states for each sequence.
The actual initial states were generated at random using the IPC3
problem generator and a Briefcase state generator [6].

To determine error bounds on our results, we used 10 different
randomly generated training and testing sets. Each training set con-
sisted of 1000-20000 actions and matching state observations. Par-
tial observability was simulated by randomly selecting a fraction (5-
20%) of bits to retain in each state vector, and setting the remaining
bits to N. Sensor noise at 10% was simulated by flipping each bit
in the state vector with probability 0.1. Each test set was a fully ob-
servable, noiseless sequence of 2000 actions and observations. We
measured the performance on our test sets by considering the fluents
which our model predicted would change versus the fluents which
did change, and calculating the balanced F-measure, the harmonic
mean of precision and recall (true positives/predicted changes and
true positives/actual changes, respectively). Selected results of the
experiments are shown in Figure 2.

5 CONCLUSIONS AND FUTURE WORK

We have presented a method for learning deterministic action models
which is fast, scalable and handles noise and partial observability of
the world state. Furthermore, the error rate of the predictions made
by the model is low. The speed, scalability and accuracy make the
approach highly suitable for use in planning applications.

Additionally, our approach can learn conditional effects. Note that
the success or failure of an action, which depends on its precondi-

2 All data was generated using the Random Action Generator 0.5 available at
http://magma.cs.uiuc.edu/filter/.

tions, is a form of conditional effect (the action has a null effect un-
less the preconditions are satisfied). Therefore action preconditions
can also be learnt, if examples of action failures as well as action
successes are provided.

A key step in future work will be to extract STRIPS-style rules
from the sets of ordered pairings of entire states presently learnt by
the model, so that the learning model can be integrated with standard
planning software. We also plan to apply our method to intrinsically
noisy and partially observable real-world robot environments.

ACKNOWLEDGEMENTS

This work was funded by the EU PACO-PLUS project (FP6-2004-
IST-4-27657) and Edinburgh University Neuroinformatics DTC.

REFERENCES

[1] P. E. Agre and D. Chapman, ‘Pengi: an implementation of a theory of
activity’, in Proc. of AAAI, pp. 268–272, (1987).

[2] E. Amir and A. Chang, ‘Learning partially observable deterministic ac-
tion models’, JAIR, 33, 349–402, (2008).

[3] S. S. Benson, Learning Action Models for Reactive Autonomous
Agents, Ph.D. dissertation, Stanford University, 1996.

[4] R. E. Fikes and N. J. Nilsson, ‘STRIPS: A new approach to the applica-
tion of theorem proving to problem solving’, AIJ, 2, 189–208, (1971).

[5] Y. Freund and R. Schapire, ‘Large margin classification using the per-
ceptron algorithm’, Machine Learning, 37, 277–296, (1999).

[6] J. Hoffmann and B. Nebel. FF domain collection.
http://www.loria.fr/˜hoffmanj/ff-domains.html.

[7] M. Holmes and C. Isbell, ‘Schema learning: Experience-based con-
struction of predictive action models’, in NIPS 17, pp. 585–562, (2005).

[8] R. Khardon and G. M. Wachman, ‘Noise tolerant variants of the per-
ceptron algorithm’, JMLR, 8, 227–248, (2007).

[9] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,
M. Veloso, D. Weld, and D. Wilkins, ‘PDDL - the planning domain
definition language’, Technical report, CVC TR-98-003, Yale, (1998).

[10] J. Modayil and B. Kuipers, ‘The initial development of object knowl-
edge by a learning robot’, Robot. Auton. Syst., 56(11), 879–890, (2008).

[11] K. Mourão, R. Petrick, and M. Steedman, ‘Using kernel perceptrons to
learn action effects for planning’, in Proc. of CogSys, pp. 45–50, (2008).

[12] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, ‘Learning sym-
bolic models of stochastic domains’, JAIR, 29, 309–352, (2007).

[13] F. Rosenblatt, ‘The perceptron: a probabilistic model for information
storage and organization in the brain’, Psych. Rev., 65(6), 386–408,
(1958).

[14] K. Sadohara, ‘Learning of boolean functions using support vector ma-
chines’, in Proc. of ALT, pp. 106–118, (2001).

[15] Q. Yang, K. Wu, and Y. Jiang, ‘Learning action models from plan ex-
amples using weighted MAX-SAT’, AIJ, 171(2-3), 107–143, (2007).

K. Mourão et al. / Learning Action Effects in Partially Observable Domains974


