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Objective.

 

To review the data on the origins, phenotype, and function of embryonic phago-
cytes that has accumulated over past decade.

 

Data Sources.

 

Most of the relevant articles were selected based on the PubMed database
entries. In additional, the Interactive Fly database (

 

http://sdb.bio.purdue.edu/fly/aimain/
1aahome.htm

 

), FlyBase (

 

http://flybase.bio.indiana.edu:82/

 

), and TBase (

 

http://tbase.jax.org/

 

)
were used to search for relevant information and articles.

 

Data Synthesis.

 

Phagocytes in a vertebrate embryo develop in two sites (yolk sac and liver)
and contribute to organogenesis in part through their ability to recognize and clear apoptotic
cells. Yolk sac-derived phagocytes differ in differentiation pathway and marker gene expres-
sion from macrophages produced via classic hematopoietic progenitors in the liver.

 

Conclusion.

 

We argue that yolk sac-derived phagocytes constitute a separate cell lineage.
This conclusion raises the question of whether primitive phagocytes persist into the
adulthood. © 2000 International Society for Experimental Hematology. Published by
Elsevier Science Inc.
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Macrophages in the developing embryo

 

During embryonic development of multicellular organisms,
there is a continuous cycle of cell proliferation, differentia-
tion, and death that permits tissue remodeling and organo-
genesis. As cells die, they are recognized and engulfed by
specialized phagocytes. The process of cell death and en-
gulfment is controlled by many genetic loci; perhaps the
best characterized are of 

 

Caenorhabditis elegans

 

, the so-
called cell death (CeD) genes. In 

 

C. elegans

 

, dying cells are
engulfed by their neighbors, but in organisms ranging from

 

Drosophila melanogaster

 

 to higher vertebrates, the cells
that remove apoptotic bodies are specialized mobile phago-
cytes. These cells are commonly referred to as macroph-
ages, but their origin and functional relationship to myeloid
hematopoietic cells that arise later in development are not
clear.

Hematopoiesis in vertebrate embryos is first detected in
the yolk sac. The yolk sac hematopoietic cells develop in
the splanchnic mesoderm of the yolk sac from the inner
cells of the angiogenic clusters (hemangioblasts, also called
blood islands) [1–3]. Although the hematopoietic progeni-
tors in the yolk sac apparently can differentiate into all he-

matopoietic lineages when stimulated with appropriate
growth factors in vitro, studies with chick/quail chimeras
[3,4] indicate that the avian yolk sac blood cells are transi-
tory. Definite blood cells in the chick embryo proper arise
not from the yolk sac-derived cells but from the intraembry-
onic cells originating in the aortic mesoderm. Similar obser-
vations were made in mammalian embryos. The intraem-
bryonic angiogenic clusters were identified in the paraortic
splachnopleura and in the aorta, gonads, and mesonephros
(AGM) region [5,6]. Hence, the model of embryonic he-
matopoiesis (reviewed in [7,8]) in mice suggests the exist-
ence of two waves of progenitor cell migration into the
liver, one from the yolk sac at 9.5 to 10.0 dpc and the sec-
ond from the AGM at 10.0 to 10.5 dpc forming a mixed
population of progenitors in the liver. Subsequently, only
the AGM-derived cells contribute to definite blood cells [9–
11]. The difference in potential is manifested in the inability
of the yolk sac cells to reconstitute an irradiated animal in
contrast to those of the fetal liver or bone marrow cells
[6,9,11–13].

The transition from yolk sac (primitive) to hepatic (de-
finitive) hematopoiesis is marked by a clear transition in the
phenotype of the erythroid cells, with a change from fetal to
adult hemoglobin types and from nucleated to enucleated
red cells. By contrast, the development of the myeloid lin-
eage is less well characterized. There is considerable evi-
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dence that macrophage-like cells in the embryo differ phe-
notypically from those of the adult [14]. In mammals at
least, this difference probably reflects in part the absence of
exposure to immunologic challenges that contribute to mac-
rophage development postpartum. Less attention has been
paid to a possible transition in phenotype between phago-
cytes produced by the yolk sac and those arising from clas-
sic hematopoietic pathways in the liver.

A consideration of this issue leads one to consider the
definition of a macrophage. The term itself was invented by
Metchnikoff [15] to describe large mononuclear phagocytic
cells able to take up microorganisms. Subsequently, all
phagocytic cells were classified together as the reticuloen-
dothelial system (RES) [16], an approach that persisted until
the 1970s. The main problem with the RES concept was that
it grouped together cells based on their function rather than
their origins. van Furth and Cohn [17] proposed a classifica-
tion of cells. Mononuclear phagocytes were defined as a
family including committed hematopoietic precursors in
bone marrow, their immediate progeny blood monocytes,
and the cells in tissues that derive from transendothelial mi-
gration and maturation of monocytes to become profes-
sional phagocytes (macrophages). More recent information
casts some doubt on whether tissue macrophages are contin-
uously replenished from circulating monocytes [18]. There
is certainly evidence for local proliferation of macrophages,
which will not be reviewed here. However, the basic con-
cept can accommodate inclusion of the progeny of cells that
are seeded into the tissue from hematopoietic precursors
arising at any time during development, including mono-
cytes produced by the fetal liver. A more fundamental prob-
lem arises if yolk sac-derived phagocytes arise from an in-
dependent pathway. As noted earlier, facultative phagocytes
arise in 

 

C. elegans

 

, and professional phagocytes (referred to
as macrophages) exist in insects that lack an obvious equiv-
alent of the hematopoietic pathway. Most studies of “phago-
cytes” in the embryo are unable to make any assessment of
the differentiation pathway, and the cells are identified
based on their involvement in phagocytosis, and enzymatic,
surface marker or mRNA expression that is shared with
macrophages in adults [19–23].

In this article, we will review the origins, phenotype, and
function of embryonic phagocytes. The term macrophage
will be used advisedly, without any implication that such
cells are “mononuclear phagocytes” as defined by van Furth
and Cohn [17]. In fact, the available evidence indicates that
a separate population of phagocytes exists in the embryo. If
these cells are retained into adulthood, the concept of a
“mononuclear phagocyte system” may require revision.

 

Embryonic origins of phagocytes

 

Yolk sac is the first tissue of embryonic origin containing
cells described as macrophages in vertebrates. Their pres-
ence at early stages of development has been detected based

on morphologic and histochemical criteria (light and elec-
tron microscopy), or surface markers (Mac-1 integrin, the
receptor for macrophage colony-stimulating factor [CSF-1],

 

c-fms

 

, and mannose receptor) in chick, mouse, rat, and hu-
man [21–27]. Despite their appearance and markers, the
earliest macrophage-like cells are functionally immature
compared with classic adult macrophages. They do not ap-
pear actively phagocytic in tissue sections (A.M. Lichanska
and D.A. Hume, unpublished observations) and lack mark-
ers such as F4/80 antigen (in mouse) and RM1 (in rat) and
the secretory product lysozyme M [19,23,28–31]. Isolated
pig yolk sac phagocytes were unable to ingest zymosan par-
ticles in vitro [32]. By contrast, human yolk sac cells were
shown to avidly ingest dying erythrocytes and contain lyso-
somal enzymes [24], but these studies were performed at a
later stage of development than in pig and mouse.

The question of whether yolk sac phagocytes might arise
in the blood islands and differentiate as they migrate away
is unresolved in the mouse, but studies in zebrafish suggest
an alternative pathway. Because of the rapid progress of the
process and accessibility of single labeling techniques, it is
possible to watch individual cell migration and behavior
during the early stages of yolk sac formation in the fish.
Herbomel et al. [33] used a combination of video micros-
copy and in situ localization of hematopoietic marker genes
to show that phagocytes appear in the yolk sac before red
cells. Most importantly, the phagocyte precursors arise from
a quite separate location than red blood cell progenitors.

After their infiltration of the yolk sac, progenitor cells in
the zebrafish differentiate into mature phagocytes and in-
vade the head mesenchyme in large numbers. Interestingly,

 

Drosophila

 

 hemocytes (insect blood cells) also develop in
the anterior head mesoderm [34]. Similarly, numerous
phagocytes expressing macrophage markers are identifiable
in chick and rodent head mesenchyme well before any cir-
culation is established in embryo [25,35,36]. Studies with
chimeras indicate that at least some of the early avian ph-
agocytic cells come from the yolk sac [36,37], but the mi-
gration route has not been established and the additional
presence of local stem cells has not been ruled out. The lo-
cal phagocytes in the head mesenchyme and yolk sac remain
extravascular and are able to proliferate [24,35,36,38–40].

Whether or not the yolk sac phagocytes originate from
the blood island precursors, there is no apparent intermedi-
ate stage that resembles a blood monocyte (Table 1). This
conclusion initially was based on the absence of characteris-
tic morphologic features (such as lack of phagosomes and
lysosomes) and histochemical markers (such as peroxidase).
Using electron microscopy, Naito et al. [41] found no evi-
dence of expression of peroxidase-positive granules on the
nuclear envelope and the rough endoplasmic reticulum, a
feature of immature macrophages in liver and bone marrow.
More recently, we identified a definitive marker for the
transition from yolk sac to liver myelopoiesis. The S100
proteins S100A8 and S100A9, otherwise known as MRP-8



 

A.M. Lichanska and D.A. Hume/Experimental Hematology 28 (2000) 601–611

 

603

 

and MRP-14, are expressed transiently during the process of
macrophage differentiation from bone marrow precursors in
vitro [42] and are definitive markers for the onset of my-
elopoiesis in the liver [23,43], but neither is expressed at all
in the yolk sac.

 

Macrophages in the liver

 

As noted earlier, the initial appearance of macrophage-like
cells in the mouse embryo proper occurs before the devel-
opment of a blood circulation and the onset of liver hemato-
poiesis. Once the liver becomes a major source of myeloid
cells, it becomes difficult to distinguish cells of yolk sac and
liver origin in the absence of definitive markers. The former
may decline, or they may continue to proliferate locally in
particular tissues; there is no firm evidence either way. Nev-
ertheless, there have been many studies of the cellular phe-
notype (Table 2) and location of macrophage-like cells in
later embryonic development in a wide range of species.
These studies suggest that although the myeloid cells be-
come more like those found in an adult after the liver be-
comes a major source of myeloid cells, their phenotype re-
mains quite distinct from cells in an adult. In the mouse, in
particular, we see the appearance of cells expressing the
widely studied surface marker F4/80, the macrophage scav-
enger receptor (MSR) and lysozyme, and the macrophage-
specific transcription factor, PU.1 [19,23], but the level of
lysozyme is low [31,44] and there is evidence that these
phagocytes are unable to participate in wound healing [20].

The first detectable macrophages in the liver are clearly
associated with hematopoietic islands, and adopt a stellate

appearance resembling the macrophages of hematopoietic
islands in the adult bone marrow [19]. They are physically
associated with proliferating erythroblasts and may be en-
gaged in erythropoiesis in several ways, as the major source
of the red cell growth factor erythropoietin [57] and ingest-
ing the nuclei expelled by maturing erythrocytes [58]. The
first phagocytes infiltrating the liver are probably of yolk
sac origin, raising the possible role of these cells, in combi-
nation with the environment of the liver, in initiating the es-
tablishment of definitive hematopoiesis.

With the onset of hematopoiesis in the liver, the number
of phagocytes continues to increase to a point where they
are one of the most abundant cell types in the embryo, con-
stituting as much as 10% to 15% of the total cells in many
organs. Various markers have been used to identify embry-
onic macrophages both in the liver and in other tissues (Ta-
ble 2). Cells positive for macrophage markers are present in
all developing organs and tissues: spleen, thymus, brain,
lung, kidney, heart, muscles, branchial arches, epidermis,
limbs, and eye [19,20,25,35,50,55,56,59–62]. In the brain,
phagocytes form an almost continuous lining of the ventric-
ular surfaces of the brain from 12.5 dpc and are abundant in
the choroid plexus (A.M. Lichanska and D.A. Hume, un-
published observations). The actively phagocytic cells in
the brain by this stage also express the adult macrophage
markers MSR and lysozyme [23]. At later embryonic stages
(16 dpc), the serial sections have shown that F4/80 and Mac-1
positive macrophages associate with regions of developing
cortical white matter, corpus callosum, meninges, and chor-
oid plexus [63,64]. Numerous actively phagocytic macro-
phages are found not only in the brain but also in other parts

 

Table 1.

 

Characteristics of yolk sac, liver, and adult phagocytes

Yolk sac

Characteristics 9.0 dpc* 10.0 dpc Fetal liver Adult

Origin Yolk sac Yolk sac Hematopoietic Hematopoietic
mesoderm mesoderm precursors in precursors in

 liver bone marrow
Intracellular organization Large nucleus, microvilli Large nucleus, microvilli 

 

? ?

 

Peroxidase activity

 

2 2

 

Initially 

 

2

 

ve; 

 

1

 

ve
later in gestation

 

1

 

 or 

 

2

 

Localization of peroxidase activity

 

2 2

 

nuclear envelope Nuclear envelope
Presence of lysosomes

 

2 1 1 1

 

Presence of lysosomal granules

 

2 1 1 1

 

Ability to phagocytose latex

 

1 1 1 1

 

Ability to phagocytose zymosan

 

2

 

?

 

1 1

 

Lysozyme M

 

2 2 1 1

 

c-fms

 

 (CSF-1 receptor)

 

1 1 1 1

 

F4/80 antigen

 

2 1 1 1

 

Macrophage mannose receptor

 

1 1 1 1

 

CD11b 

 

1 1 1 1

 

Macrophage scavenger receptor

 

2 6 1 1

 

PU.1

 

2 2 1 1

 

mitf

 

1 1 1

 

?

 

*The cells can be induced to become phagocytic in in vitro culture [41].
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of central nervous system (CNS), such as the cervical spinal
cord [65]. They also are associated with sensory organs
(e.g., eye and neural retina in developing eye) [66,67].

As the distribution of the cells expressing macrophage
markers expands, they are initially most numerous in areas
of active tissue remodeling such as the dorsal midline and
branchial arches [20,23,53]. Cells in these regions are ac-
tively involved in phagocytosis of dying cells. This function
has been most obviously demonstrated at a later stage of de-
velopment in the interdigital zone in the developing footpad
[20,25] and in the developing retina [66]. In nonmammals,
well-documented examples of this association include
metamorphosis in small intestine in 

 

Xenopus

 

, suboptic ne-
crotic center development in chick, and loss of the tail by
tadpoles [68–70]. Apoptosis is an integral part of embryonic
development, and tissue remodeling is used by all organ-
isms from the most primitive multicellular ones. The associ-
ation of specialized phagocytes with dying cells is a func-
tion conserved from 

 

Drosophila.

 

 There is some reported
evidence that macrophages themselves, or rather their secre-
tory products, cause cell death [71,72], but studies on

 

Drosophila

 

 argue against such a role [34,73]. Studies of the
retina demonstrated that there is a clear temporal distinction
between the appearance of apoptotic bodies and subsequent
migration of phagocytes toward the site of cell death [66],
suggesting that dying cells elicit extravasation and chemot-
axis of cells to clear the cell bodies.

The exact way in which phagocytes detect the potential
targets and migrate toward them is not known. Dying cells
express surface molecules that allow macrophages to recog-
nize and engulf the apoptotic bodies (reviewed in [74]; see
later), a signal that may cause concomitant maturation of the

potential phagocytes. Direct evidence for a link between
phagocyte maturation and cell death has been observed in
insects. Terminal differentiation of insect hemocytes into
fully functional phagocytes is very closely associated with
apoptosis, but their absolute numbers are not increased in
embryos with higher cell death [75–77]. Instead, qualitative
rather than quantitative change is observed in 

 

fork head,
knirps

 

, and 

 

stardust Drosophila

 

 mutants with nearly 100%
of hemocytes developing into fully mature macrophages.
The converse phenomenon is observed in mutants with
lower than normal levels of cell death. There is a significant
reduction in numbers of fully mature macrophages detected
by measuring the deposits of macrophage-derived pro-
teoglycan-1 (MDP-1) [54]. In mouse models with natural or
introduced mutations, the relationship between the level of
apoptosis and numbers of macrophages in embryo has not
been studied in detail, making any sort of comparison im-
possible. This area clearly requires further investigation.

Given the ability of macrophages to secrete a wide range
of mediators [78] that can regulate the function of other
cells, it seems very unlikely that their sole function is to in-
gest cells that have undergone autonomous programmed
cell death. As noted earlier, erythropoietin from macro-
phages is known to be one of the factors secreted to allow
primitive erythropoiesis [57]. Other factors presumably pro-
duced by embryonic macrophages are interferon 

 

g

 

 (INF-

 

g

 

),
tumor growth factor 

 

b

 

 (TGF-

 

b

 

), and trombospondin [79–
81]. Macrophages could contribute to vascularization of
embryonic tissues by secreting appropriate cytokines [33], a
proposal supported by their close association with the de-
veloping vasuclature. In the adult, macrophages produce
several factors affecting endothelia, such as vascular endo-

 

Table 2.

 

Macrophage markers used to describe embryonic phagocytes in various species

Marker Drosophila Fish Xenopus Birds Rodents Human References

Receptors RMI

 

1

 

45
F4/80

 

1

 

19
Mac-1

 

1

 

21
Mannose receptor

 

1

 

22,23

 

c-fms

 

1

 

25
Scavenger receptor

 

1

 

23
crq receptor

 

1

 

46
SR-CI

 

1

 

47
ABC transporter

 

1

 

48
DEP-1

 

1 1

 

49
Lectin binding

 

1

 

35,50
CD68 50

Enzymes Lysozyme

 

1 1 1

 

23,31,51
PU.1

 

1

 

23
Transcription factors Mitf

 

1

 

23
glide/gcm

 

1

 

52
L-plastin

 

1

 

33
Other Protein-X

 

1

 

53
MDP-1

 

1

 

54
WLC 15

 

1

 

55
XL-1

 

1

 

56
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thelial growth factor (VEGF), vascular permeability factor
(VPF), basic fibroblast growth factor (bFGF), angiotropin,
and substance P [82,83]. Embryonic macrophages have
been implicated in depositing components of basement
membrane such as proteoglycans, laminin, tiggrin, type IV
collagen, and glutactin [54,84]. Studies of the optic nerve
suggest that macrophages also might produce factors that
are necessary for axon growth and guidance [85,86]. The
identity of such factors is unknown except for macrophage-
derived factor, an uncharacterized activity referred to as PIF
(P388D1 cell line-derived inducing factor) able to induce
anterior neural and mesodermal tissue in 

 

Xenopus

 

 [87].
Although a mammalian embryo is largely protected from

pathogen challenge, embryonic macrophages can contribute
to protecting the embryos against infection. The most de-
tailed studies on immune abilities of embryonic phagocytes
in vertebrates come from zebrafish. Both gram-negative and
gram-positive bacteria can be cleared from the embryo by
phagocytes migrating to the site of infection [33]. An infec-
tion in zebrafish also appears to induce a systemic response
similar to macrophage activation in mammals.

 

Phagocytosis by embryonic macrophages

 

It is not the purpose of this review to deal in detail with
mechanisms of phagocytosis, as the topic has been recently
reviewed [74,88]. There are clear parallels in recognition of
apoptotic cells by macrophages between mammals, 

 

C. ele-
gans

 

, and 

 

D. melanogaster.

 

 For example, the murine homo-
logue of the Ced-7 gene in 

 

C. elegans

 

, which encodes a
member of the ABC transporter family (ABC1), is ex-
pressed specifically in embryonic phagocytes, and antibod-
ies against the protein product block engulfment of apop-
totic thymocytes by mature macrophages but have no
impact on yeast particle uptake [48].

By far the biggest and the most diverse group of recep-
tors involved in the uptake of dying cells are the scavenger
receptors. There are three groups of scavenger receptors
(SRs). The first includes all collagenous trimeric receptors
and consists of the type I and type II receptors generated by
alternative splicing, and MARCO SR encoded by a separate
gene [89]. The second group of scavenger receptors con-
tains CD36-related proteins, such as 

 

croquemfort

 

 (

 

crq

 

, also
called class B), which are structurally unrelated to the first
class but can take up oxidized low-density lipoproteins
(LDLs) and apoptotic cells [89,90]. A third class, class C
scavenger receptor dSR-CI, has been described in 

 

Droso-
phila

 

 [47]. Uptake of apoptotic cells is not the only function
of SRs; they have high affinity for LDLs, lipopolysaccha-
ride (LPS), fucoidan, lipotechoic acid, and nonopsonized
particulate matter. They also can mediate adhesion to other
cells [91,92]. The presence of multiple scavenger recep-
tors could explain why a single targeted disruption of the
scavenger receptor A type I or II in mice has no effect on
the embryonic development and clearance of apoptotic cells

[93]. The mutant mice do have impaired immunologic func-
tions and resistance to atherosclerosis, suggesting that the
main role of this receptor might be clearance of LDLs and
bacteria. In 

 

Drosophila

 

, the 

 

crq

 

 receptor is expressed exclu-
sively on the macrophages engulfing apoptotic cells and is
not required for taking up of bacteria, indicating that the two
processes use separate pathways in species [90].

 

Mouse models of macrophage development

 

We mentioned in context the impact of molecular genetics
approaches in 

 

C. elegans

 

 and 

 

D. melanogaster

 

 in identify-
ing the processes that control the recognition and engulf-
ment of dying cells and the maturation of embryonic phago-
cytes. A number of 

 

Drosophila

 

 mutants with various
impacts on phagocytes have been described (Table 3).
They all have mammalian homologues, but only some
(NF

 

k

 

B, IL-1R, and TNF-R) are involved in the myeloid lin-
eage in mammals; other genes are much more widely ex-
pressed. Several natural mutations or introduced disruptions
in mice have possible impacts on embryonic myelopoiesis
(Table 4), but so far, there are no described mutations that
are defective in yolk sac-derived macrophages. Given the
roles that have been ascribed to early embryonic phago-
cytes, it is difficult to see mouse development proceeding
much beyond 10.5 dpc in their complete absence. The criti-
cal questions remaining to be asked include the nature of the
growth signals that control early phagocyte development
and proliferation and whether one can define markers and
processes that differentiate yolk sac- and liver-derived cells.
In pursuit of such a marker, we performed a targeted disrup-
tion of the S100A8 gene, which is first expressed in the liver
(see earlier). However, the gene also is expressed tran-
siently in early migrating trophoblasts, and in its absence
the mother resorbs the developing embryos before liver he-
matopoiesis starts [43]. At the least, this finding indicates
that S100A8 is not functionally redundant, and it may be
possible to devise ways to overcome the maternal rejection
phenotype to permit study of the onset of myelopoiesis in
the livers of S100A8 (

 

2

 

/

 

2

 

) embryos.

 

Growth factors

 

There are several potential growth factors that could control
embryonic macrophage proliferation and differentiation.
CSF-1 is the only essential macrophage differentiation and
survival factor known [135]. CSF-1 mRNA and protein are
expressed in a developmentally regulated manner in the
mouse embryo [136]. There is a natural mutation in the
CSF-1 gene resulting in the absence of a measurable protein
[120,121,137]. Animals carrying this mutation (

 

op/op

 

 mice)
are osteopetrotic, which means that they lack bone marrow
due to the lack of osteoclasts and bone resorption. At birth,
they also have reduced numbers of some macrophage popu-
lations (e.g., in kidney, liver, bone marrow, blood mono-
cytes, spleen, and intestine), but some populations are unaf-
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fected (e.g., bone marrow monocytes, lymph nodes, and
thymus) [138]. Also unaffected in 

 

op/op

 

 mice are dendritic
cells and Langerhans cells. In addition to macrophage and
osteoclast deficiencies, the animals have developmental de-
fects of the nervous and reproductive systems, which may
reflect roles of embryonic macrophages [29,139–142]. The
interpretation of the 

 

op/op

 

 phenotype is difficult because of
transplacental trafficking of CSF-1, but recent evidence in-
dicates that some embryonic macrophage populations can
develop normally even when the mother is also 

 

op/op

 

 [143].

In principle, CSF-1 might be partly substituted by granu-
locyte-macrophage colony-stimulating factor (GM-CSF),
another factor able to elicit macrophage proliferation in
vitro and in vivo. However, mice with targeted disruption of
the GM-CSF gene were shown to develop normally with no
major abnormalities in hematopoiesis at birth [144]. They
do develop abnormal lungs with a progressive infiltration
by lymphocytes, the presence of numerous large intraalveo-
lar phagocytic macrophages and an accumulation of surfac-
tant in the lungs, and with the development of lung infec-

 

Table 3.

 

Genes affecting 

 

Drosophila

 

 phagocytes and their mammalian homologues

Gene Phenotype Effect on macrophages
Mammalian
homologue Effects of KO in mice References

 

glial cell
missing/gcm

 

Lack of glial cells Reduced hemocyte
numbers

 

Gcm1, Gcm2

 

No knockout 52,94

 

bicaudal D

 

Head, thorax, and anterior
abdomen missing

No detectable hemocytes

 

Bicd1, BicD1

 

No knockout 34,95

 

serpent

 

No mid-gut, no endodermal
differentiation

No mature hemocytes

 

GATA4

 

Embryonic lethal at
9.5 dpc

96–100

 

reaper

 

Excess mid-line cells due
to defect in apoptosis

None

 

Fas 

 

Defective cell death 101–103

 

cactus

 

Melanocytic capsules,
enlarged lymph glands

Overproliferation of
macrophages

 

IkappaBR, IkappaBT

 

Increase of 
monocytes/m

 

f

 

s
numbers in spleen

104–106

 

toll

 

Defects in motorneuron
number and muscle
patterning

Lower density of 
hemocytes in 
hemolymph

 

HTollR1-5

 

Defective pathogen
recognition

104,107–110

 

pelle, tube

 

Lower density of
macrophages

 

IRAK (pelle homolog)

 

Attenuated response
to IL-1

104,111,112

 

snail

 

 and 

 

twist

 

No mesodermal tissues No macrophages

 

Sna, Mtwist, Htwist

 

Deficits in
mesenchyme

34,113–117

 

domino

 

Melanized lymph glands No circulating hemocytes

 

None described

 

No knockout 73,118

 

single minded

 

Lack of ventral midline, 
reduced brain size

No mid-line migration of
hemocytes

 

Sim1, Sim2

 

No knockout 103,119

 

Table 4.

 

Natural and introduced mutations in genes important for macrophage differentiation and/or function in adult animals

Gene Phenotype Effect on embryonic macrophages References

CSF-1 Osteopetrotic mice, lack of bone marrow,
macrophage deficient

None described 120–122

PU.1 Embryonic or neonatal lethal Lack of mature macrophages,
but embryonic phagocytes
present

23,123,124

Scavenger receptor class A types I and II Impaired response to 

 

Listeria

 

 and 

 

Herpes

 

virus infections
None described 93

Core binding factors (CBF) Embryonic lethal due to extensive
hemmorrhaging

Lack of mature myeloid cells 125,126

CCAAT/enhancer binding proteins
(C/EBP)

 

a

 

: Neonatal lethal, lack of hepatic
glycogen stores, no mature neutrophils,
normal levels of monocytes

 

b

 

: Distorted immune regulation with
defective macrophage activation

 

a

 

: White blood cells appear
immature

127–129

 

c-myb Embryonic lethal due to severe anaemia
Osteopetrotic

Not investigated 130
c-fos None described 131
Microphthalmia (mi) Unpigmented, osteopetrotic, mast

cell deficient, reduced NK activity
Not affected 132–134
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tions (bacterial and fungal). Such pathology would be
consistent with the decrease or absence of dendritic cells,
which also respond to GM-CSF, but the development of the
dendritic cells is not affected [145]. The lung pathology is
even worse in mice with both GM-CSF (2/2) and op/op
phenotype, suggesting that both factors contribute to alveo-
lar macrophage function [146].

Development with age of osteoclasts and macrophages in
op/op mice suggests that there is at least one additional
growth factor that can act on the macrophage/osteoclast lin-
eage. Niida et al. [147] presented strong evidence that
VEGF is the factor involved. This finding is not totally un-
expected, given that blood cells and endothelial cells de-
velop from the common precursor during embryogenesis
[2,33,148]. Macrophages in zebrafish recently were shown
to originate in mesoderm, as do endothelial cells [33].
Moreover, evidence from Drosophila mutant bicaudal D
also shows that lack of mesoderm results in lack of phago-
cytes [34]. It would be interesting to look at the effect of a
VEGF null mutation on early phagocyte differentiation, es-
pecially because VEGF is highly expressed in embryonic
tissues, but embryonic lethality and impacts of endothelial
dysfunction [149] may preclude interpretation.

Transcription factors
The transition between yolk sac and liver hematopoiesis is
likely to involve expression of key transcriptional regulators
that, in turn, control expression of other genes. In the mac-
rophage lineage, the most obvious candidate is PU.1, a
novel member of the Ets transcription factor family. PU.1 is
expressed at high levels in a macrophage restricted manner.
Numerous macrophage promoters have functionally essen-
tial PU.1 sites (e.g., c-fms, tartrate-resistant acid phos-
phatase (TRAP), lysozyme M, macrophage mannose recep-
tor, interleukin 1 (IL-1), Fc receptors (FcRI and Fc RIIIA),
MSR, and CD11b) [150–159]. In fact, macrophage-specific
promoters have an archetypal structure in which purine-rich
motifs recognized by PU.1 substitute for conventional TATA
box and GC-rich elements found in classic mammalian pro-
moters [158,159]. Two groups have made targeted disrup-
tions of the PU.1 gene. Null mice created by Scott et al.
[123] die in utero at 16.5 dpc, whereas the PU.1 (2/2) mice
generated by McKercher et al. [124] die within 24 hours af-
ter birth. Independent of the time of death, many of the ma-
ture macrophage markers listed are absent in PU.1 (2/2)
mice, and no mature macrophages were detected in tissues
[160,161]. However, studies on the PU.1 null mice at early
stages of development indicated that c-fms transcript was
still detectable [124,160]. We showed that PU.1 is actually
not expressed at detectable levels in early yolk phagocytes
and appears first at 10.5 to 11.0 dpc when liver hemato-
poieis has commenced. Moreover, yolk sac-derived phago-
cytes detected by localization of the c-fms gene were unaf-
fected by the PU.1 null mutation [23]. Although later stages
of differentiation of liver-derived macrophages clearly are

affected by the PU.1 mutation, the disruption here is not ab-
solute. Henkel et al. [162] provided evidence for partial dif-
ferentiation of immature phagocytes.

The CBF family of transcription factors is another group
of regulators that bind to macrophage promoters [163].
These factors bind DNA as heterodimers of a and b sub-
units [125]. Three core binding factors have been mutated.
The targeted disruption of CBFa1 has been shown to affect
ossification of the skeleton attributed to lack of osteoblasts
[164]. In contrast, the targeted disruption of both the
CBFa2 (AML-1) and the b subunit led to an embryonic le-
thal phenotype due to extensive hemorrhaging [125,126].
Cbfa2 is expressed in both hematopoietic and endothelial
lineage in the yolk sac from 8.5 dpc [165]. Analysis of fetal
livers at 12.5 dpc revealed the presence of mainly yolk sac-
derived erythrocytes and lack of definite myeloid cells.
These findings could indicate that this family also has a dis-
tinctive role in the transition from yolk sac to definitive my-
elopoiesis. It would be of great interest to determine
whether development of yolk sac phagocytes is effected by
the CBF mutations.

Future directions
It is a common observation that ontogeny recapitulates phy-
logeny. In primitive organisms without an acquired immune
system, macrophages constitute the primary mechanism of
host defense. In species where the embryos are exposed to
the elements, the host defense function of embryonic phago-
cytes may be required for survival even during development
[33]. The functions of primitive phagocytes in mammalian
embryos, and indeed the markers they express, seem to re-
capitulate the functions of hemocytes in Drosophila. Taking
an evolutionary perspective, we suggest that there is a fun-
damental transition associated with the onset of liver he-
matopoiesis that correlates with the production of a new
class of macrophage, coevolved with the acquired immune
system to provide regulators of T- and B-cell function and
to act as effector cells in host defense. Primitive yolk sac-
derived phagocytes may be related to adult macrophages
only in as much as they are both large and phagocytic.
There is no compelling evidence that they develop from de-
finitive hematopoietic precursors. Conversely, there is clear
evidence that they do not progress via a monocyte interme-
diate and they do not require the transcription factor PU.1,
which controls expression of so many mature macrophage
genes, for their development.

The most interesting question that arises from this hy-
pothesis is whether primitive phagocytes persist into the
adult and constitute an independent arm of the host defense
system, or alternatively an independent regulatory cell type
that contributes to homeostasis. This question may be ad-
dressed by identification of definitive markers that distin-
guish “primitive phagocytes” from classic mononuclear
phagocytes.
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