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Mass balance of the Greenland Ice Sheet from 1992-2018 1 

The IMBIE Team*  2 

Abstract 3 

In recent decades the Greenland Ice Sheet has been a major contributor to global sea-level rise 1,2 , 4 

and it is expected to be so in the future 3. Although increases in glacier flow 4–6 and surface melting 5 
7–9 have been driven by oceanic 10–12 and atmospheric 13,14 warming, the degree and trajectory of 6 

today’s imbalance remain uncertain. Here we compare and combine 26 individual satellite 7 

measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a 8 

reconciled estimate of its mass balance. Although the ice sheet was close to a state of balance in 9 

the 1990’s, annual losses have risen since then, peaking at 335 ± 62 billion tonnes per year in 2011. 10 

In all, Greenland lost 3800 ± 339 billion tonnes of ice between 1992 and 2018, causing mean sea-11 

level to rise by 10.6 ± 0.9 millimetres. Using three regional climate models, we show that reduced 12 

surface mass balance has driven 1971 ± 555 billion tonnes (52 %) of the ice loss owing to increased 13 

meltwater runoff. The remaining 1827 ± 538 billion tonnes (48 %) of ice loss was due to increased 14 

glacier discharge, which rose from 41 ± 37 billion tonnes per year in the 1990’s to 87 ± 25 billion 15 

tonnes per year since then. Between 2013 and 2017, the total rate of ice loss slowed to 217 ± 32 16 

billion tonnes per year, on average, as atmospheric circulation favoured cooler conditions 15 and as 17 

ocean temperatures fell at the terminus of Jakobshavn Isbræ 16. Cumulative ice losses from 18 

Greenland as a whole have been close to the IPCC’s predicted rates for their high-end climate 19 

warming scenario 17, which forecast an additional 5 to 12 centimetres of global sea-level rise by 2100 20 

when compared to their central estimate. 21 

Introduction 22 

The Greenland Ice Sheet holds enough water to raise mean global sea level by 7.4 m 18. Its ice flows to 23 

the oceans through a network of glaciers and ice streams 19, each with a substantial inland catchment 24 
20. Fluctuations in the mass of the Greenland Ice Sheet occur due to variations in snow accumulation, 25 

meltwater runoff, ocean-driven melting, and iceberg calving. In recent decades, there have been 26 

marked increases in air 21 and ocean 12 temperatures and reductions in summer cloud cover 22 around 27 

Greenland. These changes have produced increases in surface runoff 8, supraglacial lake formation 23 28 

and drainage 24, iceberg calving 25, glacier terminus retreat 26, submarine melting 10,11, and ice flow 6, 29 

leading to widespread changes in the ice sheet surface elevation, particularly near its margin (Figure 30 

1). 31 

Over recent decades, ice losses from Greenland have made a significant contribution to global sea-32 

level rise 2, and model projections suggest that this imbalance will continue in a warming climate 3. 33 

Since the early 1990’s there have been comprehensive satellite observations of changing ice sheet 34 

velocity 4,6, elevation 27–29 and, between 2002 and 2016, its changing gravitational attraction 30,31, from 35 

which complete estimates of Greenland Ice Sheet mass balance are determined 1. Prior to the 1990’s, 36 

only partial surveys of the ice sheet elevation 32 and velocity 33 change are available. In combination 37 

with models of surface mass balance (the net difference between precipitation, sublimation and 38 

meltwater runoff) and glacial isostatic adjustment 34, satellite measurements have shown a fivefold 39 

increase in the rate of ice loss from Greenland overall, rising from 51 ± 65 Gt/yr in the early 1990’s to 40 

263 ± 30 Gt/yr between 2005 and 2010 1. This ice loss has been driven by changes in surface mass 41 

balance 7,21 and ice dynamics 5,33. There was, however, a marked reduction in ice loss between 2013 42 

and 2018, as a consequence of cooler atmospheric conditions and increased precipitation 15. While 43 



the broad pattern of change across Greenland (Figure 1) is one of ice loss, there is considerable 44 

variability; for example, during the 2000’s just 4 glaciers were responsible for half of the total ice loss 45 

due to increased discharge 5, whereas many others contribute today 33. Moreover, some neighbouring 46 

ice streams have been observed to speed up over this period while others slowed down 35, suggesting 47 

diverse reasons for the changes that have taken place - including their geometrical configuration and 48 

basal conditions, as well as the forcing they have experienced 36. In this study we combine satellite 49 

altimetry, gravimetry, and ice velocity measurements to produce a reconciled estimate of the 50 

Greenland Ice Sheet mass balance between 1992 and 2018, we evaluate the impact of changes in 51 

surface mass balance and uncertainty in glacial isostatic adjustment, and we partition the ice sheet 52 

mass loss into signals associated with surface mass balance and ice dynamics. In doing so, we extend 53 

a previous assessment 1 to include more satellite and ancillary data and to cover the period since 2012.  54 

Data and Methods 55 

We use 26 estimates of ice sheet mass balance derived from satellite altimetry (9 data sets), satellite 56 

gravimetry (14 data sets) and the input-output method (3 data sets) to assess changes in Greenland 57 

ice sheet mass balance. The satellite data were computed using common spatial 20,37 and temporal 58 

domains, and using a range of models to estimate signals associated with changes in surface mass 59 

balance and glacial isostatic adjustment. Satellite altimetry provides direct measurements of changing 60 

ice sheet surface elevation recorded at orbit crossing points 32, along repeated ground tracks 27, or 61 

using plane-fit solutions 28, and the ice sheet mass balance is estimated from these measurements 62 

either by prescribing the density of the elevation fluctuation 38 or by making an explicit model-based 63 

correction for changes in firn height 39. Satellite gravimetry measures fluctuations in the Earth’s 64 

gravitational field as computed using either global spherical harmonic solutions 30 or using spatially-65 

discrete mass concentration units 31. Ice sheet mass changes are determined after making model-66 

based corrections for glacial isostatic adjustment 30. The input-output method uses model estimates 67 

of surface mass balance 7, which comprises the input, and satellite observations of ice sheet velocity 68 

computed from radar 6 and optical 40 imagery combined with airborne measurements of ice thickness 69 
33 to compute changes in marine-terminating glacier discharge into the oceans, which comprises the 70 

output. The overall mass balance is the difference between input and output. Not all annual surveys 71 

of ice sheet discharge are complete, and sometimes regional extrapolations have to be employed to 72 

account for gaps in coverage 33. Because they provide important ancillary data, we also assess 6 73 

models of glacial isostatic adjustment and 10 models of surface mass balance. 74 

To compare and aggregate the individual satellite data sets, we first adopt a common approach to 75 

derive linear rates of ice sheet mass balance over 36-month intervals (see Methods). We then 76 

compute error-weighted averages of all altimetry, gravimetry, and input-output group mass trends, 77 

and we combine these into a single reconciled estimate of the ice sheet mass balance using error-78 

weighting of the group trends. Uncertainties in individual rates of mass change are estimated as the 79 

root sum square of the linear model misfit and their measurement error, uncertainties in group rates 80 

are estimated as the root mean square of the contributing time-series errors, and uncertainties in 81 

reconciled rates are estimated as their root mean square error divided by the square root of the 82 

number of independent groups. Cumulative uncertainties are computed as the root sum square of 83 

annual errors, an approach that has been employed in numerous studies 1,17,33,41 and assumes that 84 

annual errors are not correlated over time. To improve on this assumption, it will be necessary to 85 

consider the covariance of the systematic and random errors present within each mass balance 86 

solution (see Methods). 87 



Inter-comparison of satellite and model results 88 

The satellite gravimetry and satellite altimetry data used in our assessment are corrected for the 89 

effects of glacial isostatic adjustment, although the correction is relatively small for altimetry as it 90 

appears as a change in elevation and not mass. The most prominent and consistent local signals of 91 

glacial isostatic adjustment among the 6 models we have considered are two instances of uplift 92 

peaking at about 5-6 mm/yr, one centered over northwest Greenland and Ellesmere Island, and one 93 

over northeast Greenland (see Methods and Extended Data Figure 3). Although some models identify 94 

a 2 mm/yr subsidence under large parts of the central and southern parts of the ice sheet, it is absent 95 

or of lower magnitude in others, which suggests it is less certain (Extended Data Table 1). The greatest 96 

difference among model solutions is at Kangerlussuaq Glacier in the southeast where a study 42 has 97 

shown that models and observations agree if a localized weak Earth structure associated with 98 

overpassing the Iceland hotspot is assumed; the effect is to offset earlier estimates of mass trends 99 

associated with glacial isostatic adjustment by about 20 Gt/yr. Farther afield, the highest spread 100 

between modelled uplift occurs on Baffin Island and beyond due to variations in regional model 101 

predictions related to the demise of the Laurentide Ice Sheet 42. This regional uncertainty is likely a 102 

major factor in the spread across the ice-sheet-wide estimates. Nevertheless, at -3 ± 20 Gt/yr, the 103 

mass signal associated with glacial isostatic adjustment in Greenland shows no coherent substantive 104 

change and is negligible relative to reported ice sheet mass trends 1. 105 

There is generally good agreement between the models of Greenland Ice Sheet surface mass balance 106 

that we have assessed for determining mass input - particularly those of a similar class; for example, 107 

70% of all model estimated of runoff and accumulation fall within 1-sigma of their mean (see Methods 108 

and Extended Data Table 2). The exceptions are a global reanalysis with coarse spatial resolution that 109 

tends to underestimate runoff due to its poor delineation of the ablation zone, and a snow process 110 

model that tends to underestimate precipitation and to overestimate runoff in most sectors. Among 111 

the other 8 models, the average surface mass balance between 1980 and 2012 is 361 ± 40 Gt/yr, with 112 

a marked negative trend over time (Extended Data Figure 4) mainly due to increased runoff 7. At 113 

regional scale, the largest differences occur in the northeast, where two regional climate models 114 

predict significantly less runoff, and in the southeast, where there is considerable spread in 115 

precipitation and runoff across all models. All models show high temporal variability in surface mass 116 

balance components, and all models show that the southeast receives the highest net intake of mass 117 

at the surface due to high rates of snowfall originating from the Icelandic Low 43. By contrast, the 118 

southwest, which features the widest ablation zone 7, has experienced alternate periods of net surface 119 

mass loss and gain over recent decades, and has the lowest average surface mass balance across the 120 

ice sheet. 121 

We assessed the consistency of the satellite altimetry, gravimetry, and input-output method estimates 122 

of Greenland Ice Sheet mass balance using common spatial and temporal domains (see Figure 2 and 123 

Methods). In general, there is close agreement between estimates determined using each approach, 124 

and the standard deviations of coincident altimetry, gravimetry, and input-output method annual 125 

mass balance solutions are 40, 30, and 22 Gt/yr, respectively (Extended Data Table 3). Once averages 126 

were formed for each technique, the resulting estimates of mass balance were also closely aligned 127 

(e.g. Extended Data Figure 6). For example, over the common period 2005 to 2015, the average 128 

Greenland Ice Sheet mass balance is -251 ± 63 Gt/yr and, by comparison, the spread of the altimetry, 129 

gravimetry, and input-output method estimates is just 24 Gt/yr (Extended Data Table 3). The 130 

estimated uncertainty of the aggregated mass balance solution (see Methods) is larger than the 131 

standard deviation of model corrections for glacial isostatic adjustment (20 Gt/yr for gravimetry) and 132 

for surface mass balance (40 Gt/yr), which suggests that their collective impacts have been adequately 133 



compensated, and it is also larger than the estimated 30 Gt/yr mass losses from peripheral ice caps 44, 134 

which are not accounted for in all individual solutions. In keeping with results from Antarctica 41, rates 135 

of mass loss determined using the input-output method are the most negative, and those determined 136 

from altimetry are the least negative. However, the spread among the three techniques is 6 times 137 

lower for Greenland than it is for Antarctica 41, reflecting differences in the ice sheet size, the 138 

complexity of the mass balance processes, and limitations of the various geodetic techniques. 139 

Ice sheet mass balance 140 

We aggregated the average mass balance estimates from gravimetry, altimetry and the input-output 141 

method to form a single, time-varying record (Figure 2) and then integrated these data to determine 142 

the cumulative mass lost from Greenland since 1992 (Figure 3). Although Greenland has been losing 143 

ice throughout most of the intervening period, the rate of loss has varied significantly. Between 1992 144 

and 2012, the rate of ice loss progressively increased, reaching a maximum of 335 ± 62 Gt/yr in 2011, 145 

ahead of the extreme summertime surface melting that occurred in the following year 14. Since 2012, 146 

however, the trend has reversed, with a progressive reduction in the rate of mass loss during the 147 

subsequent period. By 2018 – the last complete year of our survey – the annual rate of ice mass loss 148 

had reduced to 111 ± 71 Gt/yr. The highly variable nature of ice losses from Greenland is a 149 

consequence of the wide range of physical processes that are affecting different sectors of the ice 150 

sheet 16,28,35, which suggests that care should be taken when extrapolating sparse measurements in 151 

space or time. Although the rates of mass loss we have computed between 1992 and 2011 are 18 % 152 

less negative than those of a previous assessment, which included far fewer data sets 1, the results are 153 

consistent given their respective uncertainties. Altogether, the Greenland Ice Sheet has lost 3800 ± 154 

339 Gt of ice to the ocean since 1992, with roughly half of this loss occurring during the 6-year period 155 

between 2006 and 2012.  156 

To determine the proportion of mass lost due to surface and ice dynamical processes, we computed 157 

the contemporaneous trend in Greenland Ice Sheet surface mass balance - the net balance between 158 

precipitation and ablation 7, which is controlled by interactions with the atmosphere (Figure 3). In 159 

Greenland, recent trends in surface mass balance have been largely driven by meltwater runoff 43, 160 

which has increased as the regional climate has warmed 13. Because direct observations of ice sheet 161 

surface mass balance are too scarce to provide full temporal and spatial coverage 45, regional 162 

estimates are usually taken from atmospheric models that are evaluated with existing observations. 163 

Our evaluation (see Methods) shows that the finer spatial resolution regional climate models produce 164 

consistent results, likely due to their ability to capture local changes in melting and precipitation 165 

associated with atmospheric forcing, and to resolve the full extent of the ablation zone 46. We 166 

therefore compare and combine estimates of Greenland surface mass balance derived from three 167 

regional climate models; RACMO2.3p2 46, MARv3.6 21 and HIRHAM 9. To assess the surface mass 168 

change across the Greenland Ice Sheet between 1980 and 2018, we accumulate surface mass balance 169 

anomalies from each of the regional climate models (Extended Data Figure 7) and average them into 170 

a single estimate (Figure 3). Surface mass balance anomalies are computed with respect to the average 171 

between 1980 and 1990, which corresponds to a period of approximate balance 8 and is common to 172 

all models. In this comparison, all three models show that the Greenland Ice Sheet entered abruptly 173 

into a period of anomalously low surface mass balance in the late 1990’s and, when combined, they 174 

show that the ice sheet lost 1971 ± 555 Gt of its mass due to meteorological processes between 1992 175 

and 2018 (Table 1). 176 

Just over half (52 %) of all mass losses from Greenland – and much of their short-term variability – 177 

have been due to variations in the ice sheet’s surface mass balance and its indirect impacts on firn 178 



processes. For example, between 2007 and 2012, 71 % of the total ice loss (193 ± 37 Gt/yr ) was due 179 

to surface mass balance, compared to 28 % (22  ± 20  Gt/yr) over the preceding 15 years and 58 % 180 

(139 ± 38 Gt/yr) since then (Table 1). The rise in the total rate of ice loss during the late-2000s 181 

coincided with warmer atmospheric conditions, which promoted several episodes of widespread 182 

melting and runoff 14. The reduction in surface mass loss since then is associated with a shift of the 183 

North Atlantic Oscillation, which brought about cooler atmospheric conditions and increased 184 

precipitation along the southeastern coast 15. Trends in the total ice sheet mass balance are not, 185 

however, entirely due to surface mass balance and, by differencing these two signals, we can estimate 186 

the total change in mass loss due to ice dynamical imbalance – i.e. the integrated, net mass loss from 187 

those glaciers whose velocity does not equal their long-term mean (Figure 3). Although this approach 188 

is indirect, it makes use of all the satellite observations and regional climate models included in our 189 

study, overcoming limitations in the spatial and temporal sampling of ice discharge estimates derived 190 

from ice velocity and thickness data. Our estimate shows that, between 1992 and 2018, Greenland 191 

lost 1827 ± 538 Gt of ice due to the dynamical imbalance of glaciers relative to their steady state, 192 

accounting for 48 % of the total imbalance (Table 1).  Losses due to increased ice discharge rose sharply 193 

in the early 2000’s when Jakobshavn Isbræ 10 and several other outlet glaciers in the southeast 47 sped 194 

up, and the discharge losses are now four times higher than in the 1990’s. For a period between 2002 195 

and 2007, ice dynamical imbalance was the major source of ice loss from the ice sheet as a whole, 196 

although the situation has since returned to be dominated by surface mass losses as several glaciers 197 

have slowed down 16. 198 

Despite a reduction in the overall rate of ice loss from Greenland between 2013 and 2018 (Figure 2), 199 

the ice sheet mass balance remained negative, adding 10.6 ± 0.9 mm to global sea level since 1992.  200 

Although the average sea level contribution is 0.42 ± 0.08 mm/yr, the five-year average rate varied by 201 

a factor 5 over the 25-year period, peaking at 0.75 ± 0.08 mm/yr between 2007 and 2012. The 202 

variability in Greenland ice loss illustrates the importance of accounting for yearly fluctuations when 203 

attempting to close the global sea level budget 2. Satellite records of ice sheet mass balance are also 204 

an important tool for evaluating numerical models of ice sheet evolution 48. In their 2013 assessment, 205 

the Intergovernmental Panel on Climate Change (IPCC) predicted ice losses from Greenland due to 206 

surface mass balance and glacier dynamics under a range of scenarios, beginning in 2007 17 (Figure 4). 207 

Although ice losses from Greenland have fluctuated considerably during the 12-year period of overlap 208 

between the IPCC predictions and our reconciled time series, the total change and average rate (0.69 209 

mm/yr) are close to the upper range predictions (0.72 mm/yr), which implies a 47 to 124 mm of sea-210 

level rise by the year 2100 above central estimates.  The drop in ice losses between 2013 and 2018, 211 

however, shifted rates towards the lower end projections, and a longer period of comparison is 212 

required to establish whether the upper trajectory will continue to be followed. Even greater sea level 213 

contribution cannot be ruled out if feedbacks between the ice sheet and other elements of the climate 214 

system are underestimated by current ice sheet models 3. Although the volume of ice stored in 215 

Greenland is a small fraction of that in Antarctica (12 %), its recent losses have been ~36 % higher 41 216 

as a consequence of the relatively strong atmospheric 13,14 and oceanic 10,11 warming that has occurred 217 

in its vicinity, and its status as a major source of sea-level rise is expected to continue 3,17. 218 

Conclusions 219 

We combine 26 satellite estimates of ice sheet mass balance and assess 10 models of ice sheet surface 220 

mass balance and 6 models of glacial isostatic adjustment, to show that the Greenland Ice Sheet lost 221 

3800 ± 339 Gt of ice between 1992 and 2018. During the common period 2005 to 2015, the spread of 222 

mass balance estimates derived from satellite altimetry, gravimetry, and the input-output method is 223 

24 Gt/yr, or 10% of the estimated rate of imbalance. The rate of ice loss has generally increased over 224 



time, rising from 18 ± 28 Gt/yr between 1992 to 1997, peaking at 270 ± 27 Gt/yr between 2007 and 225 

2012, and reducing to 239 ± 20 Gt/yr between 2012 and 2017. Just over half (1971 ± 555 Gt, or 52 %) 226 

of the ice losses are due to reduced surface mass balance (mostly meltwater runoff) associated with 227 

changing atmospheric conditions 13,14, and these changes have also driven the shorter-term temporal 228 

variability in ice sheet mass balance. Despite variations in the imbalance of individual glaciers 4,5,33, ice 229 

losses due to increasing discharge from the ice sheet as a whole have risen steadily from 41 ± 37 Gt/yr 230 

in the 1990’s to 87 ± 25 Gt/yr since then, and account for just under half of all losses (48 %) over the 231 

survey period. 232 

Our assessment shows that estimates of Greenland Ice Sheet mass balance derived from satellite 233 

altimetry, gravimetry, and the input-output method agree to within 20 Gt/yr, that model estimates of 234 

surface mass balance agree to within 40 Gt/yr, and that model estimates of glacial isostatic adjustment 235 

agree to within 20 Gt/yr. These differences represent a small fraction (13 %) of the Greenland Ice 236 

Sheet mass imbalance and are comparable to its estimated uncertainty (13 Gt/yr). Nevertheless, there 237 

is still departure among models of glacial isostatic adjustment in northern Greenland. Spatial 238 

resolution is a key factor in the degree to which models of surface mass balance can represent ablation 239 

and precipitation at local scales, and estimates of ice sheet mass balance determined from satellite 240 

altimetry and the input-output method continue to be positively and negatively biased, respectively, 241 

compared to those based on satellite gravimetry (albeit by small amounts). More satellite estimates 242 

of ice sheet mass balance at the start (1990’s) and end (2010’s) of our record would help to reduce 243 

the dependence on fewer data during those periods; although new missions 49,50 will no doubt address 244 

the latter, further analysis of historical satellite data is required to address the former. 245 
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Figure and Table Legends 444 

Figure 1 | Greenland Ice Sheet elevation change. Rate of elevation change of the Greenland Ice Sheet 445 

determined from ERS, ENVISAT, and CryoSat-2 satellite radar altimetry (top row) and from the 446 

HIRHAM5 surface mass balance model (bottom row, ice equivalent), over successive five-year epochs 447 

(left to right; 1992-1997, 1997-2002, 2002-2007, 2007-2012, 2012-2017). Reproduced from the data 448 

in Ref 29. 449 

 450 
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Figure 2 | Greenland Ice Sheet mass balance. Rate of mass change (dM/dt) of the Greenland Ice Sheet 451 

as determined from the satellite-altimetry (red), input-output method (blue) and gravimetry (green) 452 

assessments included in this study. In each case, dM/dt is computed at annual intervals from time 453 

series of relative mass change using a three-year window. An average of estimates across each class 454 

of measurement technique is also shown for each year (black). The estimated 1σ, 2σ and 3σ ranges of 455 

the class average is shaded in dark, mid and light grey, respectively; 97 % of all estimates fall within 456 

the 1σ range, given their estimated individual errors. The equivalent sea level contribution of the mass 457 

change is also indicated, and the number of individual mass-balance estimates collated at each epoch 458 

is shown below each chart entry. 459 

 460 

Figure 3 | Cumulative anomalies in Greenland Ice Sheet total mass, surface mass balance and ice 461 

dynamics. The total change (dark blue) is determined as the integral of the average rate of ice sheet 462 

mass change (Figure 2). The change in surface mass balance (green) is determined from three regional 463 

climate models relative to their mean over the period 1980-1990. The change associated with ice 464 

dynamics (light blue) is determined as the difference between the change in total and surface mass. 465 

The estimated 1σ uncertainties of the cumulative changes are shaded. The dotted line shows the result 466 

of a previous assessment 1. The equivalent sea level contribution of the mass change is also indicated. 467 

Vertical lines mark consecutive five-year epochs since the start of our satellite record in 1992. 468 

 469 

Figure 4 | Observed and predicted sea level contribution due to Greenland Ice Sheet mass change. 470 

The global sea-level contribution from Greenland Ice Sheet mass change according to this study (black 471 

line) and IPCC AR5 projections between 1992–2040 (left) and 2040–2100 (right) including upper (red), 472 

mid (orange), and lower (blue) estimates from the sum of modelled surface mass balance and rapid 473 

ice dynamical contributions. Darker coloured lines represent pathways from the five AR5 scenarios in 474 

order of increasing emissions: RCP2.6, RCP4.5, RCP6.0, SRES A1B and RCP8.5. Shaded areas represent 475 

the spread of AR5 emissions scenarios and the 1σ estimated error on the IMBIE data. The bar chart 476 

plot (inset) shows the average annual rates of sea-level rise (in mm/yr) during the overlap period 477 

2007–2018 and their standard deviations. Cumulative AR5 projections have been offset to make them 478 

equal to the observational record at their start date (2007). 479 

 480 

Table 1 | Rates of Greenland Ice Sheet total, surface, and dynamical mass change. Total rates were 481 

determined from all satellite measurements over various epochs, rates of surface mass change were 482 

determined from three regional climate models, and rates of dynamical mass change were 483 

determined as the difference. The period 1992–2011 is included for comparison to a previous 484 

assessment 1, which reported a mass-balance estimate of -142 ± 49 Gt/yr based on far fewer data. The 485 

small differences in our updated estimate is due to our inclusion of more data and an updated 486 

aggregation scheme (see Methods). Errors are 1σ. 487 

 488 
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Table 1 490 

 491 

Region 

1992-1997 

(Gt/yr) 

1997-2002 

(Gt/yr) 

2002-2007 

(Gt/yr) 

2007-2012 

(Gt/yr) 

2012-2017 

(Gt/yr) 

1992-2011 

(Gt/yr) 

1992-2018 

(Gt/yr) 

Total -18 ± 28 -48 ± 35 -175 ± 30 -270 ± 27 -238 ± 29 -117 ± 16 -148 ± 13 

Surface 26 ± 35 -15 ± 36 -78 ± 36 -193 ± 37 -139 ± 38 -57 ± 18 -76 ± 16 

Dynamics -43 ± 45 -33 ± 50 -97 ± 47 -77 ± 46 -100 ± 48 -60 ± 24 -73 ± 21 

 492 
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Methods 494 

Data 495 

In this assessment we analyse 5 groups of data: estimates of ice sheet mass-balance determined from 496 

3 distinct classes of satellite observations - altimetry, gravimetry and the input–output method (IOM) 497 

- and model estimates of surface mass balance (SMB) and glacial isostatic adjustment (GIA). Each 498 

dataset is computed following previously reported methods (based on references 28, 33, 38, 54 to 61, 499 

72, 87 to 120 and detailed in Supplementary Table 1) and, for consistency, they are aggregated within 500 

common spatial and temporal domains. Altogether, 26 separate ice sheet mass balance datasets were 501 

used - 9 derived from satellite altimetry, 3 derived from the input-output method, and 14 derived 502 

from satellite gravimetry - with a combined period running from 1992 to 2018 (Extended Data Figure 503 

1). We also assess 6 model estimates of GIA (Extended Data Table 1) and 10 model estimates of SMB 504 

(Extended Data Table 2). 505 

Drainage Basins 506 

We analyse mass trends using two ice sheet drainage basin sets (Extended Data Figure 2), to allow 507 

consistency with those used in the first IMBIE assessment 1, and to evaluate an updated definition 508 

tailored towards mass budget assessments. The first set comprises 19 drainage basins delineated 509 

using surface elevation maps derived from ICESat-1 with a total area of 1,703,625 km 2,20. The second 510 

drainage basin set is an updated definition considering other factors such as the direction of ice flow 511 

and includes 6 basins with a combined area of 1,723,300 km 2,37. The two drainage basin sets differ by 512 

1% in area at the scale of the Greenland Ice Sheet, and this has a negligible impact on mass trends 513 

when compared to the estimated uncertainty of individual techniques. 514 

Glacial isostatic adjustment 515 

GIA - the delayed response of Earth’s interior to temporal changes in ice loading - affects estimates of 516 

ice sheet mass balance determined from satellite gravimetry and, to a lesser extent, satellite altimetry 517 
51. Here, we compare 6 independent models of GIA in the vicinity of the Greenland Ice Sheet (Extended 518 

Data Table 1). The GIA model solutions we did consider differ for a variety of reasons, including 519 

differences in their physics, in their computational approach, in their prescriptions of solid Earth 520 

unloading during the last glacial cycle and their Earth rheology, and in the data sets against which they 521 

are evaluated. Although alternative ice histories (e.g.52) and mantle viscosities (e.g.53) are available, 522 

we restricted our comparison to those contributed to our assessment. No approach is generally 523 

accepted as optimal, and so we evaluate the models by computing the mean and standard deviation 524 

of their predicted uplift rates (Extended Data Figure 3). We also estimate the contribution of each 525 

model to gravimetric mass trends using a common processing approach 41 which puts special emphasis 526 

on the treatment of low spherical harmonic degrees in the GIA-related trends in the gravitational field. 527 

The highest rates of GIA-related uplift occur in northern Greenland - though this region also exhibits 528 

marked variability among the solutions, as does the area around Kangerlussuaq Glacier to the 529 

southeast. Even though the model spread is high in northern Greenland, the signal in this sector is also 530 

consistently high in most solutions. However, none of the GIA models considered here fully captures 531 

all areas of high uplift present in the models, and so it is possible there is a bias towards low values in 532 

the average field across the ice sheet overall. The models yield an average adjustment for GRACE 533 

estimates of Greenland Ice Sheet mass balance of -3 Gt/yr, with a standard deviation of around 20 534 

Gt/yr. The spread is likely in part due to differences in the way each model accounts for GIA in North 535 

America which is ongoing and impacts western Greenland, and so care must be taken when estimating 536 

mass balance at basin scale.  Local misrepresentation of the solid Earth response can also have a 537 



relatively large impact stemming especially from lateral variations of solid-Earth properties 42,54, and 538 

revisions of the current state of knowledge can be expected 34.  539 

Surface mass balance 540 

Here, ice-sheet SMB is defined as total precipitation minus sublimation, evaporation and meltwater 541 

runoff, i.e. the interaction of the atmosphere and the superficial snow and firn layers, for example 542 

through mass exchanges via precipitation, sublimation, and runoff, and through mass redistribution 543 

by snowdrift, melting, and refreezing. We compare 10 estimates of Greenland Ice Sheet SMB derived 544 

using a range of alternative approaches; 4 regional climate models (RCM’s), 2 downscaled RCM’s, a 545 

global reanalysis, 2 downscaled model reanalyses of climate data, and 1 gridded model of snow 546 

processes driven by climate model output (Extended Data Table 2).   547 

Although SMB models of similar class tend to produce similar results, there are larger differences 548 

between classes – most notably the global reanalysis and the process model which lead to estimates 549 

of SMB that are significantly higher and lower than all other solutions, respectively. The regional 550 

climate model solutions agree well at the scale of individual drainage sectors, with the largest 551 

differences occurring in north-east Greenland (Extended Data Figure 4). The snow process model 552 

tends to underestimate SMB when compared to the other solutions we have considered in various 553 

sectors of the ice sheet, at times even yielding negative SMB, while the global reanalysis tends to 554 

overestimate it.   555 

Across all models, the average SMB of the Greenland Ice Sheet between 1980 to 2012 is 351 Gt/yr and 556 

the standard deviation is 98 Gt/yr. However, the spread among the 8 RCM’s and downscaled 557 

reanalyses is considerably smaller; these solutions lead to an average Greenland Ice Sheet SMB of 361 558 

Gt/yr with a standard deviation of 40 Gt/yr over the same period. By comparison, the global reanalysis 559 

and process model lead to ice sheet wide estimates of SMB that are significantly larger (504 Gt/yr) 560 

and smaller (125 Gt/yr) than this range, respectively. Model resolution is an important factor when 561 

estimating SMB and its components, as respective contributions where only the spatial resolution 562 

differed yield regional differences. Additionally, the underlying model domains were identified as a 563 

source of discrepancy in the case of the Greenland Ice Sheet, as some products would allocate the 564 

ablation area outside the given mask.  565 

Individual estimates of ice sheet mass balance 566 

To standardise our comparison and aggregation of the 26 individual satellite estimates of Greenland 567 

Ice Sheet mass balance, we applied a common approach to derive rates of mass change from 568 

cumulative mass trends 41. Rates of mass change were computed over 36-month intervals centred on 569 

regularly spaced (monthly) epochs within each cumulative mass trend time series, oversampling the 570 

individual time series where necessary. At each epoch, rates of mass change were estimated by fitting 571 

a linear trend to data within the surrounding 36-month time window using a weighted least-squares 572 

approach, with each point weighted by its measurement error. The associated mass trend 573 

uncertainties were estimated as the root sum square of the regression error and the measurement 574 

error. Time series were truncated by half the moving-average window period at the start and end of 575 

their period. The emerging rates of mass change were then averaged over 12-month periods to reduce 576 

the impact of seasonal cycles. 577 

Gravimetry We include 14 estimates of Greenland Ice Sheet ice sheet mass balance determined from 578 

GRACE satellite gravimetry which together span the period 2003 to 2016 (Extended Data Figure 1). 10 579 

of the gravimetry solutions were computed using spherical harmonic solutions to the global gravity 580 

field and 4 were computed using spatially defined mass concentration units (Supplementary Table 1). 581 

An unrestricted range of alternative GIA corrections were used in the formation of the gravimetry 582 



mass balance solutions based on commonly-adopted model solutions and their variants 34,54–60 583 

(Supplementary Table 1). All of the gravimetry mass balance solutions included in this study use the 584 

same degree-1 coefficients to account for geocenter motion 61 and, although an alternative set is now 585 

available 62, the estimated improvement in certainty is small in comparison to their magnitude and 586 

spread. There was some variation in the sampling of the individual gravimetry data sets, and their 587 

collective effective (weighted mean) temporal resolution is 0.08 years. Overall, there is good 588 

agreement between rates of Greenland Ice Sheet mass change derived from satellite gravimetry 589 

(Extended Data Figure 5); all solutions show the ice sheet to be in a state of negative mass balance 590 

throughout their survey periods, with mass loss peaking in 2011 and reducing thereafter. During the 591 

period 2005 to 2015, annual rates of mass change determined from satellite gravimetry differ by 97 592 

Gt/yr on average, and their average standard deviation is 30 Gt/yr (Extended Data Table 3).  593 

Altimetry We include 9 estimates of Greenland Ice Sheet mass balance determined from satellite 594 

altimetry which together span the period 2004 to 2018 (Extended Data Figure 1). 3 of the solutions 595 

are derived from radar altimetry, 4 from laser altimetry, and 2 use a combination of both 596 

(Supplementary Table 1). The altimetry mass trends are also computed using a range of approaches, 597 

including crossovers, planar fits, and repeat track analyses. The laser altimetry mass trends are 598 

computed from ICESat-1 data as constant rates of mass change over their respective survey periods, 599 

while the radar altimetry mass trends are computed from EnviSat and/or CryoSat-2 data with a 600 

temporal resolution of between 1 and 72 months. In consequence, the altimetry solutions have an 601 

effective collective temporal resolution of 0.74 years. Mass changes are computed after making 602 

corrections for alternative sources of surface elevation change, including glacial isostatic and elastic 603 

adjustment, and firn height changes (see Supplementary Table 1). Despite the range of input data and 604 

technical approaches, there is good overall agreement between rates of mass change determined 605 

from the various satellite altimetry solutions (Extended Data Figure 5). All altimetry solutions show 606 

the Greenland Ice Sheet to be in a state of negative mass balance throughout their survey periods, 607 

with mass loss peaking in 2012 and reducing thereafter. During the period 2005 to 2015, annual rates 608 

of mass change determined from satellite altimetry differ by 111 Gt/yr on average, and, their average 609 

standard deviation is 40 Gt/yr (Extended Data Table 3). The greatest variance lies among the 4 laser 610 

altimetry mass balance solutions which range from -248 to -128 Gt/yr between 2004 and 2010; aside 611 

from methodological differences, possible explanations for this high spread include the relatively short 612 

period over which the mass trends are determined, the poor temporal resolution of these data sets, 613 

and the rapid change in mass balance occurring during the period in question.  614 

Input-Output Method We include 3 estimates of Greenland Ice Sheet mass balance determined from 615 

the input-output method which together span the period 1992 to 2015 (Extended Data Figure 1). 616 

Although there are relatively few data sets by comparison to the gravimetry and altimetry solutions, 617 

the input-output data provide information on the partitioning of the mass change (surface processes 618 

and/or ice dynamics) cover a significantly longer period and are therefore an important record of 619 

changes in Greenland Ice Sheet mass during the 1990’s. The input-output method makes use of a wide 620 

range of satellite imagery (e.g. 6,40,63–68) combined with measurements of ice thickness (e.g. 69) for 621 

computing ice sheet discharge (output), and several alternative SMB model estimates of snow 622 

accumulation (input) and runoff (output) (see Supplementary Table 1). 2 of the input-output method 623 

datasets exhibit temporal variability across their survey periods, and 2 provide only constant rates of 624 

mass changes. Although these latter records are relatively short, they are an important marker with 625 

which variances among independent estimates can be evaluated. The collective effective (weighted 626 

mean) temporal resolution of the input-output method data is 0.14 years, although it should be noted 627 

that in earlier years the satellite ice discharge component of the data are relatively sparsely sampled 628 

in time (e.g. 70).There is good overall agreement between rates of mass change determined from the 629 



input-output method solutions (Extended Data Figure 5). During the period 2005 to 2015, annual rates 630 

of mass change determined from the 4 input-output data sets differ by up to 47 Gt/yr on average, and 631 

their average standard deviation is 22 Gt/yr (Extended Data Table 3). These differences are 632 

comparable to the estimated uncertainty of the individual techniques and are also small relative to 633 

the estimated mass balance over the period in question. In addition to showing that the Greenland 634 

Ice Sheet was in a state of negative mass balance since 2000, with mass loss peaking in 2012 and 635 

reducing thereafter, the input-output method data show that the ice sheet was close to a state of 636 

balance prior to this period 33. 637 

Aggregate estimate of ice sheet mass balance 638 

To produce an aggregate estimate of Greenland Ice Sheet mass balance, we combine the 14 639 

gravimetry, 9 altimetry, and 3 input-output method datasets to produce a single 26-year record 640 

spanning the period 1992 to 2018. First, we combine the gravimetry, altimetry, and the input-output 641 

method data separately into three time-series by forming an error-weighted average of individual 642 

rates of ice sheet mass change computed using the same technique (Extended Data Figure 6). At each 643 

epoch, we estimate the uncertainty of these time-series as the root mean square of their component 644 

time-series errors. We then combine the mass balance time-series derived from gravimetry, altimetry, 645 

and the input-output method to produce a single, aggregate (reconciled) estimate, computed as the 646 

error-weighted mean of mass trends sampled at each epoch. We estimated the uncertainty of this 647 

reconciled rate of mass balance as either the root mean square departure of the constituent mass 648 

trends from their weighted-mean or the root mean square of their uncertainties, whichever is larger, 649 

divided by the square root of the number of independent satellite techniques used to form the 650 

aggregate. Cumulative uncertainties are computed as the root sum square of annual errors, on the 651 

assumption that annual errors are not correlated over time. This assumption has been employed in 652 

numerous mass balance studies 1,17,33,41, and its effect is to reduce cumulative errors by a factor 2.2 653 

over the 5-year periods we employ in this study (Table 1). If some sources of error are temporally 654 

correlated, the cumulative uncertainty may therefore be underestimated. In a recent study, for 655 

example, it is estimated that 30 % of the annual mass balance error is systematic 71, and in this instance 656 

the cumulative error may be 37 % larger. On the other hand, the estimated annual error on aggregate 657 

mass trends reported in this study (61 Gt/yr) are 70% larger than the spread of the independent 658 

estimates from which they are combined (36 Gt/yr) (Extended Data Table 3), which suggests the 659 

underlying errors may be overestimated by a similar degree. A more detailed analysis of the 660 

measurement and systematic errors is required to improve the cumulative error budget. 661 

During the period 2004 to 2015, when all three satellite techniques were in operation, there is good 662 

agreement between changes in ice sheet mass balance on a variety of timescales (Extended Data 663 

Figure 6). In Greenland, there are large annual cycles in mass superimposed on equally prominent 664 

interannual fluctuations as well as variations of intermediate (~5 years) duration. These signals are 665 

consistent with fluctuations in SMB that have been identified in meteorological records 1,72, and are 666 

present within the time-series of mass balance emerging from all three satellite techniques, to varying 667 

degrees, according to their effective temporal resolution. For example, correlated seasonal cycles are 668 

apparent in the gravimetry and input-output method mass balance time series, because their effective 669 

temporal resolutions are sufficiently short (0.08 and 0.14 years, respectively) to resolve such changes. 670 

However, at 0.74 years, the effective temporal resolution of the altimetry mass balance time series is 671 

too coarse to detect cycles on sub-annual timescales. Nevertheless, when the aggregated mass 672 

balance data emerging from all three experiment groups are degraded to a common temporal 673 

resolution of 36 months, the time-series are well correlated (0.63<r2<0.80) and, over longer periods, 674 

all techniques identify the marked increases in Greenland Ice Sheet mass loss peaking in 2012. During 675 



the period 2005 to 2015, annual rates of mass change determined from all three techniques differ by 676 

up 148 Gt/yr on average, and their average standard deviation is 39 Gt/yr - a value that is small when 677 

compared to their estimated uncertainty (63 Gt/yr)(Extended Data Table 3). 678 
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Data availability 841 

The aggregated Greenland Ice Sheet mass-balance data and estimated errors generated in this study 842 

are freely available at http://imbie.org and at the NERC Polar Data Centre. The code used to compute 843 

and aggregate rates of ice sheet mass change and their estimated errors are freely available at 844 

https://github.com/IMBIE. 845 

Extended Data Legends 846 

Extended Data Figure 1 | Ice sheet mass balance data sets. Participant datasets used in this 847 

study and their main contributors (a, top) and the number and class of data available in each 848 

calendar year (b, bottom). The interval 2003 to 2010 includes almost all datasets and is 849 

selected as the overlap period. Further details of the satellite observations used in this study 850 

are provided in Supplementary Table 1. 851 

 852 

Extended Data Figure 2 | Greenland Ice Sheet drainage basins. Basin used in this study, 853 

according to the definitions of ref 20 (a, left) and ref 37 (b, right).  854 

 855 

Extended Data Figure 3 | Modelled glacial isostatic adjustment in Greenland. Bedrock uplift 856 

rates in Greenland averaged over the glacial isostatic adjustment (GIA) model solutions used 857 

in this study (a, left), as well as their standard deviation (b, right). Further details of the GIA 858 

models used in this study are provided in Extended Data Table 1. High rates of uplift and 859 

subsidence associated with the former Laurentide Ice Sheet are apparent to the southwest of 860 

Greenland. 861 

 862 

http://imbie.org/
https://github.com/IMBIE


Extended Data Figure 4 | Surface mass balance of the Greenland Ice Sheet. Time series of 863 

surface mass balance (SMB) in (a) NW, (b) SW, (c) NE, (d) CW, (e) SE and (f) NO Greenland Ice 864 

Sheet drainage basins (Extended Data Figure 2)  73,74. Solid lines are annual averages of the 865 

monthly data (dashed lines). Further details of the SMB models used in this study are provided 866 

in Extended Data Table 2. 867 

 868 

Extended Data Figure 5 | Greenland Ice Sheet mass balance intra-comparison. Individual 869 

rates of Greenland ice-sheet mass balance used in this study as determined from satellite 870 

altimetry (a, top), gravimetry (b, centre) and the input–output method (c, bottom). The light-871 

grey shading shows the estimated 1σ uncertainty relative to the ensemble average. The 872 

standard error of the mean solutions, per epoch, is shown in mid-grey. 873 

 874 

Extended Data Figure 6 | Greenland Ice Sheet mass balance inter-comparison. Rate of 875 

Greenland Ice Sheet mass balance as derived from the three techniques of satellite radar and 876 

laser altimetry (red), input-output method (blue), and gravimetry (green), and their 877 

arithmetic mean (gray). The estimated uncertainty is also shown (light shading) and is 878 

computed as the root mean square of the component time-series errors. 879 

 880 

Extended Data Figure 7 | Cumulative Greenland Ice Sheet surface mass balance. The 881 

cumulative surface mass change (lightest blue) determined from an average of the 882 

RACMO2.3p2 46 (light blue), MARv3.6 21 (mid-blue) and HIRHAM 9 (dark blue) regional climate 883 

models relative to their 1980-1990 means (see Methods). The estimated uncertainty of the 884 

average change is also shown (shaded area) is computed as the average of the uncertainties 885 

from each of the three models. RACMO2.3p2 uncertainties are based upon a comparison to 886 

in-situ observations 33. MARv3.6 uncertainties are evaluated from the variability due to 887 

forcing from climate reanalyses 21. HIRHAM uncertainties are estimated based on 888 

comparisons to in-situ accumulation and ablation data 75. Cumulative uncertainties are 889 

computed as the root sum square of annual errors, on the assumption that these errors are 890 

not correlated over time 17. 891 

 892 

Extended Data Table 1. Glacial Isostatic Adjustment models. Details of Glacial Isostatic 893 

Adjustment (GIA) models used in this study.  894 

†Regional changes in mass associated with the GIA signal determined by the contributor. 895 

‡Regional changes in mass associated with the GIA signal calculated as an indicative rate using 896 

spherical-harmonic degrees 3 to 90 and a common treatment of degree 2 76. 897 
a Main reference publication(s). 898 
b Model from main publication unless otherwise stated. Comma-separated values refer to 899 

properties of a radially varying (1D, one-dimensional) Earth model: the first value is 900 

lithosphere thickness (km), other values reflect mantle viscosity (x 1021 Pa s) for specific layers; 901 

see relevant publication. 902 



c GIA model details: SH=spherical harmonic (maximum degree indicated), FE=finite element, 903 

C=compressible, IC=incompressible, RF=rotational feedback, SG=self-gravitation, OL=ocean 904 

loading, ‘x’ = feature not included. 905 
d RSL = relative sea-level data; GPS rates corrected for elastic response to contemporary ice 906 

mass change. 907 
e Earth model taken from ref 54 908 
f Ice model taken from ref 54 909 
g Different to ICE-6G_C in Antarctica, owing to the use of BEDMAP2 77 topography. 910 

 911 

Extended Data Table 2. Surface mass balance models. Details of the surface mass balance 912 

(SMB) models used in this study. a Main reference publication; additional references are 913 

provided in Supplementary Table 1.    b SMB model class; regional climate model (RCM), global 914 

numerical analysis (GA), process model (PM). Native resolution (n) and downscaled (d) 915 

models are also identified.                      c Averages over the period 1980 to 2012 for the 916 

Greenland Ice Sheet excluding peripheral ice caps and using the drainage basins from ref 37. 917 

 918 

Extended Data Table 3: Rate of Greenland Ice Sheet mass change, 2005-2015. Estimates of 919 

ice-sheet mass balance from satellite altimetry, gravimetry the input–output method, and 920 

from all three groups during the period 2005 to 2015. Also shown are the average standard 921 

deviations (s.d.) and ranges of individual estimates within each group during the same period. 922 

*No altimetry data in 2010.  923 
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