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SUMMARY

Drosha is the main RNase III-like enzyme involved in
the process of microRNA (miRNA) biogenesis in the
nucleus. Using whole-genome ChIP-on-chip anal-
ysis, we demonstrate that, in addition to miRNA
sequences, Drosha specifically binds promoter-
proximal regions of many human genes in a tran-
scription-dependent manner. This binding is not
associated with miRNA production or RNA cleavage.
Drosha knockdown in HeLa cells downregulated
nascent gene transcription, resulting in a reduction
of polyadenylated mRNA produced from these
gene regions. Furthermore, we show that this func-
tion of Drosha is dependent on its N-terminal pro-
tein-interaction domain, which associates with the
RNA-binding protein CBP80 and RNA Polymerase
II. Consequently, we uncover a previously unsus-
pected RNA cleavage-independent function of
Drosha in the regulation of human gene expression.
INTRODUCTION

MicroRNAs (miRNAs) are short noncoding regulatory molecules,

involved in diverse biological processes. Biogenesis of miRNAs

involve a nuclear phase, where the Microprocessor complex,

comprising Drosha, an RNase III-like enzyme and its cofactor

DGCR8, process primary miRNAs (pri-miRNAs) into a 70 nt

pre-miRNA (Han et al., 2004; Lee et al., 2003; Zeng et al.,

2005). This occurs cotranscriptionally from both independently

transcribed and intron-encoded miRNAs (Ballarino et al., 2009;

Kim and Kim, 2007; Morlando et al., 2008). Following Drosha-

mediated RNA cleavage and pre-miRNA release from the

nascent RNA, 50 and 30 nascent RNA ends are trimmed by 50-30

Xrn2 and 30-50 exosome (Morlando et al., 2008), and the pre-

miRNA precursor is exported to the cytoplasm (Lund et al.,
Cell Re
2004; Yi et al., 2003). Here, a second RNase III enzyme, Dicer,

further processes the pre-miRNA into the mature miRNA duplex

(Bernstein et al., 2001) that targets specific mRNAs for degrada-

tion or translational inactivation (reviewed in Bartel, 2009).

MiRNA levels are tightly regulated at the posttranscriptional

level by a number of RNA-binding proteins (Siomi and Siomi,

2010). Furthermore, Drosha can directly regulate levels of Micro-

processor complex by cleaving hairpin structures in DGCR8

mRNA, thereby decreasing DGCR8 protein levels (Han et al.,

2009; Triboulet et al., 2009). Along the same lines, Drosha knock-

down in Drosophila leads to upregulation of some mRNAs con-

taining conserved RNA hairpins, potentially recognized by the

Microprocessor complex (Kadener et al., 2009). Several recent

studies demonstrated the ability of Microprocessor complex to

cleave mRNAs, thus regulating their expression. Many Drosha-

dependent mRNA cleavage events were identified in mESCs,

consistent with Microprocessor regulation of coding mRNAs

through direct cleavage (Karginov et al., 2010). Drosha can

also cleave the TAR hairpin of the HIV-1 transcript, resulting in

premature termination of RNA polymerase II (Pol II) (Wagschal

et al., 2012). A recent DGCR8 HITS-CLIP analysis extended

these observations and revealed general noncanonical functions

of the Microprocessor complex (Macias et al., 2012). Transcrip-

tome and proteome studies of mice lacking Drosha and Dicer

suggest that both enzymes have nonredundant functions, as

their deficiency can induce different phenotypes (Chong et al.,

2010). Although many RNAs were stabilized by Drosha deple-

tion, some were downregulated, consistent with Drosha pos-

sessing independent functions to its role in canonical miRNA

biogenesis.

In human cells Drosha exists in two distinct multiprotein com-

plexes (Gregory et al., 2004). The smaller complex, containing

just Drosha and DGCR8, is necessary and sufficient for miRNA

processing. The larger complex, displaying only weak pre-

miRNA processing activity in vitro, contains DEAD-box RNA hel-

icases, double-stranded RNA-binding proteins, hnRNP proteins,

members of FUS/TLS family of proteins, and the SNIP1 protein,

implying additional functions in gene expression. Thus, DEAD
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box helicases p68/p72 increase Drosha processing efficiency for

a subset of miRNAs and at gene-specific promoters interact with

transcriptional coactivators and Pol II and regulate alternative

splicing (Fuller-Pace and Ali, 2008). Nuclear scaffolding protein

hnRNPU and members of FUS/TLS family are also associated

with regulation of transcription (Wang et al., 2008). SNIP1, a

component of a large SNIP1/SkIP-associated complex, involved

in transcriptional regulation and cotranscriptional processing,

interacts with Drosha and plays a role in miRNA biogenesis

(Fujii et al., 2006; Yu et al., 2008). Ars2 is implicated in RNA

silencing that functions in antiviral defense in flies and cell prolif-

eration in mammals (Gruber et al., 2009; Sabin et al., 2009). It

interacts with the nuclear cap-binding complex (CBP20/

CBP80) and is involved in miRNA biogenesis, suggesting a

link between RNA silencing and RNA-processing pathways.

CBP20/CBP80 proteins are also implicated inmiRNA biogenesis

in plants (Kim et al., 2008). Overall, the existence of this large

Drosha-complex with only weakmiRNA-processing activity sug-

gests that Droshamay play multiple roles in miRNA-independent

gene regulation.

Using genome-wide and gene-specific approaches we now

show that Drosha binds to the promoter-proximal regions of

many human genes in a transcription-dependent manner. Simi-

larly, DGCR8 binds promoter-proximal regions of many human

genes, suggesting that the whole Microprocessor is recruited

at promoter regions. We also find that Drosha interacts with

Pol II and its depletion from human cells causes transcriptional

downregulation with a concomitant decrease in nascent and

mature mRNA levels. This positive function of Drosha in gene

expression is mediated through its interaction with the RNA-

binding protein CBP80 and dependent on the N-terminal

protein-interaction domain of Drosha. Thus, results presented

in this paper demonstrate anmiRNA- and cleavage-independent

function of Drosha.

RESULTS

Drosha Binds 50 Ends of Human Genes in a
Transcription-Dependent Manner
Pre-miRNA processing occurs cotranscriptionally. Conse-

quently binding of Drosha to nascent miRNA sequences can

be detected using chromatin immunoprecipitation (ChIP) anal-

ysis (Morlando et al., 2008). To investigate genome-wide binding

of Drosha, we employed a ChIP-on-chip approach using human

5.1.1 ENCODE array. Our results show that, in addition tomiRNA

regions, Drosha binds many human genes. This binding is
Figure 1. Drosha Binds 50 Ends of Human Genes in a Transcription-De

(A) (i) Metagene profiles of Drosha binding around transcriptional start sites (TSS

ChIP-on-chip analysis in HeLa cells using ENCODE array. (ii) Average Drosha C

regions, gene bodies, TSSs, and TxEnds. Error bars represent SEM. Number of

icantly enriched (p < 0.001, t test) compared to all intergenic gene bodies or TxE

(B–D) Pol II and Drosha ChIP analyses on g-actin (B) and GAPDH (C) genes and

amplicons are shown above the gene diagrams.

(E) (i) qRT-PCR analysis of g-actin, b-actin and GAPDH pre-mRNAs fromHeLa cel

rRNA. The amount of RNA in the untreated cells was taken as 1. Drosha (ii) and H3

or treated with 5 mg/ml of actinomycin D for 6 hr.

Bars in (B)–(E) represent the average values from at least three biological experim

Cell Re
enriched at the transcriptional start sites (TSSs), compared to

the ends of transcripts (TxEnd), other gene body, or intergenic

regions (Figure 1A; full gene list in Table S1). In particular, we

observed that, out of 160 TSS-proximal probes, 55 (34%) had

more than 2-fold enrichment of Drosha-ChIP signal over the

input signal. This is significantly more than 1,669 (10%) out of

15,998 total probes or 953 (11%) out of 8,333 probes in the

gene bodies (p < 0.0001, Fisher’s exact test). The same level

of enrichment was observed for four (40%) out of ten probes

overlapping with annotated miRNA regions (Figure 1Aii). By

way of illustration, we present SELENPB1 and EEF1A1 genes,

which scored positively in our genomic analysis, where Drosha

selectively binds to 50-proximal gene regions (Figure S1). Genes

that are not expressed in HeLa cells such as IL4 and TARM1

demonstrated only background Drosha signal (Figure S1). We

also identified genes, such as G6PD, ZNF687, and FUNDC2,

which are expressed in HeLa cells but did not demonstrate

any significant Drosha enrichment (Figure S3A). We further

confirmed these array data using gene-specific primers in

ChIP experiments. In particular, we observed an enrichment of

Drosha binding to promoter-proximal region of SELENBP1

gene, colocalizing with Pol II peak (Figure S2A). We did not

detect any significant binding of Drosha or Pol II to IL4 and

TARM1 genes, further confirming ChIP-on-chip results (Figures

S2B and S2C). We also did not detect any significant Drosha

binding over promoter-proximal region, enriched for Pol II, on

G6PD gene (Figure S3C).

To investigate the function of Drosha at the beginning of

human genes in more detail, we compared Pol II and Drosha

binding profiles for specific human genes. Both Pol II and Drosha

were enriched over the promoter-proximal regions of human

g-actin, GAPDH, PTB, b-actin, and intronless TAF7 genes (Fig-

ures 1B, 1C, and S4A–S4C). The enrichment of Drosha observed

over these genes is higher than over themiR-330 locus within the

EML2 gene, used as a positive control for Drosha binding (Mor-

lando et al., 2008) (Figure 1D). As a negative control, we used

ChIP for histone H3, which was found to be depleted from pro-

moter-proximal regions and enriched in the body of these genes

(Figure 1Eiii). To test if Drosha binding to these genes is tran-

scription dependent, we treated HeLa cells with Pol II transcrip-

tional inhibitor actinomycin D. Following this treatment, we

observed �80% reduction in pre-mRNA levels and a substantial

reduction in Drosha binding to miR-330 locus, g-actin, and

b-actin genes (Figures 1E and S4C). In contrast, we saw no effect

on histone H3 binding (Figure 1Eiii). These results indicate that, in

addition to miRNA sequences, Drosha binds 50 end regions of
pendent Manner

, top) and transcriptional termination sites (TxEnd, bottom) based on Drosha

hIP enrichment over input (log2) for probes overlapping miRNAs, intergenic

probes covering each region is indicated above the bars. TSS signal is signif-

nd regions.

the miR-330 genomic locus, compared to b-actin ex 4 (D) in HeLa cells. ChIP

ls mock-treated or treated with 5 mg/ml actinomycin D for 6 hr, normalized to 5S

(iii) ChIPs on g-actin gene andmiR-330 gene locus in HeLa cells, mock-treated

ents ±SD. See Figures S1–S5.
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human protein-coding genes in a transcription-dependent

manner. Furthermore, we also searched for potential correlation

between Drosha recruitment using our Drosha ChIP-array data

and level of Pol II signal determined from available chromatin

immunoprecipitation sequencing (ChIP-seq) experiments in

UCSC depository. We have calculated Pol II signal in 1 kb region

around the TSS for Refseq transcripts covered by probes in the

Drosha array. Following this analysis, we identified a weak

(Pearson R = 0.41) but significant (p = 1e-6) correlation between

the Drosha probe signal at TSS and Pol II ChIP density (Fig-

ure S5), indicating that Drosha is preferentially recruited to the

Pol II-rich regions. Overall, these results suggest that Drosha

binding may be required for enhanced gene expression.

DGCR8 Binds Promoter-Proximal Regions of Human
Genes
Drosha is known to bind miRNA sequences as part of the Micro-

processor complex, which also contains DGCR8, a double-

stranded RNA-binding protein that is deleted in the DiGeorge

syndrome (Landthaler et al., 2004). To investigate whether Dro-

sha binds 50 regions of human genes together with DGCR8, we

carried out ChIP experiments in HeLa cells (Figure 2A). DGCR8

was found to be enriched over the miR-330 locus, g-actin,

GAPDH, and SELENBP1 promoter-proximal gene regions (Fig-

ure 2A). These regions overlap Drosha binding regions (Figures

1, S2, and S4), suggesting that Drosha and DGCR8 may form

a complex at promoter-proximal regions of human genes.

To substantiate these findings in a genome-wide fashion, we

analyzed a DGCR8 HITS-CLIP experiment that was performed

with endogenous and overexpressed DGCR8 protein in

HEK293T cells to identify DGCR8 endogenous RNA targets

(Macias et al., 2012). In particular, we observed 1,101 DGCR8

clusters, corresponding to 967 genes, in the sense orientation

(see supplemental material in Macias et al., 2012) and 196

DGCR8 clusters, corresponding to 174 genes, in antisense

orientation (Figure 2C; Table S2 for gene identity). Interest-

ingly, significant clusters of DGCR8 binding were seen

at �1,000/+200 bp from the TSSs and just upstream of the

transcription termination regions (TTSs) (false discovery rate

[FDR] < 0.01) (Figure 2B). In particular, we observed significant

enrichment of DGCR8 binding in the region within 200 nt down-

stream of the TSS (sense versus antisense ks test p < 2.2e-16;

Figure 2B). DGCR8 binding in this region is most pronounced

in genes expressed at medium and high levels when compared

to genes expressed at lower levels (ks test p < 2.2e-16 in both

cases) (Figure S7A). These results clearly indicate that DGCR8,

similar to Drosha, binds to promoter-proximal regions of human
Figure 2. DGCR8 Binds Promoter-Proximal Regions of Human Genes

(A) DGCR8 ChIP analysis on g-actin, GAPDH, and SELENBP1 genes and the miR

Bars represent the average values from at least three biological experiments ±S

(B) DGCR8 HITS-CLIP. Distribution of significant sense (green) and antisense

transcription termination regions (TTSs; bottom panels) of protein coding genes

number of genes detected as a percentage, whereas the x axis represents the lo

(C) Distribution of sense and antisense DRCG8 CLIP binding sites. 1,101 DGCR8 b

antisense binding sites correspond to 174 genes.

(D) Drosha in vitro processing reactions in HeLa nuclear extracts with b-actin p

positions of pre-miRNAs.

See also Figures S6 and S7.

Cell Re
genes. However, it should be noted that when we analyzed

DGCR8binding to splicedmRNA transcripts (cDNAs) (Figure S6),

we also see an enrichment over exonic sequences immediately

downstream of the TSS. Again, this is seen in genes withmedium

and high expression (ks test p < 2.2e-16 in both cases) (Fig-

ure S7B). This may be related to the reported binding of

DGCR8 to multiple exonic regions (Macias et al., 2012), poten-

tially reflecting an additional function.

Promoter-Proximal Binding of Drosha Is Not Related to
miRNA Synthesis or RNA Cleavage
Binding of Drosha to promoter-proximal regions of human genes

may be related to its potential role in processing miRNAs from

these genomic regions, even though such elements are not

annotated in the human genome databases. To test if Drosha

binds and cleaves miRNAs present in promoter-proximal re-

gions, we performed in vitro pri-miRNA cleavage assays in

HeLa nuclear extracts (Guil and Cáceres, 2007). Using in vitro

transcription reactions, we generated radiolabeled RNAs from

gene regions, identified by Drosha ChIP. We employed miR-

17-92 cluster within the C13orf25 human genomic region as a

positive control for miRNA production. Following in vitro cleav-

age assay in HeLa extracts, miRNAs were generated from the

control miR-17-19a sequences but not from the promoter-prox-

imal region of the b-actin gene (Figure 2D). We also failed to

detect pre-miRNAs or RNA cleavage products in vitro for

promoter-proximal regions of other genes, identified in Drosha

ChIP assays (data not shown). These findings suggest that Dro-

sha binding over promoter-proximal regions is not associated

with miRNA synthesis and RNA cleavage.

Drosha Knockdown Causes Transcriptional
Downregulation and a Decrease in Pre-mRNA and
Poly(A)+ RNA
To investigate the promoter-associated function of Drosha, we

performed RNAi-induced Drosha knockdown in HeLa cells (Fig-

ure 3A). Following Drosha depletion, we observed a small in-

crease in Pol II binding over the promoters of g-actin andGAPDH

genes, using ChIP analysis (Figure 3A). We also observed an

�20%–40% decrease in pre-mRNA levels and �30%–60%

decrease in poly(A)+ RNA levels in HeLa cells depleted for

Drosha (Figure 3B). In contrast, we did not detect any significant

change in the levels of poly(A)+ and pre-mRNA corresponding to

G6PD, ZNF687, and FUNDC2 genes, for whichwe observed lack

of promoter-proximal Drosha binding (Figures S3B and S3C).

This suggests the specificity of observed transcriptional effects,

following Drosha depletion.
-330 genomic locus in HeLa cells. SELENBP1 gene diagram is in Figure S2A.

D.

(red) reads mapping around transcription start sites (TSSs; top panels) and

, as determined by CEAS software, using FDR < 0.01. The y axis shows the

cation in relation to the position of TSS and TTS.

inding sites in the sense orientation correspond to 967 genes, and 196 DGCR8

romoter-proximal region and miR17-18-19a sequences. Arrows indicate the
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To evaluate if Drosha has a direct effect on transcription, we

employed nuclear run-on (NRO) using Br-UTP as the labeled

nucleotide (Core and Lis, 2008; Lin et al., 2008). The advantage

of Br-UTP NRO over Pol II ChIP is the ability of Br-UTP NRO to

detect actively transcribing polymerases, as opposed to total

Pol II levels detected by ChIP. As demonstrated in Figure 3C,

we observed a substantial decrease in the level of nascent tran-

scription for TAF7, PTB, and SELENBP1 genes in Drosha-

knocked-down cells. As a negative control for this experiment,

we used IL4 and TARM1 genes. These genes are not expressed

in HeLa cells; hence, we did not observe any detectable tran-

scription signal in Br-UTP NRO reactions. These results suggest

that Drosha has a direct positive effect on transcription, consis-

tent with the genome-wide expression data, where highly

expressed genes correlated with increased Drosha binding on

TSSs (Figure 1A). Furthermore, the antisense transcripts de-

tected over the promoter-proximal region of the b-actin gene

were also decreased upon Drosha depletion (Figure S4D). These

results further indicate that Drosha is not involved in the

cleavage of nascent sense or antisense RNA transcripts, point-

ing toward a cleavage-independent function of Drosha in human

gene expression.

Drosha Regulates the Expression of a Heterologous
Reporter
We next employed a b-actin/EGFP reporter plasmid, where

transcription of EGFP is driven by the b-actin promoter, fused

to b-actin exon 1 and intron 1 regions (Qin and Gunning, 1997)

(Figure 3D). As described above, Drosha binds the promoter-

proximal region of b-actin gene (Figure S4C). Interestingly, in

HeLa cells depleted for Drosha we observed �75% reduction

in expression of EGFP mRNA from the plasmid (Figure 3D),

recapitulating downregulation of endogenous b-actin mature

and pre-mRNAs (Figure 3B). These results suggest that Drosha

plays a positive role in the regulation of b-actin/EGFP expression.

Next, we cotransfected b-actin/EGFP reporter plasmid with

RNAi-resistant Flag-tagged Drosha (WT), a catalytic mutant

E110aQ (aQ), unable to process miRNAs, and D390 construct

into 293 cells, depleted for Drosha, using siRNA2 (Han et al.,

2004). The D390 Drosha construct is active in miRNA processing

but lacks the N-terminal proline-rich and RS-rich domains, pro-

posed to be important for Drosha protein-protein interactions
Figure 3. Drosha Depletion Causes Transcriptional Downregulation an

(A) Western blot analysis of protein extracts (50 mg) frommock-treated and Drosha

ChIP across g-actin (ii) and GAPDH (iii) genes in mock-treated and Drosha-deple

(B) qRT-PCR analysis of pre-mRNA (i) and poly(A)+ RNA (ii) in mock-treated and Dr

(C) Br-UTP NRO analysis carried out in mock-treated and Drosha-depleted cells.

of U-RNA produced over a specific gene probe. The level of Br-UTP RNA in moc

(D) Diagram of b-actin/EGFP plasmid. Promoter, exon 1, and intron 1 sequences

primers are shown above the diagram. SV40 30 UTR contains a poly(A) signal, in

mock-treated and Drosha-depleted HeLa cells.

(E) Top, domain structure of Drosha protein. Double-stranded RNA-binding (dsR

shown. Positions of catalytic E110aQ (aQ) mutation and D390 deletion of the N

Bottom, qRT-PCR analysis of Drosha mRNA (i) and EGFPmRNA (iii) in Drosha-dep

D390 constructs. The level of Drosha (i) or EGFP (iii) mRNA in cells, overexpress

mRNA, was used for Drosha depletion in overexpression experiments. (ii) Western

Drosha WT, aQ, and D390 plasmids, probed with Flag antibody. The positions o

Bars in (A)–(E) represent average values from at least three independent experim

Cell Re
(Han et al., 2004) (Figure 3E). Both mRNAs and proteins corre-

sponding to WT, aQ, and D390 Drosha were expressed at a

high level in 293T cells, depleted for endogenous Drosha (Fig-

ure 3Ei and 3Eii). Overexpression of both WT and aQ catalytic

Drosha mutant resulted in the increase of EGFP mRNA (Fig-

ure 3Eiii). In contrast, overexpression of D390 construct had no

significant effect on the expression of EGFP mRNA. These re-

sults suggest that Drosha plays a positive role in the regulation

of the b-actin promoter. Importantly, this Drosha function is

independent of its ability to cleave RNA but does require the

N-terminal protein-protein interaction domain.

Drosha Regulates Human Gene Expression through
Interaction with CBP80 and RNA Polymerase II
We hypothesize that the cleavage-independent stimulatory role

of Drosha on gene expression may be mediated through its

association with protein cofactors. We therefore performed

coimmunoprecipitation experiments and found that transiently

overexpressed Flag-tagged Drosha interacts with both unphos-

phorylated (IIA) and phosphorylated (IIO) forms of Pol II in 293T

cells, supporting its role in transcriptional regulation. Drosha

also interacts with CBP80 and Ars2 proteins, involved in miRNA

biogenesis and RNA processing pathways, respectively (Gruber

et al., 2009; Sabin et al., 2009) (Figure 4A). Furthermore, by ChIP

analysis we found that CBP80 protein binds promoter-proximal

regions of g-actin and GAPDH genes, colocalizing with Drosha

binding (Figures 4B and 4C). We next observed that Drosha-

CBP80 interaction is not affected by the aQ mutation in the cat-

alytic domain of Drosha but is significantly reduced when the

N-terminal domain of Drosha is deleted in D390 construct or

when both D390 and aQ mutations are combined (Figure 4D,

top panel). These results strongly support the view that Drosha

interacts with CBP80 through its N-terminal RS domain. We

also studied the interaction of Drosha with Pol II (Figure 4D,

middle). Similar to CBP80, a catalytic mutation in Drosha (aQ)

does not affect its interaction with Pol II. However, the Drosha

D390 construct showed reduced interaction with Pol II, and

specifically with its phosphorylated form (IIO). A similar effect

was observed with D390 aQ construct. This suggests that the

N-terminal domain of Drosha is particularly important for Dro-

sha-mediated transcriptional effects in human cells because it

mediates interaction of Drosha with CBP80 and Pol II. We also
d Decreases Pre-mRNA and Poly(A)+ RNA Levels

siRNA-treated HeLa cells, probedwith Drosha and GAPDH antibodies (i). Pol II

ted HeLa cells.

osha-depleted cells. The level of RNA inmock-treated samples was taken as 1.

Amount of nascent Br-UTP RNAwas calculated by subtracting the background

k-treated samples was taken as 1.

are derived from the human b-actin gene, indicated by dashed line. qRT-PCR

dicated with an arrow. qRT-PCR analysis of Drosha (i) and EGFP (ii) mRNAs in

BD), RNaseIII (RIIIa, RIIIb), proline-rich, and serine-arginine (RS) domains are

-terminal proline-rich and RS-rich domains are indicated above the diagram.

leted 293T cells, overexpressed with RNAi-resistant Flag, DroshaWT, aQ, and

ed with Flag was taken as 1. siRNA2, targeting 30 UTR of endogenous Drosha

blot of total protein extracts (50 mg) from 293T cells, overexpressed with Flag,

f the marker are indicated on the left.

ents ±SD. In (B), (D), and (E), the levels of RNA were normalized to 5S rRNA.
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observed that interaction of Drosha with CBP80 and Pol II is RNA

independent (Figure 4E). Consequently, this result provides a

molecular explanation for the ability of Drosha to regulate gene

expression in a miRNA- and cleavage-independent manner.

DISCUSSION

We demonstrate the existence of a miRNA- and cleavage-inde-

pendent function of Drosha in the regulation of human gene

expression. Combining whole-genome analysis with gene-spe-

cific approaches, we demonstrate that Drosha binds to the 50

ends of human genes in a transcription-dependent manner (Fig-

ure 1). This binding is not associated with miRNA biogenesis or

RNA cleavage but correlates with the level of gene expression

(Figures 1 and 2). Depletion of Drosha from HeLa cells led to

direct downregulation of transcription based on nuclear run-on

and Pol II accumulation at the promoters of these genes, result-

ing in reduced levels of pre-mRNA and poly(A)+ mRNA (Figure 3).

This suggests a positive effect of Drosha on gene transcription.

ChIP and HITS-CLIP analysis of DGCR8 also revealed binding

sites at promoter-proximal regions, enriched at genes expressed

at a higher level, suggesting that Drosha andDGCR8may bind to

promoter regions as a complex (Figures 2 and S7). A positive

function of Drosha in the regulation of gene expression was

further confirmed using a heterologous reporter construct,

where Drosha overexpression influences reporter expression

(Figure 3). This function of Drosha is independent of its catalytic

activity andmediated through its N-terminal domain, which inter-

acts with the RNA-binding protein CBP80 and Pol II, which also

bind to the 50 end of human genes (Figures 3 and 4). Taken

together, these results suggest a model whereby Drosha pro-

motes gene expression in a cleavage-independent manner by

binding to RNA hairpins formed at the 50 ends of the nascent

RNAs and interacting with CBP80 and Pol II, through its N-termi-

nal RS domain (Figure 4F).

Initially, we hypothesized that this positive function of Drosha

may be associated with generation/regulation of short promoter-

associated transcripts (PROMPTs), originally predicted to regu-

late transcription through changes in chromatin structure,

promoter methylation, or Pol II recycling (Preker et al., 2008).

PROMPTs may direct Drosha to the beginning of the gene

through interaction with its binding factors. In our studies, both

sense and antisense transcripts, detected over the promoter-

proximal regions, were destabilized in Drosha-depleted cells
Figure 4. Drosha Regulates Human Gene Expression through Its Inter

(A) Pull-down experiments performed with anti-Flag in 293 cells, overexpressed w

Ars2, and CBP80 antibodies. Input represents 1% of material added to IP.

(B and C) CBP80 ChIP analyses across g-actin (B) and GAPDH (C) genes andmiR

independent experiments ±SD.

(D) Pull-down experiments performedwith anti-Flag in 293 cells, overexpressedw

material added to IP. Western blot was probed with CBP80 (top panel) and Pol II (m

proteins.

(E) Pull-down experiments performed with anti-Flag in 293 cells, overexpressed w

50 mg/ml of RNase A. Input represents 1% of material added to IP. Western blot

(F) Model for the function of Drosha in the regulation of human gene expression

complex with DGCR8, binds GC-rich hairpins at the promoter-proximal regions o

and CBP80 through its N-terminal proline-rich domain. Drosha can enhance gen

results in decrease of nascent transcription and subsequent decrease in the am

Cell Re
(Figure S4D), suggesting that Drosha does not cleave these tran-

scripts and its function is not mediated through PROMPTs.

Drosha binding at the beginning of human genes may be also

related to Pol II release from promoter-proximal pausing events

and be required for the recruitment of transcription/RNA pro-

cessing factors. Interestingly, Drosha binding coincides with

the binding site of the negative elongation factor NELF, which

defines the ‘‘late’’ elongation checkpoint, ensuring conversion

to productive elongation mediated by phosphorylation of Pol II

CTD, NELF, and DSIF by the positive transcription elongation

factor b (P-TEFb) (Egloff et al., 2009). As both nucleosome posi-

tioning and chromatin modifications play an important role in the

elongation functions of P-TEFb, we also checked whether Dro-

sha knockdown causes a change in chromatin modifications.

However, we did not observe any significant changes (data not

shown). This suggests that Drosha regulates gene expression

through a different mechanism. GC-rich sequences are known

to be enriched in the promoter regions of human genes (Calistri

et al., 2011). Transcripts for these sequences are likely to form

RNA hairpin structures, predicted to be suitable for Micropro-

cessor binding mediated by DGCR8 (Macias et al., 2012; Table

S1). If Drosha were to cleave such RNAs, the consequences of

Drosha cleavage across the whole human genome would be

detrimental to cellular survival. We hypothesize that Drosha

does not cleave promoter-associated RNA but is instead utilized

as a positive regulator of gene expression. We further analyzed

the structures found in promoter transcripts and compared

them tomiRNA, snoRNAs, and protein-coding region structures,

found to be bound by DGCR8 in CLIP analysis. Our bioinformatic

analysis confirmed that structures in promoter regions have

shorter stems, higher minimum free energy, and lower base-

pairing probability (Figure S8). In addition, promoter transcripts

also lack motifs important for the processing of the stem, such

as TG dinucleotide at the base of the stem and CNNC motif

downstream of the stem, as described in Auyeung et al. (2013).

Taken together, this analysis suggests that promoter structures

may be less stable, and their recognition and processing by

the Microprocessor complex may be less efficient compared

to miRNAs or other sequences cleaved by Drosha.

Evidence that components of the miRNAmachinery may have

additional functions comes from several previous studies. In

early-stage thymocytes, Drosha recognizes and cleaves mRNAs

harboring secondary stem-loop structures (Chong et al., 2010).

Drosha can also regulate viral gene expression of Kaposi’s
action with CBP80 and Pol II

ith Flag and DroshaWT-Flag constructs. Western blots were probed with Pol II,

-330 gene locus in HeLa cells. Bars represent average values from at least three

ith Flag, DroshaWT, aQ,D390, andD390 aQconstructs. Input represents 1%of

iddle panel) and FLAG (bottom panel) antibodies. Asterisks indicate full-length

ith Drosha WT construct. Cell extracts were nontreated (�) or treated (+) with

was probed with CBP80 (top panel) and Pol II (bottom panel) antibodies.

. Following transcription of nascent RNA by Pol II, Drosha, most probably in a

f human genes. Drosha does not cleave such hairpins, but it interacts with Pol II

e expression, independently of its RNA cleavage function. Depletion of Drosha

ount of nascent and poly(A)+ mRNA.
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Sarcoma-associated Herpesvirus (KSHV) (Lin and Sullivan,

2011). DGCR8 together with Drosha controls the abundance of

many cellular RNAs, including noncoding RNAs, mRNAs, and

alternatively spliced isoforms (Macias et al., 2012). Finally,

Microprocessor can regulate transcription of some cellular

mRNA and HIV provirus, causing Pol II premature termination

through the cleavage of the TAR stem-loop structure (Wagschal

et al., 2012). These regulatory activities of Drosha each involve

recognition and cleavage of target RNAs in an analogousmanner

to its function in miRNA biogenesis in contrast to the positive

function of Drosha on transcription described here. Possibly

this positive function of Drosha is related to the action of RNA-

binding factors, known to modulate the function of Drosha in

human cells. Such factors are likely to interact with the N-termi-

nal proline-rich and RS domains, proposed to be the main sites

of Drosha protein-protein interactions. We confirmed the previ-

ously described interaction between Drosha and CBP80 and

Ars2 proteins (Gruber et al., 2009; Sabin et al., 2009). Further-

more, our results also show that Drosha interacts with the C-ter-

minal domain (CTD) of Pol II (Figure 4). This interaction may be

direct or mediated via proteins, containing RS domains and

interacting with the CTD, potentially modulating Drosha’s

cleavage-independent function. Interestingly, in Drosophila the

key RNAi components Dicer 2 and Argonaute 2 associate with

chromatin and interact with the core transcription machinery,

affecting Pol II dynamics (Cernilogar et al., 2011), further sup-

porting the role of RNAi machinery in transcriptional regulation.

Because both Drosha and Dicer may have additional roles to

miRNA biogenesis future studies will be necessary to evaluate

the full spectrum of molecular functions that these RNase-III-

like enzymes play in human cells. This will represent an exciting

avenue for future research in gene expression.

EXPERIMENTAL PROCEDURES

Plasmids

pCK-Flag WT, aQ, and D390 Drosha constructs (Han et al., 2004) and b-actin/

EGFP plasmid (Qin and Gunning, 1997) were described previously. pflag-

CMV-2 (Flag) was purchased from Sigma-Aldrich (E7398).

RNA Analysis

Total RNA was harvested using TRIZOL reagent (Invitrogen) followed by

DNase I treatment (Roche). Total RNA (2 mg) was reverse-transcribed using

SuperScript Reverse Transcriptase (Invitrogen) and random hexamer primers

(Invitrogen) or gene-specific primers, as described in the Supplemental Exper-

imental Procedures and Table S3, followed by qPCR. Gene-specific primers

were used in all figures, apart from Figure 3Eiii, where random hexamers

were used for quantitative RT-PCR (qRT-PCR), following the manufacturer’s

description (Invitrogen).

In Vitro Processing Assays

MiR-17-19 and g-actin gene regions were amplified from genomic DNA using

T7+b-actin (F/R) and T7+miR-17-19 (F/R) primers accordingly. In vitro pro-

cessing was performed as in Guil and Cáceres (2007).

RNAi and Protein Analysis

The RNAi was carried out as described (Wollerton et al., 2004). mRNA target

sequence for Drosha small interfering RNA (siRNA) duplex was 50-CGA

GUAGGCUUCGUGACUU-30 (siRNA1) and 50-GAGUAUUUACUUGCUCAG

UAA-30 (siRNA2). siRNA1 was used in all figures apart from Figure 3E, where

siRNA2 was used. Pull-downs were carried out in RNase A nontreated ex-
1508 Cell Reports 5, 1499–1510, December 26, 2013 ª2013 The Aut
tracts, except Figure 4E where 50 mg/ml RNase A was used to treat cell ex-

tracts during the pull-down procedure as described in Gruber et al. (2009).

The immunoprecipitated proteins were detected by western blotting. Western

blots were probed with Drosha (AbCam), actin (Sigma-Aldrich), GAPDH

(Sigma-Aldrich), Pol II (Covance), and CBP80 (Sigma) antibodies.

ChIP and HITS-CLIP Analyses

ChIP analysis was carried out as previously described (West et al., 2004). Five

micrograms of each antibody was used per ChIP. The immunoprecipitated

DNAs were used as templates for qPCR. Drosha Chip-on-chip experiments

were carried out as described in DeGobbi et al. (2007) and in the Supplemental

Information. HITS-CLIP for DGCR8 was based on a published protocol (Wang

et al., 2009) with minor modifications, as described in Macias et al. (2012) and

the Supplemental Information.

Br-UTP Nuclear Run-on Analysis

The Br-UTPNROwas carried out largely as described (Lin et al., 2008; Skourti-

Stathaki et al., 2011) with some modifications. Nuclear pellets were resus-

pended in transcription buffer (40 mM Tris-HCl [pH 7.9], 300 mM KCl,

10 mM MgCl2, 40% glycerol, 2 mM DTT) and 10 mM mix of rATP, rCTP,

rGTP, and Br-UTP or rUTP (in the control samples). The NRO reaction was

performed at 30�C for 30 min. Total RNA was isolated using TRIzol reagent

(Invitrogen) according to manufacturer’s instructions and treated with

RNase-free DNase I (Roche). Two microliters of anti-BrU antibody (Sigma-

Aldrich) was preincubated with 30 ml of Protein G Dynabeads (Upstate) and

10 mg tRNA per sample for 1 hr at 4�C. The beads were washed three times

with RSB-100 buffer (10 mM Tris-HCl [pH 7.4], 100 mM NaCl, 2.5 mM

MgCl2, 0.4% Triton X-100) and resuspended in 150 ml RSB-100 with 40 U

RNase-OUT (Invitrogen) and 5 mg of glycogen. Total RNA was added to the

beads and incubated for additional 1 hr at 4�C. The beads were washed three

times with RSB-100 buffer. RNA bound to the beads was extracted with TRIzol

reagent followed by DNase I treatment. The RT reaction was performed using

SuperScript III Reverse Transcriptase (Invitrogen) following themanufacturers’

instructions. The real-time quantitative PCR was performed using a Corbett

Research Rotor-Gene GG-3000 machine. The PCR mixture contained

QuantiTest SYBR green PCR master mix (Qiagen), 2 ml of template cDNA,

and primers from Table S3. Cycling parameters were 95�C for 15min, followed

by 45 cycles of 95�C for 15 s, 58�C for 20 s, and 72�C for 20 s. Fluorescence

intensities were plotted against the number of cycles by using an algorithm

provided by themanufacturer. Amount of nascent Br-UTPRNAwas calculated

by subtracting the background of U-RNAproduced over a specific gene probe.

Statistical Analysis

Unless otherwise stated, results are shown as the average values from at least

three independent biological experiments ±SD. The asterisk indicates statisti-

cal significance (*p < 0.05; **p < 0.05; ***p < 0.05), on the basis of an unpaired,

two-tailed distribution determined with a Student’s t test.
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