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Abstract. All people share implicit mappings across the senses, which give us preferences for
certain sensory combinations over others (eg light colours are preferentially paired with higher-
pitch sounds; Ward et al, 2006 Cortex 42 264 —280). Although previous work has tended to focus
on the cross-modality of vision with other senses, here we present evidence of systematic cross-
modality between taste and sound. We created four sound continua representing to varying
extents phonetic qualities of speech (F1, F2, voice discontinuity, and spectral balance). Sixty-five
participants selected their preferred sound to accompany each of the basic tastes of sweet, sour,
bitter, and salty, at two different concentrations. We found significant shared preferences among
our participants to map certain acoustic qualities to certain types of tastes (eg sweet tastes tend
to be mapped to a lower spectral balance than sour tastes). We also found a preference for
mapping certain sound qualities to different taste concentrations. Together our data provide the
first detailed analysis of how phonetic features map systematically to different tastants and con-
centrations. We examine the roots of these mappings, and discuss how such associations might
guide the ways in which human languages are used to name objects with taste.

1 Introduction

All people are predisposed to prefer certain sensory combinations over others. For
example, we tend to pair higher-pitch sounds with smaller, brighter, and spikier shapes
than lower-pitch sounds, and we also map higher-pitch sounds to higher positions in
space (Bernstein and Edelstein 1971; Karwoski et al 1942; Marks et al 1987). Such cross-
modal mapping may serve a functional purpose, and one recent study, for example,
suggests they might facilitate multisensory integration (Parise and Spence 2009). The
majority of empirical studies in cross-modality have tended to examine correspondences
within the visual domain (eg between space, brightness, and size—Nicholls et al 1999)
or correspondences between vision and the other senses (eg between colour and touch—
Simner and Ludwig 2009). However, humans experience cross-modality across a range
of sensory domains, and our aim in this study is to show systematic cross-sensory
mappings between taste and sound. We present empirical evidence of correspondences
between qualities of pure tastants, and the acoustic qualities of sound, particularly
those related to speech and language. We also demonstrate that these systematic map-
pings can be relatively explicit, in that they can be detected when participants freely
associate across these dimensions. In presenting this evidence, we ask whether the
naming of objects with taste is an arbitrary process, or whether it might be guided by
certain underlying cross-modal principles.

More so than any of the traditional five senses, taste is most often experienced
cross-modally because of the sensory interactions associated with eating (see Auvray
and Spence 2008; Delwiche 2004 for reviews). When we consume food, we exploit
chemoreceptors on our tongue, but also smell the odour of the food, see its form,
texture, and colour, and feel its form and texture in the mouth. However, the experi-
ence of flavour is primarily the combination of odour and taste (Djordjevic et al
2004). Indeed, the absence or addition of odorants can affect perceived taste quality.
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Patients with anosmia (loss of sense of smell), for example, report that their ability to
taste is also often affected (Doty 2009). Conversely, adding odorants to a taste solution
can enhance or detract from a given taste: a strawberry odour can enhance perceived
sweetness, and a caramel odour can reduce perceived sourness (Stevenson et al 1999).
In reverse, taste can also enhance the perception of odour. For example, a sweet
tastant will increase the perception of a fruity odour (Verhagen and Engelen 2006).

Taste perception can also be influenced by manipulating visual and tactile qualities.
Colour can affect perceived taste, since flavour discrimination is adversely affected
when the colour of a solution does not correspond with its taste (Zampini et al 2007).
Perceived sweetness can also be heightened by textural changes, such as increases in
viscosity (Bult et al 2007; Christensen 1980). Several studies also show differences
in perceived taste or flavour when manipulating the sound produced by the consump-
tion of food. Zampini and Spence (2004) showed that changing the amplitude or
frequency components within the sound produced when biting into crisps (potato chips)
influenced ratings of their crunchiness or freshness. Other studies have manipulated
the sound of carbonated drinks, or the sounds produced when chewing (Christensen
and Vickers 1981; Zampini and Spence 2005). This body of literature (see Spence and
Zampini 2006 for an overview) examines the acoustic properties generated by the
food itself. In response, Crisinel and Spence (2009) asked whether there are cross-
modal relationships between taste and specific auditory qualities per se. Since our own
work takes its lead from this study, we describe it in detail below.

Crisinel and Spence (2009) described early studies by Holt-Hansen (1968, 1976),
which showed that participants associated two different brands of beer with different
acoustic pitches. Crisinel and Spence asked whether the roots of these findings may
lie in the different qualities of sour and bitter within the two brands, and they showed
empirically that people hold systematic implicit associations between certain pitches
and certain food names. Their participants categorised food names as denoting flavours
with either bitter qualities (coffee, beer, tonic water, dark chocolate) or sour qualities
(lime, lemon juice, vinegar, pickles). In the same session, and using the same buttons,
they also categorised sound stimuli as being either high pitch or low pitch. In the
experimental manipulation the way that buttons were shared across tasks was varied
such that participants responded either [high-pitch/sour; low-pitch/bitter] or [high-pitch/
bitter; low-pitch/sour]. Response latency and accuracy showed a preferential pairing
of [high-pitch/sour; low-pitch/bitter]. This is an intriguing finding, and suggests that
sound and taste may cross-map in the same way as other combinations of the senses.
However, there are certain features of Crisinel and Spence’s particular choice of stim-
uli which raise questions about the interpretation of their study, and we address these
issues here.

Crisinel and Spence’s use of food names to map cross-modal properties gives rise
to certain problems in interpretation, some of which they address themselves in their
discussion. Crisinel and Spence point out that there are clear differences between read-
ing food names and experiencing actual tastes, and that different people may interpret
food names in different ways (eg some may find beer more bitter than others). More
importantly, however, there is a problem that arises from the very nature of linguistic
stimuli, and we draw attention to this here. The food names of Crisinel and Spence
may have triggered unwanted cross-modal influences entirely unrelated to taste. There
is now a growing cross-modal literature showing that people have inherent sensory
preferences for certain linguistic features (eg graphemes, phonemes, lexical frequency).
For example, all people share implicit preferences for the colours of graphemes
(A tends to be red; L tends to be yellow, etc—Simner et al 2005) and they also select
more luminant shades of colour for graphemes of higher frequency (Smilek et al 2007).
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People also pair linguistic sequences such as months and numbers to specific positions
in peripersonal space (eg early months and low numbers to left-sided space for speak-
ers or left-to-right writing systems— Dehaene et al 1993; Gevers et al 2003). They also
show underlying mappings between other linguistic properties and the visual dimen-
sion of shape. One demonstration of this is in the classic ‘bouba-kiki’ paradigm of
Ramachandran and Hubbard (2001; see also Davis 1961; Kohler 1929, 1947; Maurer
et al 2006): people tend to label spiky shapes as kikis and rounded shapes as boubas
(see Sapir 1929 for related sound symbolism paradigms). Finally, Klink (2000) showed
that non-words containing voiceless consonants are judged to be smaller, faster, lighter,
sharper, and softer than non-words with voiced consonants. All these findings show
that people implicitly map sensory qualities to the linguistic features of words. In turn,
this suggests that the linguistic stimuli of Crisinel and Spence may have exerted
unwanted influences themselves, and that this might have played a role in the cross-
modal mapping those authors attributed to taste.

To assess this issue, we performed a posteriori analysis on the words used by
Crisinel and Spence (2009) and found significant differences in linguistic qualities
across conditions (in addition to the taste manipulation planned by Crisinel and Spence).
Words in their sour condition were more linguistically marked in that they were signif-
icantly lower in frequency than words in the bitter condition (respective group means
were 9.1 and 107.6—Kucera and Francis 1967; t, = 2.4, p = 0.05). In addition, the
bitter-food names contained a significantly higher proportion of rounded graphemes
(those with curved contours in their visual form, such as o, e, a) compared to sour-
food names, as a function of overall word length. The mean ratio of rounded graphemes
in bitter-food names was 0.91, and in sour-food names 0.65 (¢, = 2.9, p =0.03). It is
therefore possible that the taste mappings (to pitch) presented by Crisinel and Spence
were in fact linguistic mappings, arising from differences across conditions in the
angularity/rounding of graphemes, or in the lexical markedness/frequency. Indeed,
there are several reasons to find this plausible. Participants in the Crisinel and Spence
study mapped high pitch to the most angular words, and Karwoski et al (1942) have
already shown that people pair the notion of high pitch with the notion of angularity.
Furthermore, work from our own lab shows that cross-modal attributions are sensitive
to the angularity of graphemes. For example, non-words containing angular consonants
such as z (eg zeze) are preferred as names for objects that are angular, while non-words
containing rounded consonants such as g (eg gege) are preferred as the names of
shapes that are rounded (Cuskley et al 2009). In addition, Smilek et al (2007) show
that cross-modal mappings are also sensitive to linguistic frequency. In other words,
where Crisinel and Spence presented cross-modal matching between low pitch and bitter,
they may instead have demonstrated cross-modal matching between low pitch and
rounded graphemes (or, indeed, between low pitch and low markedness in terms of
lexical frequency).

One other cause for a re-examination of the Crisinel and Spence findings is that
their stimuli also confounded acoustic pitch with timbre. Their high-pitch stimuli were
instantiated by notes from piano, clarinet, violin, and trumpet, while their low-pitch
stimuli were instantiated by piano, bassoon, cello, and bass trombone. Ward et al
(2006) have shown that timbre can play an important role in the cross-modal asso-
ciations made by the average person, since participants attribute different timbre
to different colour qualities (eg significantly more saturated colours are attributed to
piano versus pure tones). To address this issue, and the issues described above, we
aimed to re-examine the cross-modality of sound and taste using a different method.
First, we presented our participants with tastants rather than food names, and we
manipulated acoustic sounds without timbre confounds. In presenting our findings,
we aimed to show that Crisinel and Spence were in fact correct in their assumptions
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about taste—sound correspondence and that, importantly, effects of this type can be
seen when all other influences are removed. We also had two further aims for our
study. First, we asked whether taste—sound mappings might be explicit, in as much as
they could be measured in tasks where participants make explicit judgments (ie when
matching tastes in the mouth to sounds played over headphones). Second, we wanted
to test whether taste —sound associations are also found in acoustic stimuli related, to
varying degrees, to the phonetic features of speech. If humans map tastes to sounds
within the acoustic boundaries of speech, this might suggest that the naming of objects
with taste could have arisen in a non-arbitrary way. This in turn might have important
implications for theories of language evolution and vocabulary construction.

Here we report our empirical study in which participants were asked to match
tastes in the mouth to sounds played over headphones. We administered four types
of tastant (sweet, salty, bitter, sour) each along two concentrations (medium, high).
Taste was administered as drops on the tongue, and participants were then required to
match each taste to whatever settings they preferred on four different sound continua.
These four types of sound were selected to examine different acoustic qualities: F1, F2,
voice discontinuity, and spectral balance. The first three of these relate to properties of
speech, and were chosen because they are well motivated in the literature on linguistics
(eg Ladefoged 1993), sound symbolism (eg Hinton et al 1994), and cross-modality (eg Maurer
et al 2006; Ramachandran and Hubbard 2001, 2005). F1 corresponds perceptually to vowel
height (Ladefoged 1993) and is the frequency of the first formant. Vowel height is a
phonemic distinction for English speakers, and is perceptually salient (eg Giegerich
2005; Pfitzinger 2003). Figure 1 shows (inter alia) the outer vowels of British English,
and their respective Fls (see also section 2.1 for other details shown in this figure).
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Figure 1. Vowel space in British English, with the ranges of our F1 slider and F2 slider shown in
solid and dashed, respectively. Adapted from Hayes (2008).

Although vowels of different heights have formant differences other than Fl1
(ie slight differences in F3 and F4), a difference in F1 is most perceptually salient.
As such, varying F1 alone results in a synthesised vowel that sounds to be changing
in height (Pfitzinger 2003). F2 is the frequency of the second formant, and this corre-
sponds (within the ranges we have chosen) to vowel front/backness. This measure
is well established in other linguistic and cross-modal literature (eg Diffloth 1994,
Maurer et al 2006; Newman 1933; Sapir 1929), and, again, this feature is salient and
phonemic for English speakers. Figure 1 also shows the outer vowels of British English,
and their respective F2s. As with F1 values, the formants of spoken front and back
vowels also contain more than simply a change in F2 (ie small changes in F3 and F4).
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However, changes in F2 correlate with the perceived notion of front/backness (Ladefoged
1993; Pfitzinger 2003). (F2 values can also affect perceived vowel roundedness, but this
is not phonemic in English—Giegerich 2005; Traunmuller et al 2003.)

Our third speech-related acoustic continuum is that of voice discontinuity, and this
was chosen to reflect the interruptions in vowel quality that occur in natural speech
from interspersed voiceless consonants in words. Voicing is also found in sound sym-
bolic and cross-modal literature (Kohler 1929, 1947; Maurer et al 2006; Ohala 1984,
1994; Ramachandran and Hubbard 2001, 2005). Our final sound continuum was a
manipulation of the balance of overall spectral energy of noise emitted. Unlike the
other sliders, which produce a synthesised vowel output, the output of this slider was
filtered white noise. In this continuum, the value of all four formants moves together
as the slider is manipulated from low to high. Perceptually, the low value of the slider
sounds like lower-pitched white noise, and the high end of the slider sounds like
higher-pitched white noise. This manipulation allows us to examine the association
between taste stimuli and the spectral balance of acoustic energy in isolation.

Although the paucity of work on taste—sound associations makes some predictions
difficult, there are certain specific hypotheses to propose. If Crisinel and Spence (2009)
show patterns of data that do reflect taste—sound correspondences, we predict that
participants will share systematic preferences for the sound qualities they associate
with each taste quality. Crisinel and Spence (2009) suggest that high pitch corresponds
to sour tastes while low pitch corresponds to bitter tastes, and so we may find that
sour tastes are attributed higher values than bitter tastes in selections of F1, F2
(as vowel height and backness can affect perceived pitch of a vowel; Gonzales 2009;
Pape and Mooshammer 2008), and in spectral balance (which reflects a shift in the
frequency concentration of overall noise). We may also find that people engage in a
type of ‘intensity matching’ (eg Smith and Sera 1992), in that higher concentrations of
taste may be matched to higher values in the sound continua. Finally, we may find
in our voice discontinuity slider a type of ‘hedonic matching’, in which two ends of a
dimension subjectively correspond because both are pleasant (as shown in other cross-
modal studies—eg Dematte et al 2006a, 2006b). On the assumption that the most
pleasant taste is sweet (eg Moskowitz et al 1974), this taste may match with the smooth
auditory quality of a continuous vowel, rather than the staccato interruptions of a
discontinuous vowel (ie sweet tastants will be lowest in voice discontinuity).

2 Experimental methods

2.1 Participants

Sixty-five participants were recruited form the University of Edinburgh community,
and were compensated £3.50 for the 25 min required to complete the task. All partici-
pants were monolingual English speakers between the ages of 18 and 42 years. All
were non-smokers and all reported normal taste and hearing function. Smokers were
excluded to avoid possible taste function impairment (Vennemann et al 2008). Informed
consent was obtained from all participants, and ethical approval was obtained from the
University of Edinburgh prior to testing.

2.2 Materials

2.2.1 Taste materials. Our materials comprised four tastants (sweet, salty, bitter, sour),
each at two concentrations (medium, high). Our stimuli were taken from the Accusens
Taste Kit® (Henkin 2005) which instantiates tastants as sweet (glucose), salty (NaCl),
bitter (urea), and sour (HCI). The kit contains three different concentrations of each
taste, hereafter referred to as low, medium, and high (see table 1). The low concen-
tration of each taste is slightly above the average recognition threshold for individuals
with normal taste function (Brosovic and McLaughlin 1989). Each concentration level
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Table 1. Tastant materials and their concentrations. All four tastes (sweet, salty, bitter, sour)
were presented at two different concentrations (medium, high). Note: low concentration is not
examined in the current study.

Flavour Tastant Concentration/mM

low medium  high
Sweet sucrose 60 90 150
Salty NacCl 60 90 150
Bitter urea 150 300 500
Sour HCI 6 15 30

thereafter demonstrates at least a 30% increase in intensity (Ganong 2005), making the
difference in concentration discernible at equal intervals for each taste (Henkin 2005).
From these levels of concentration, we selected both medium and high, but excluded
low as our participants were not able to consistently detect taste at the lowest level.

2.2.2 Sound materials. Four sound sliders were created to present sound continua of F1,
F2, voice discontinuity, and spectral balance, respectively. Each slider was programmed
with Tcl/Tk and the Snack © real-time sound synthesis package, modelled after Beskow’s
(2001) formant synthesiser. With the exception of the voice discontinuity slider, the ampli-
tude of all sounds was set at 70 dB within the programme. In all sliders, the band
widths for F1, F2, F3, and F4 were held constant at 50, 75, 100, and 150 Hz, respectively.
The individual settings for each slider are described below.

F1I slider. To examine vowel height, we created a slider that varied F1 on a continuum
from low to high frequency while holding all other formants constant. Low and high
settings of F1 were 300 and 700 Hz, respectively, which is roughly analogous to
spanning the centre of the vowel space in British English, from high to low vowels.
The corresponding spectrograms for these lower and upper settings are shown in the
panels of figure 2, and figure 1 shows (with a solid line) the range of the F1 slider
with respect to vowel space and frequency. F3 and F4 were held at 2500 and 3500 Hz,
respectively, which are the default values given by Beskow (2001). F2 frequency was
held at 1400 Hz, which represents the mid-point of our F2 slider (see below).

F2 slider. To examine vowel front/backness, we created a slider that varied F2 on a
continuum from low to high frequency while holding all other formants constant.
Figure 1 shows the range of the slider, indicated by the dashed line. F3 and F4
frequencies were held at 2500 and 3500 Hz, respectively (following defaults given in
Beskow 2001). F1 was held at 500 Hz which represents the mid-point of the F1 slider.
Low and high settings of F2 were 1000 and 1800 Hz, respectively—approximately span-
ning the centre of the English vowel space from back to front vowels (and remaining
firmly within the vowel space, as dictated by the fixed value of F1).

Voice discontinuity. To examine voice discontinuity, we created a slider that interrupted
an otherwise continuous vowel, to an increasing extent on a continuum, according
to the value of the slider. We selected a vowel roughly equivalent to /o/ (schwa),
with the following formant values: F1 = 500 Hz, F2 = 1500 Hz, F3 = 2500 Hz, and
F4 = 3500 Hz. To manipulate perceived discontinuity, we varied the volume of the
sound every 360 ms, back and forth between two amplitude levels. These amplitude
levels became further apart as the slider moved from low to high. When the slider
was set at zero, there was no variation in volume, and the result was a smooth, fully
continuous vowel. As the slider increased, the perceived effect was a vowel sound
with a throbbing pulse of volume change, resulting eventually in a fully discontinuous
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vowel alternating between sound and silence. The slider’s scale runs from 0 to 3000,
and its units are our own ‘discontinuity quotient’ (DQ).

We effected our manipulation by connecting the slider to a counter which varied
the volume of the vowel around a baseline setting of 75 dB. Snack® denotes this level
as an arbitrary value of 2000, and this value forms the basis of our DQ scale, as
follows. Every unit on the slider represents a fluctuation of 1 either side of the baseline
2000. For example, at a setting of 0 DQ, the slider plays a vowel with no fluctuation,
which therefore stays at the constant amplitude of 2000, and sounds fully continuous.
At a setting of 1 DQ, the slider plays a vowel which fluctuates in amplitude from
2001 to 1999 (ie 2000 & 1). At a setting of 1000 DQ, the slider plays a vowel which
fluctuates in amplitude from 3000 to 1000 (ie 2000 £ 1000) and this sounds somewhat
discontinuous, with throbbing pulses of volume change. At 2000 DQ, the slider plays
a vowel that fluctuates even more, from 4000 to 0 (ie 2000 4+ 2000), and this is now a
fully discontinuous vowel interspersed with silence. The maximum setting of 3000 DQ
emphasises that discontinuity by alternating between silence and the highest volume of
5000 (ie 2000 + 3000). Note that because the volume cannot fall below zero, our lowest
setting of volume (ie 2000 — 3000 = —1000) is realised simply as zero or silence.

Spectral balance. To examine overall acoustic energy, we created a slider that varied
spectral balance on a continuum. This was accomplished by using a white-noise source
and manipulating the value of all four formants simultaneously from 0 to 5000 Hz,
resulting in a shift in the spectral balance of the sound from low to high.

2.3 Procedure

The experiment was run on a desktop PC attached to Sennheiser PXC 250 head-
phones. The PC volume was set to 50% for each participant to ensure consistent
delivery of stimuli. Participants were given brief written instructions about overall
aims, and were then shown the PC interface. This interface showed four horizontal
sliders placed one above the other, in the centre of the screen. Each slider could be
manipulated with a mouse by clicking on a virtual grip, and dragging it back and forth
across the length of the slider. This changed the quality of the related sound (F1, F2,
voice discontinuity, spectral balance, respectively). Instructions were then given verbally
with the sliders on screen to facilitate understanding. Participants were told they would
receive drops of 12 tastes. These comprised 8 target items [four tastants (sweet, salty,
bitter sour); each at two concentrations (medium and high)] and 4 fillers (the same
tastants at low concentration—not examined here). Participants were told that after
each taste, they would be required to choose a sound from each of the four on-screen
sliders. They were told to select one setting from each slider (four sounds in total)
that ‘best matched’ the taste, and that there was no right or wrong answer. Participants
then put on headphones, and the experimenter prepared to administer one drop of
each tastant directly onto the tongue. The drop was delivered from the pipette of the
standard 4 ml bottles provided with the taste kit. Drops were administered directly onto
the centre of the tongue, and participants were encouraged to roll the solution around in
the mouth. To ensure participants understood the procedure they first received a drop of
water, and were encouraged to interact with the sound sliders before beginning the test
items. Participants received distilled water between each tastant to cleanse the palate.
Tastes were administered to each subject in one of ten pseudo-randomised orders,
with the restriction that no two concentrations of one taste quality could be adminis-
tered directly in succession. Sound sliders were also presented in one of four different
random orders on screen, such that each slider occupied each possible position. Slider
values were also counterbalanced, such that approximately half the participants had
low values on the left and high on the right, while the remaining participants had the
reverse.



560 J Simner, C Cuskley, S Kirby

3 Results

Data from each slider were analysed separately with a 4 x 2 within-subjects ANOVA
crossing taste quality (sweet, salty, sour, bitter) and taste concentration (medium, high).
All family-wise comparisons are Bonferroni corrected. We did not perform cross-slider
analyses because each slider presented qualitatively different sounds, with different
scale lengths that would make any interactions difficult to interpret. In doing this, we
also kept the total number of tests small, and so minimised the required correction of
the significance level (following Curtin and Schulz 1998). Because of equipment failure,
we lost the data from one participant on the spectral balance slider, and from another
participant on both spectral balance and voice discontinuity. The results from each
slider are given below.

3.1 FI slider (vowel height)

Sixty-six participants contributed data to this analysis. The mean F1 values selected
for each taste at each concentration (where low F1 values correspond to a high vowel)
are shown in figure 2. There was a significant main effect of taste concentration
(F, =6.7, p=0.01) showing that higher concentrations of all tastes corresponded to
sounds with higher F1 (ie a lower vowel). There was also a main effect of taste quality
(F, =17.6, p < 0.001). Planned corrected tests revealed that the sweet taste had a signif-
icantly lower F1 (463 Hz) than the bitter taste (508 Hz; t,; = —2.8, p = 0.007), the salty
taste (511 Hz; ¢, = —2.9, p = 0.005), and the sour taste (538 Hz; t,s = —5.2, p < 0.001).
All other planned statistics were non-significant (all zs < |1.8], all ps > 0.05) and there
was no interaction of factors (5 < 1).

600 Taste
—e - Sweet
_m— salty
- - - Dbitter
—o— sour
550
N
T
=
T =
500 —
A’
—_—-— S
-7
450 - -
medium high

Concentration

Figure 2. Mean F1 values selected for four tastes (sweet, salt, bitter, sour) at two concentrations
(medium, high). High F1 corresponds to low vowels.

3.2 F2 slider (vowel backness)

Sixty-six participants contributed data to this analysis. The mean F2 values selected
for each taste at each concentration (where low F2 values correspond to a back vowel)
are shown in figure 3. As before, participants were again systematic in their choice of
taste—sound association. There was a significant main effect of taste concentration
on the F2 quality of sound (F; = 7.7, p = 0.007), since higher concentrations of tastes
were assigned to significantly higher F2. There was no interaction of effects (F;, < 1),
but there was a main effect of taste quality (F, = 2.6, p = 0.05). In numerical terms,
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Figure 3. Mean F2 values selected for four tastes (sweet, salt, bitter, sour) at two concentrations
(medium, high). High F2 corresponds to front vowels.

the sweet taste and the bitter taste each produced lower F2s (1422 and 1408 Hz,
respectively) than the sour taste (1496 Hz), but these effects failed to survive Bonferroni

correction (respective ts were —2.4 and —2.2 for sweet —sour, bitter —sour; all ps > 0.05;
all dfs = 64).

3.3 Voice discontinuity

Sixty-five participants contributed data to this analysis. The mean voice discontinuity
values selected for each taste at each concentration (where low values correspond
to an uninterrupted vowel) are shown in figure 4. In voice discontinuity there was
again a main effect of concentration (F; = 10.5, p = 0.01), with higher concentrations
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Figure 4. Mean values of voice discontinuity selected for four tastes (sweet, salt, bitter, sour) at two
concentrations (medium, high). High DQ corresponds to discontinuous vowels.
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rated as more discontinuous. There was no interaction of factors (F; < 1), but there
was again a main effect of taste quality (5 = 3.9, p = 0.01). The sweet taste produced
more continuous vowels (ie had lower discontinuity: 1098 DQ) than the bitter taste
(1461 DQ; t;s = —2.8, p =0.04) and the sour taste (1421 DQ; f¢.; = —2.7, p = 0.05).
All other planned statistics were non-significant (all rs < |2.4], all ps > 0.05).

3.4 Spectral balance

Sixty-four participants contributed to this analysis. The mean spectral balance, or
overall acoustic energy, selected for each taste at each concentration (where low values
correspond perceptually to low-pitch white noise) is shown in figure 5. In spectral
balance there was again a main effect of concentration (F;, = 19.2, p < 0.001) since
more highly concentrated tastes were assigned sounds with higher-frequency spectral
balance. There was also a main effect of taste quality (F; = 3.2, p = 0.03), since the sweet
taste had a lower-frequency spectral balance overall (2050 Hz) than the sour taste
(2652 Hz; ts; = —3.1, p = 0.02, corrected). All other comparisons were non-significant
(all ts < |2.2], all dfs = 63, all corrected ps > 0.05) and there was no interaction of
effects (F; = 1.0, p > 0.05).
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—e - Sweet
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Figure 5. Mean values of spectral balance selected for four tastes (sweet, salt, bitter, sour) at two
concentrations (medium, high). High spectral balance corresponds to high F1-F4 values.

4 Discussion

In our study we have examined the cross-modal mapping of gustation and audition.
We manipulated qualities of taste and sound, and asked participants to make intuitive
matches across these two sensory domains. Participants tasted drops of sweet, salty,
bitter, and sour, with each tastant presented at medium and high concentrations.
Participants selected their preferred sound for each taste from each of four auditory
sliders that represented continua of F1, F2, voice discontinuity, and spectral balance,
respectively. The first two continua present frequency changes in components of vowel
quality, and the last in overall balance of the acoustic energy. The third represented a
change in vowel continuity, from a smooth uninterrupted vowel to a staccato discontin-
uous one. We found that participants were systematic in their choice of taste—sound
mapping, and that they showed the following patterns of response. Increasing concen-
trations of taste corresponded to increasing values in F1, F2, and spectral balance,
and they also corresponded to more staccato vowel sounds (ie higher voice discon-
tinuity). We also found differences across taste qualities. Sweet tastes were judged to be
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low in frequency in F1, F2, and spectral balance. In the latter two sliders, they were
judged lower than sour tastes, and in the first slider, they were judged lower than
bitter, salty, and sour tastes. An additional tendency in F2 was for bitter to be rated
lower than sour. In other words, these sliders revealed a sequence from sweet to bitter
to sour (with salty numerically between bitter and sour). Finally, the sweet taste was
judged to match smoother, more continuous vowel sounds than the bitter and sour
tastes, which were judged to match more staccato sounds. The implications of these
findings are discussed below.

Our findings provide support for Crisinel and Spence (2009) in showing systematic
cross-modal associations between taste and sound. In their study Crisinel and Spence
had used food names to represent tastes, and we aimed to test their claims using
tastants in the mouth, without the mediation of target words and their associated
linguistic qualities. Crisinel and Spence’s food-name stimuli had varied in other,
unplanned, ways, for example, in grapheme rounding and lexical markedness. Nonethe-
less, even when taste—sound mapping is directly tested, as we did here, cross-sensory
correspondences again emerge. In presenting our findings, we have provided positive
evidence of taste—sound mapping, but cannot rule out the possibility that word-—
sound mappings may also have contributed to the Crisinel and Spence pattern of data.
In other words, it is yet possible that rounded graphemes do independently pair to
lower pitch sounds, for example, and we find this highly plausible given similar
sound —shape mappings reported elsewhere (eg Karwoski et al 1942; see also Cuskley
et al 2009).

Our findings also support Crisinel and Spence’s (2009) in other ways. These authors
concluded that sour taste pairs with high-frequency sounds, and bitter taste pairs with
low-frequency sound, and, indeed, our figures 2, 3, and 5 show a trend for sour to map
to values higher than bitter in all manipulations where the unit was hertz. Furthermore,
sour achieved consistently the highest hertz value across all four tastes and, for this
reason, it seems well supported that sour tastes may map to sound characteristics with
higher frequency. Nonetheless, our four-taste comparison allows us to modify slightly
the suggestion of Crisinel and Spence that bitter may correspond to low frequency,
per se. More correctly, Crisinel and Spence point out that their two-taste comparison
can only show that bitter is mapped to a lower frequency than sour (as our findings
in F2, for example, also suggest). Nonetheless, our inclusion of sweet and salty shows
that bitter is not, in fact, judged to be low, per se. For example, bitter was judged
to be significantly higher in frequency than sweet in F1 (and significantly higher in
discontinuity). In other words, bitter is itself a relatively mid-to-high-mapped taste, and
the truly low-mapped taste might best be considered as sweet.

Of particular interest is what may lie at the root of these unusual preferences.
As a clue to their roots, we hypothesised, and subsequently found, a type of ‘intensity
matching’, found also in other cross-modality studies (eg Smith and Sera 1992). Higher
concentrations of taste were matched to higher values in all four continua, and this
may represent an instantiation of what Walsh (2003) has described in his “A theory of
magnitude” (ATOM). Walsh proposed a general mechanism responsible for quantitative
(and spatial) processing which matches high magnitude across dimensions. This is a
particularly appealing account for our spectral balance slider, for example, when over-
all spectral energy was changing in magnitude from low to high (as a result of the
low-pass filtering of the spectrum), and participants mapped this change to increasing
concentration (another magnitude dimension). On other sliders, however, there was no
such prothetic (magnitude) dimension, but, instead, a type of metathetic (qualitative)
dimension. For example, our slider of vowel discontinuity had no clear end of high
magnitude, and indeed the high end of this scale could be described as either more
discontinuous or less continuous. However, this scale does offer the opportunity for
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‘hedonic matching’—a process in which two ends of a dimension subjectively correspond
because both are pleasant or unpleasant (eg Dematte et al 2006a, 2006b). The sound
produced at the highest end of this scale was a staccato pulsing, which participants
spontaneously described as unpleasant. In contrast, the lowest end of this scale repre-
sents a more pleasant, smooth, continuous vowel, and it is therefore no surprise that
the most pleasant taste—sweet (see Moskowitz et al 1974)—was placed lowest on this
scale.

Evidence of systematic pairings across the senses in the general population can
provide useful information, in and of itself, to theories of sensory integration and
sensory processing. One interesting issue regarding sensory integration comes from a
consideration of the population of individuals that experience cross-sensation to an
extraordinary degree. Cross-modality of taste and sound can be felt explicitly in a
condition known as synaesthesia. Synaesthetes experience two (or more) sensations
when only one modality is stimulated. For example, in music—colour synaesthesia,
listening to music triggers both an auditory experience of sound and a visual experi-
ence of colour. Synaesthete JW, for example, experiences a 370 Hz single piano note
as a darkish off-yellow colour in the visual field (Ward et al 2006). These experiences
have a neurological basis and affect at least 4% of the general population (Simner
et al 2006). Of particular interest here is that some variants of synaesthesia involve the
pairing of sound and taste. Synaesthete ES, for example, experiences taste and flavour
in the mouth in response to music (Beeli et al 2005). ES experiences a bitter taste
when hearing a major second interval, and experiences the flavour of cream when
hearing a minor sixth interval. Of interest to the current study is that the experiences
of synaesthetes are elsewhere known to reflect the implicit associations made by all
people (eg see Simner 2009 for review). In this way, our evidence of cross-sensory
mapping between taste and sound (and the similar findings of Crisinel and Spence
2009) provides yet another area in which synaestheses and non-synaesthetes may corre-
spond. Put differently, the phenomenon of taste —sound synaesthesia makes it no surprise
to find inherent taste —sound correspondences in all people.

Our findings might also have implications for traditional models of taste percep-
tion. Such models often rest on the idea that all tastes are reducible to a few basic
categories, and that these are “distinctly different sensations” (Erickson 2008, page 63).
Given that basic tastes are theoretically separate and assumed to be distinctly different,
we might expect to find no similarities at all between them in the way they manifest
themselves in sound sliders. Our significant main effects of taste show that our slider
method can indeed capture differences between tastes, although the four basic tastes
did not pattern entirely distinctly, each from the other, as the traditional model might
predict. Instead, salt and sour generally patterned with each other (no significant
differences in planned comparisons) and also tended to pattern together with bitter,
while sweet patterned away from all three other tastes. This reflects other behavioural
tasks, where participants often confuse sour/salt, bitter/sour, and occasionally salty/bitter,
but where sweet is rarely involved in discrimination errors (O’Mahony et al 1979).
Such findings suggest a hierarchical organisation in the four basic tastes, and is more
compatible with Erickson’s (2008) across-fibre patterning theory (see also Alba 2007

(M An anonymous reviewer has asked whether the cross-modal preferences we found for tastants
might instead be attributed to their subjective intensities (ie in some way similar to the effect of
objective intensity we found by manipulating concentration). We believe not. First, our tastants
were taken from the Accusens Taste Kit® (Henkin 2005), which provides increments for each
taste with reference to a baseline slightly above the average recognition threshold for each taste
(Brosovic and McLaughlin 1989). In other words, the relative differences in perceptibility (and hence
intensity) for each taste were controlled. Furthermore, participants did not report any subjec-
tive differences in intensity across tastes, and were often unable to detect any subjective change in
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Jones et al 2006). In any event, our methods might provide an innovative way to critically
approach measurements of taste distinctiveness.®

Finally, we consider how our results can be interpreted in light of the fact that we
chose speech-related acoustic properties for our sound sliders. Our data, together with
those of Crisinel and Spence (2009), show that people make cross-sensory association
between taste and sound, and our own study has extended this to sounds associated
with the qualities of speech. Our chosen methodology shows that these mappings are
explicit, in the sense that they manifest themselves in tasks that rely on explicit judg-
ments (even if participants may not be able to consciously verbalise their underlying
‘rules’). Since humans map taste to sound within the acoustic boundaries of speech,
it is possible that this process is exploited in object naming, and that it may even have
played a role in the earliest stages of vocabulary construction. This in turn would
have important implications for theories of language evolution. There is some evidence
that cross-modal preferences may indeed underlie decisions in object naming. Klink
(2000) presented participants with the fictional names of a food product (lemonade),
and found that participants chose a name containing a front vowel /i/ (eg bilad) to be
more bitter than the same name containing a back vowel (/o0/, bolad). Our own findings
suggest that these preferences may have arisen from inherent cross-modal mappings
in F2 (the metric of vowel front/backness). Our participants found that increased
bitterness, from higher concentrations compared to medium concentrations, was sig-
nificantly tied to higher F2 values, and this corresponds to the association between
bitterness and front vowels found by Klink (2000). Nonetheless, we found this same
increase in F2 also in sweetness, saltiness, and sourness, suggesting that Klink’s find-
ings are better interpreted as showing that vowel frontness is generally associated with
increases in any taste, rather than with bitterness per se.

We have suggested that taste —sound correspondences might have influenced the
naming of words in language evolution, but the reverse is also possible. For example,
perhaps when our participants experienced bitter tastants (for example) this triggered
lexical access of the word bitter, and this in turn dictated the choices made in our
sound-matching task. To examine this more closely, we compared the mean F1/F2
generated for each tastant (sweet, salty, bitter, sour) with the F1/F2 for each (stressed)
vowel in the corresponding word (sweet, salty, bitter, sour; see figure 6). Overall the
results were mixed: the F1 correlation is near-significant (r =0.93, n =4, p =0.07)
showing that the sounds attributed cross-modally to tastants indeed correlate with
the sounds of taste names (ie the higher the F1 in the taste name, the higher the Fl
mapped cross-modally). This initially suggests that implicit taste —sound mappings might
mimic lexicalised terms for taste names (or vice versa). However, a similar analysis
based on F2 presented contradictory results; again there was a near-significant correla-
tion, although this time it was in the opposite direction to that predicted (r = —0.92,
n =4, p = 0.08). This weakens any suggestion that participants were influenced by taste
names during our task.

Nonetheless, these findings are intriguing in suggesting at least some possible
mediation of language, at least for F1. Taken at face value, this effect could have two
roots: either participants were subconsciously vocalising taste names during the task,

@ (continued)

concentration at all (ie they often believed that our targets were 8 different tastes, rather than a
smaller subset of 4, across two concentrations). Finally, our findings across taste mimic those
found elsewhere: sweet tended to pattern away from the other tastes in cross-modal matching,
and this same hierarchy is found in behavioural tests of confusedness (O’Mahony et al 1979).
Finally, our effects for taste reflect those of Crisinel and Spence (2009), who did not manipulate
intensity at all. For these reasons we believe that we have correctly detected an effect of taste,
although future studies might benefit from eliciting participants’ subjective impressions of intensity
for each tastant presented.
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Figure 6. Mean F1 responses plotted against mean F2 responses for all four tastants (indicated by
labelled shapes) at medium concentration. F1 and F2 values for the stressed vowels in the words
sweet, salty, bitter, and sour (/i/, /D/, /1/ and /a/, respectively) are also shown. The solid/dashed
cross represents the possible search space (see figure 1).

or, instead, some pre-existing cross-modality may have played a role in the very naming of
tastes during vocabulary construction. We tentatively propose the latter, and for the
following reason: our participants were simply not able to consciously name
the tastants during our task as sweet, bitter, salty, sour. Indeed, when lexical descrip-
tions were provided, they showed a very strong tendency to be flavours not tastes
(eg, respectively: orangey, metallic, fishy, lemony). For this reason, any mediation of
language during our task would have focused on the highly activated flavour names,
rather than the comparatively inactivated taste names.”? In contrast, our findings are
more compatible with an evolutionary account: taste—sound mappings might have
influenced vocabulary construction for taste names, even if taste names were not acti-
vated during our task. An anonymous reviewer proposed an intriguing test of this
hypothesis: if our cross-modal study were repeated with articulatory suppression
(eg Stevenson and Oaten 2008), this would alter the pattern of our data only if they
had been influenced by any self-generated verbal descriptors. If our results remained
unchanged, our cross-modal mapping between test and sound might yet indicate pre-
existing relationships that were brought to bear during vocabulary construction.

5 Conclusion

We have shown that people make systematic associations across taste and sound in
terms of shared mapping between tastants in the mouth, and the acoustic qualities
of accompanying auditory stimuli. We have shown that bitter does not map to low-
frequency sounds, per se, but simply to lower-frequency sounds than sour, while bitter
is in fact judged higher in frequency than sweet. These cross-sensory mappings are
explicit in that they are found in explicit judgments of sensory pairings. Importantly,
these associations can be seen in sound qualities related to speech, and this suggests
that vocabulary construction in the evolution of language may have relied on these same
cross-modal preferences, to pair names to foods in non-arbitrary ways.

@ Even if taste names were activated only implicitly, dominant models of lexical access (eg Levelt
1989) make it unlikely they would have mediated our cross-modal finding. Words brought con-
sciously to mind (here, flavour terms) are necessarily more highly activated than those that are not
(here, taste terms), and they tend to suppress the latter. Again, then, any lexical mediation would
almost certainly have focused on the highly activated flavour names.
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