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Brief Communications

A General Factor of Brain White Matter Integrity Predicts
Information Processing Speed in Healthy Older People

Lars Penke,1,2,3 Susana Muñoz Maniega,2,3,4 Catherine Murray,1 Alan J. Gow,1,2 Maria C. Valdés Hernández,2,3,4

Jonathan D. Clayden,5 John M. Starr,2,6 Joanna M. Wardlaw,2,3,4 Mark E. Bastin,2,3,4,7 and Ian J. Deary1,2,3

1Department of Psychology and 2Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh EH8 9JZ, United
Kingdom, 3Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, 4SFC Brain Imaging Research Centre, Department of
Clinical Neurosciences, The University of Edinburgh, Edinburgh EH4 2XU, United Kingdom, 5Institute of Child Health, University College London WC1N
1EH, London, United Kingdom, 6Geriatric Medicine Unit, The University of Edinburgh, Edinburgh EH4 2DN, United Kingdom, and 7Department of
Medical and Radiological Sciences (Medical Physics), The University of Edinburgh, Edinburgh EH4 2XU, United Kingdom

Human white matter integrity has been related to information processing speed, but it is unknown whether impaired integrity results
from localized processes or is a general property shared across white matter tracts. Based on diffusion MRI scans of 132 healthy
individuals with a narrow age range around 72 years, the integrity of eight major white matter tracts was quantified using probabilistic
neighborhood tractography. Principal component analyses (PCAs) were conducted on the correlations between the eight tracts, sepa-
rately for four tract-averaged integrity parameters: fractional anisotropy, mean diffusivity, and radial and axial diffusivity. For all four
parameters, the PCAs revealed a single general factor explaining �45% of the individual differences across all eight tracts. Individuals’
scores on a general factor that captures the common variance in white matter integrity had significant associations with a general factor
of information processing speed for fractional anisotropy (r � �0.24, p � 0.007) and radial diffusivity (r � 0.21, p � 0.016), but not with
general intelligence or memory factors. Individual tracts showed no associations beyond what the common integrity factor explained.
Just as different types of cognitive ability tests share much of their variance, these novel findings show that a substantial amount of
variance in white matter integrity is shared between different tracts. Therefore, impaired cortical connection is substantially a global
process affecting various major tracts simultaneously. Further studies should investigate whether these findings relate more to the role
of tract integrity and information processing speed in nonpathological cognitive aging or in lifelong-stable processes.

Introduction
Fast and efficient information processing between different brain
areas is a prerequisite of higher cognitive abilities. White matter
pathways connecting brain networks provide a foundation for
such abilities (Jung and Haier, 2007; Deary et al., 2010). The
integrity of individual brain white matter pathways can be quan-
tified using probabilistic tractography based on diffusion MRI

(Behrens et al., 2007; Jones, 2008). Also in line with distributed
brain networks, information processing speed, as assessed by
simple reaction time or inspection time tasks, is robustly associ-
ated with intelligence (Jensen, 2006). There is some evidence that
processing speed is associated with measures of white matter in-
tegrity (for review, see Madden et al., 2009a). However, it is not
clear from the existing studies whether lowered white matter in-
tegrity results from localized microstructural processes that affect
single tracts in some individuals, or whether it is to some extent a
global phenomenon that affects many tracts simultaneously, as a
recent report of positive correlations between tract integrity pa-
rameters measured across a range of association and projection
pathways suggests (Wahl et al., 2010). Furthermore, it is unclear
whether specific white matter tracts or the integrity that might be
shared across tracts are especially important for higher cognitive
functioning and speed of information processing.

An indirect indication that integrity shared across major white
matter networks might underlie higher cognitive ability comes
from the psychometric literature. There, it has been shown re-
peatedly that ability tests across all cognitive domains share
�50% of their variance between people, allowing the extraction
of a general cognitive ability factor from almost any correlation
matrix of cognitive tests (Carroll, 1993; Jensen, 1998). The exis-
tence of a strong general factor at the level of cognitive differences
makes it plausible that more general, brain-wide individual dif-
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ferences, like shared white matter integ-
rity differences across tracts, underlie
some of the differences in higher cognitive
functioning.

White matter integrity and speed of in-
formation processing are especially prone
to aging effects, and thus it has been pro-
posed that age-related cognitive decline
may occur as a result of cortical discon-
nection (O’Sullivan et al., 2001; Madden
et al., 2009a). Age-related decline in speed
of information processing has been iden-
tified as an important variable that pre-
dates general age-related cognitive decline
(Salthouse and Ferrer-Caja, 2003; Finkel
et al., 2007) and is probably less affected
by compensatory neurocognitive processes
(Park and Reuter-Lorenz, 2009).

Here, we hypothesize that different
white matter tracts share a substantial
amount of integrity across the aging brain,
i.e., older individuals who have high in-
tegrity in one tract will tend to have higher
integrity in all others. Furthermore, we
hypothesize that this shared variance in
white matter tract integrity across tracts, if it exists, should be
associated with faster information processing speed.

Materials and Methods
Subjects. The participants were 132 generally healthy, older individuals
(68 men, 64 women, mean age � 71.8 years, SD � 0.4, range 71.0 –72.8)
from the Lothian Birth Cohort 1936 (Deary et al., 2007). All were right
handed, Caucasian, living independently in the community, and without
signs of dementia or mild cognitive impairment, based on self-reports
and Mini-Mental State Examination scores above 23 (Folstein et al.,
1975). Written informed consent was obtained from all participants un-
der protocols approved by the National Health Service ethics committees
(MREC and LREC).

Neuroimaging. Subjects underwent diffusion MRI on a GE Signa HDX
1.5T MRI clinical scanner using a self-shielding gradient set with maxi-
mum gradient strength of 33 mT � m �1, and eight-channel head array
coil. Echo-planar diffusion-weighted images (b � 1000 s � mm �2) were
acquired in 64 noncollinear directions, along with seven T2-weighted
images (b � 0 s � mm �2). Seventy-two contiguous axial 2-mm-thick
slices were acquired at 2 � 2 � 2 mm resolution. Repetition time was
16.5 s and echo time 95.5 ms.

Datasets were preprocessed using FSL tools (FMRIB; http://www.
fmrib.ox.ac.uk/) to extract the brain, remove bulk subject motion- and
eddy current-induced artifacts, and estimate water diffusion tensor pa-
rameters (Basser et al., 1994). The BEDPOST/ProbTrack tractography
algorithm (Behrens et al., 2007) with a two-fiber model and 5000 stream-
lines was used to reconstruct tracts of interest. An automatic tract selec-
tion method with good reproducibility (Clayden et al., 2009a), based on
a model of tract topology (Clayden et al., 2007; Bastin et al., 2008), was
used to generate equivalent tracts of interest in each subject. This tech-
nique, termed probabilistic neighborhood tractography, optimizes the
choice of seed point for tractography by estimating the best matching
tract from a series of candidates against a reference tract derived from a
digital human white matter atlas (Hua et al., 2008), as described by
Muñoz Maniega et al. (2008). The topological tract model was also used
to reject false-positive connections (Clayden et al., 2009b). Eight white
matter pathways in the brain thought to be related to cognitive function-
ing were segmented: genu and splenium of the corpus callosum and
frontal white matter connections bilaterally (cingulum bundles, uncinate
fasciculus, and arcuate fasciculus, with the latter mostly covering the
so-called “Geschwind area”). Using the eigenvalues (�1, �2, �3) of the

apparent water diffusion tensor, tract-averaged values of fractional an-
isotropy (FA), mean diffusivity (�D�), and the axial (�ax � �1) and radial
(�rad � {�2 � �3}/2) diffusivities were calculated for all eight tracts in
each subject. The component diffusivities, �ax and �rad, represent
water diffusion parallel and perpendicular to the axonal fibers and
may help differentiate impaired myelination from axonal injury (Bastin et
al., 2009; Madden et al., 2009a), although care should be taken inter-
preting them in terms of underlying tissue structure (Wheeler-
Kingshott and Cercignani, 2009).

Cognitive testing. Information processing speed was assessed with
three well established tasks. Reaction times were assessed using a stand-
alone device (Deary et al., 2001). Simple reaction time (averaged across
20 trials) required pressing a button as fast as possible when a “0” was
displayed on an LCD screen. Four-choice reaction time (averaged across
correct responses in 40 trials) required pressing the correct button out of
four as fast as possible when a number from 1 to 4 was displayed on an
LCD screen. Inspection time (correct responses across 150 trials, stimu-
lus exposure time � 6 –200 ms) is a two-alternative, forced-choice,
backward-masked visual discrimination task that requires indicating,
without response time pressure, which of two parallel, vertical lines of
markedly different lengths was longer (Deary et al., 2007). Performance
scores on all three tasks were submitted to principal component analysis
(PCA), which yielded a strong common factor, explaining 57.2% of the
variance (for factor loadings, see Fig. 1A). Higher values on this factor
indicate slower information processing speed.

Intelligence was assessed by six subtests from the Wechsler Adult In-
telligence Scale III UK: Symbol Search, Digit Symbol, Matrix Reasoning,
Letter-Number Sequencing, Digit Span Backwards, and Block Design
(Wechsler, 1998a). The first unrotated principal component (explained
variance � 48.9%) was extracted from these six subtests and interpreted
as a general intelligence factor (Jensen, 1998).

Finally, memory was assessed by six subtests of the Wechsler Memory
Scale III UK: Logical Memory immediate and delayed recall, Spatial Span
forward and backward, and Verbal Paired Associates I (first recall) and II
(Wechsler, 1998b). A general memory factor was extracted as the first
unrotated principal component (explained variance � 36.82%).

Results
We ran four separate PCAs on all eight white matter tracts, one
for each indicator of their integrity (as is customary, the principal
components will be referred to as factors throughout). In every
case the results indicated a clear one-factor solution (Fig. 1), with

Figure 1. Scree plots for the principal component factor analyses based on the FA, �D�, �ax, and �rad of the eight white matter
tracts. In each case, the large eigenvalues of the first factor and the linear decreasing eigenvalues of the remaining factors strongly
indicate a single factor underlying the white matter integrity across tracts.
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the first unrotated factor explaining between 40.3% (FA) and
49.2% (�ax) of the variance (Table 1). All eight tracts showed
substantial positive loadings on each of these four factors. The
splenium of the corpus callosum consistently showed the lowest
loadings (Table 1). Factor structures (i.e., the pattern of factor
loadings of the eight tracts on the first unrotated principal com-
ponents) were almost identical for the four different water diffu-
sion parameters (congruence coefficient � � 0.986 – 0.999) (see
also Table 1) and for men and women (� � 0.966 – 0.991). Thus,
almost half of the integrity variance is shared between major
white matter tracts; there is a general factor of white matter
integrity.

After controlling for gender and age in days at testing, the
general processing speed factor correlated significantly with the
common FA factor (r � �0.24, p � 0.007) (Fig. 2) and showed a
nonsignificant trend with the common �D� factor (r � 0.16, p �
0.06). The nature of the latter correlation was clarified by the
factors based on the directional diffusivity subcomponents: the
common �rad factor correlated significantly with the processing
speed factor (r � 0.21, p � 0.016), whereas the common �ax
factor did not (r � 0.05, p � 0.55), a difference in correlation size
that is statistically significant [t(129) � 2.214, p(two-tailed) �
0.029]. The three individual tasks that comprise the general pro-
cessing speed factor showed a very similar pattern of results,
though the correlation between inspection time and the common
FA factor showed only a trend (r � 0.15, p � 0.094), and only
four-choice reaction time was significantly correlated with the
common �rad factor (r � 0.19, p � 0.031) (Table 2). Neither the
general intelligence factor nor the general memory factor were
significantly correlated with any of the four tract integrity factors
( p values �0.30), indicating dissociation of global white matter
tract integrity with higher cognitive functions (Table 2).

To explore a posteriori whether the correlations between
common white matter tract integrity and processing speed was
carried by especially strong associations between speed and the
integrity of individual tracts, we calculated all possible 8 (individ-
ual tracts) � 4 (white matter integrity parameters) � 32 correla-
tions of tracts with the general speed factor. Of these, six
correlations (with left arcuate and left uncinate fasciculus FA, �D�,
and �rad) were statistically significant ( p values �0.05), but not
particularly strong (r values �0.26), and 30 out of 32 were in the
expected direction. This pattern further supports the notion that
the associations of the common tract integrity factors with pro-
cessing speed are shared among the tracts we studied.

Furthermore, after statistically controlling for the common
tract integrity factor in correlations between the processing speed
factor and integrity of the eight individual tracts, only left unci-
nate fasciculus FA still showed even a statistical trend ( p � 0.07).

In addition, previously nonsignificant correlations of the right
cingulum bundle with the speed factor became significant [for �D�
and �ax ( p values �0.05); statistical trend ( p � 0.09) for �rad].
Thus, contributions of the integrity of individual tracts to pro-
cessing speed were only very limited over and above what was
explained by the common tract integrity factors.

Table 1. Tract loadings, explained variance, and mean between-tract Pearson
correlations for the general white matter integrity factors based on four different
water diffusion parameters

FA �D	 �ax �rad

Left arcuate fasciculus 0.71 0.77 0.73 0.76
Right arcuate fasciculus 0.70 0.78 0.71 0.77
Left cingulum bundle 0.60 0.73 0.79 0.67
Right cingulum bundle 0.67 0.83 0.77 0.81
Left uncinate fasciculus 0.56 0.58 0.71 0.52
Right uncinate fasciculus 0.73 0.70 0.74 0.69
Genu corpus callosum 0.63 0.69 0.77 0.64
Splenium corpus callosum 0.42 0.17 0.20 0.22
Explained variance 40.28% 46.98% 49.18% 43.38%
Mean between-tract r 0.31 0.36 0.39 0.33

Figure 2. The FA-based white matter integrity factor and its association with informa-
tion processing speed. A, Brain images show white matter tract segmentations obtained
in one representative participant. Seed points are marked with a green cross and tracts are
projected into the plane of the seed point. The statistics on the lines are the factor loadings
of the average FA values of the eight tracts on the latent white matter integrity factor (top)
and of the three measures of processing speed on the latent speed factor. The number on
the two-headed arrow connecting the two factors is their correlation. B, Scatter plot of the
relationship between the FA-based white matter integrity factor and the processing speed
factor.
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While we defined our speed factor exclusively by chronomet-
ric cognitive tasks, Symbol Search and Digit Symbol are often also
regarded as (psychometric) speed tasks. Indeed these two tests
loaded on both factors approximately equally. Even though nei-
ther Symbol Search nor Digit Symbol correlated significantly
with the four tract integrity factors ( p values �0.09), moving
both tests from the general intelligence factor to the speed factor
did not have any noteworthy effects on the results reported here.

Finally, we tested whether any of these effects were gender
specific. With regard to the cognitive variables reported in Table
2, men and women differed only, and weakly, in their mean per-
formance on the inspection time task (men: mean � 115.74,
SD � 9.32; women: mean � 112.20, SD � 10.77; t(131) � 2.03,
p � 0.045). There were no significant gender differences in the
white matter integrity factor scores ( p values �0.05). We reran
all analyses without controlling for gender and tested interaction
effects with gender instead. None of these were statistically signif-
icant ( p values � 0.05), indicating that all reported relationships
were similar for men and women.

Discussion
It is well established that, among nonclinical populations, people
who perform poorly in one cognitive domain tend to perform
poorly in others too, which allows for the extraction of a general
factor of cognitive ability differences (Carroll, 1993; Jensen,
1998). Here, for the first time, we show that the same is true for
white matter integrity: low integrity in every tract we studied was
positively correlated with lower integrity in all other tracts, which
allowed the extraction of a general factor for each of the four
water diffusion parameters we measured. While this does not
mean that all tracts across the brain will show exactly the same
degree of white matter integrity, thereby permitting some re-
gional differences as in the well established age-related anterior–
posterior gradient (Sullivan and Pfefferbaum, 2006), these results
do suggest that individual differences in white matter integrity
are to a substantial degree common to different tracts, not just a
phenomenon that primarily affects specific individual tracts.
Furthermore, while it has been shown in some studies that infor-
mation processing speed relates to white matter integrity of the
whole brain (Vernooij et al., 2009), broad regions of interest
(Deary et al., 2006), and individual tracts (Correia et al., 2008;
Turken et al., 2008), our study adds the novel result that it is
shared integrity across tracts that is associated with speed rather
than the integrity of specific tracts. Global tract integrity was
exclusively associated with processing speed, but not with higher

cognitive abilities like general intelligence and memory, perhaps
because speed tends to be affected earlier in life by age-related
decline (Salthouse and Ferrer-Caja, 2003; Finkel et al., 2007),
whereas higher abilities are more likely to be maintained by com-
pensatory processes (Park and Reuter-Lorenz, 2009). Further
studies will be needed to understand this dissociation.

Correlations of white matter integrity with information pro-
cessing speed were stronger with FA than with �D�, which suggests
that mild microstructural alterations of white matter, such as
minor fiber loss without gross tissue loss, are responsible for these
associations. Also, correlations were limited to shared radial, but
not shared axial diffusivity, which would be consistent with in-
terstitial water increase or possibly early demyelination rather
than neuronal loss or axonal damage, as an early feature in this
disconnection process (Burzynska et al., 2010).

White matter integrity was especially shared among tracts
with frontal projections, like the arcuate fasciculus and cingulum
bundle, but less with more posterior white matter fibers like the
splenium of the corpus callosum (Table 1). This is in line with the
prominent role of the prefrontal cortex in higher cognitive func-
tions (Gray and Thompson, 2004) and the parietofrontal integra-
tion theory of intelligence (Jung and Haier, 2007; Deary et al.,
2010). However, this does not imply that posterior white matter
tracts play no role in higher cognitive functions. Luders et al.
(2007), for example, found that the integrity of posterior, but not
anterior, regions of the corpus callosum were associated with
intelligence. Also, an earlier analysis of the same sample has
found that a single nucleotide polymorphism in the adrenergic
receptor gene ADRB2 was associated specifically with integrity of
the splenium of corpus callosum, with a partial mediation effect
on age-related decline in intelligence (Penke et al., 2010). These
results could be a sign of different, more specific processes affect-
ing the integrity of the splenium of corpus callosum and subse-
quently higher cognitive functions that do not affect frontal white
matter tracts, which could explain why the splenium loaded rel-
atively weakly on the general white matter integrity factors in the
current study. Integrity variance of tracts in the left and right
hemispheres were shared with the common factors to a similar
degree, indicating that general white matter impairments affect
both hemispheres alike (cf. Wahl et al., 2010).

Our results were found in an older, generally healthy sample
without signs of mild cognitive impairment or dementia. It re-
mains to be investigated whether the results extend to patients
with clinical conditions like stroke, dementia, or neurodegenera-

Table 2. Pearson correlations of the general information processing speed factor, the individual processing speed tasks, the general intelligence factor, and the general
memory factor with the white matter integrity factors based on four different water diffusion parameters

FA �D	 �ax �rad

General processing speed factor �0.24 0.16 0.05 0.21
(�0.40, �0.07) (�0.01, 0.32) (�0.12, 0.22) (0.04, 0.38)

Simple reaction time (log) �0.18 0.10 0.00 0.14
(�0.34, �0.01) (�0.07, 0.27) (�0.17, 0.17) (�0.03, 0.31)

Four-choice reaction time �0.19 0.17 0.10 0.19
(�0.35, �0.02) (0.00, 0.33) (�0.07, 0.27) (0.02, 0.35)

Inspection time (correct responses) 0.15 �0.09 �0.01 �0.13
(�0.02, 0.31) (�0.26, 0.08) (�0.18, 0.16) (�0.04, 0.29)

General intelligence factor 0.08 �0.06 �0.05 �0.07
(�0.09, 0.25) (�0.23, 0.11) (�0.22, 0.12) (�0.24, 0.10)

General memory factor �0.03 �0.02 �0.05 0.00
(�0.20, 0.14) (�0.19, 0.15) (�0.22, 0.12) (�0.17, 0.17)

Values in parentheses are 95% confidence intervals of the correlations. Lower values on the general processing speed factor and in simple and four-choice reaction time as well as higher values in inspection time indicate better information
processing speed.
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tive disorders. Our sample had a very narrow age range in the
early seventies, which suggests the interpretation that the results
we found are related to normal cognitive aging and age-related
decline in white matter integrity (Raz and Rodrigue, 2006; Deary
et al., 2009; Madden et al., 2009b). However, since our data were
cross-sectional and based on a single cohort, we were unable to
test aging effects directly. Therefore, a cognitive aging interpreta-
tion of our results remains speculative, and similar studies in
younger age-homogenous groups will be useful in testing this.
The integrity variance shared by major white matter tracts in the
present study was associated with processing speed, often found
to be a leading indicator of cognitive aging (Salthouse and Ferrer-
Caja, 2003; Finkel et al., 2007). This supports that the general
disconnection of brain networks (O’Sullivan et al., 2001), and
potentially the deterioration of organism-wide system integ-
rity (Christensen et al., 2001), might be one underlying “com-
mon cause” of normal age-related cognitive decline. However,
there is also evidence that processing speed is related to cog-
nitive ability at all ages (Jensen, 1998), and thus the general
white matter integrity we found in this study could also be a
lifelong-stable biological foundations of processing speed, re-
gardless of age. Longitudinal studies or comparisons of differ-
ent age-homogeneous groups are needed to disentangle these
alternative hypotheses.

There is some evidence that age-related differences in FA and
�D� are driven primarily by increased radial, but not axial, diffu-
sivity (Bhagat and Beaulieu, 2004; Madden et al., 2009a), which
matches the pattern of correlations with processing speed found
in the current study. That white matter integrity was especially
shared among frontally projecting tracts in our elderly sample is
in line with anterior–posterior gradient usually found in brain
aging (Sullivan and Pfefferbaum, 2006).

A limitation of the current study is that we have not examined
other factors potentially coassociated with cognitive impair-
ments and aging, such as white matter lesions, because a larger
sample will be required to adjust for these factors. However, in
this healthy sample few subjects had many white matter lesions.
In a large elderly cohort, Vernooij et al. (2009) showed that more
subtle white matter differences detected by diffusion tensor MRI
provided incremental value in explaining age-related cognitive
decline over the more macrostructural white matter changes in
lesions.

The current study showed that nonpathological individual
differences in white matter integrity that are related to processing
speed—a basic aspect of cognitive functioning—are to a substan-
tial degree shared by different major white matter tracts. That
white matter integrity is more of a global, brain-general than
tract-specific feature can have major implications for our under-
standing of normal differences in cognitive ability and cognitive
aging. Causal factors that affect white matter tracts, like small
vessel disease or hypertension, might to a substantial degree do so
in a global, systemic manner, which might in turn help to explain
the biological underpinning of the general factor of cognitive
ability. However, from the present study it is as yet unclear
whether a general factor of white matter integrity can be equally
well identified in different clinical samples and different age
groups, and whether or not associations with speed generalize
across these different groups. It will be interesting to discover
in future longitudinal studies and age-heterogeneous cross-
sectional studies whether the above results are more related to
lifelong-stable differences in cognitive ability or cognitive aging.
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