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Network distributed generation capacity analysis
using OPF with voltage step constraints

C.J. Dent, Member, IEEE, L.F. Ochoa, Member, IEEE, and G.P. Harrison, Member, IEEE

Abstract—The capacity of distributed generation (DG) con-
nected in distribution networks is increasing, largely as part of
the drive to connect renewable energy sources. The voltage step
change that occurs on the sudden disconnection of a distributed
generator is one of the areas of concern for distribution network
operators in determining whether DG can be connected, although
there are differences in utility practice in applying limits. To
explore how voltage step limits influence the amount of DG that
can be connected within a distribution network, voltage step
constraints have been incorporated within an established optimal
power flow (OPF) based method for determining the capacity of
the network to accommodate DG. The analysis shows that strict
voltage step constraints have a more significant impact on ability
of the network to accommodate DG than placing the same bound
on voltage rise. Further, it demonstrates that progressively wider
step change limits deliver a significant benefit in enabling greater
amounts of DG to connect.

Index Terms—Optimization methods, Load flow analysis,
Power generation planning.

I. INTRODUCTION

WORLDWIDE environmental concerns have placed re-
strictions on new large scale conventional power sta-

tion developments. Additionally, concerns over security of fuel
supply have led governments around the world to set targets
to diversify their energy mixes in the forthcoming decades;
indeed, incentives are already in place to encourage renewable
and combined heat and power developments. It is expected
that a number of these developments will be connected to the
(traditionally passive) distribution network. Voltage control,
fault levels, reliability and power losses are among the issues
faced in integrating Distributed Generation (DG) which have
been addressed in the literature [1]–[6]. Indeed, DG funda-
mentally changes the nature of distribution networks [7], [8],
and therefore a number of studies have built DG planning
models which consider the various technical requirements. In
[9]–[11], the DG siting and sizing problem was solved using
impact indexes, whereas analytical approaches were developed
in [12], [13]. Mathematical optimisation approaches using
metaheuristics [14]–[16] and a linear programming formula-
tion [17], have also been applied. To take into account directly
the intrinsic non-linearities of the problem, approaches based
on AC optimal power flow (OPF) models have been proposed
in [18]–[21].

This work is funded through the EPSRC Supergen V, UK Energy Infrastruc-
ture (AMPerES) grant in collaboration with UK electricity network operators
working under Ofgem’s Innovation Funding Incentive scheme – full details
on http://www.supergen-amperes.org/.

The authors are with the School of Engineering, The University of Edin-
burgh, Mayfield Road, Edinburgh EH9 3JL, UK (Email: chris.dent@ed.ac.uk,
luis ochoa@ieee.org, Gareth.Harrison@ed.ac.uk).

With higher penetration levels of DG, the benefits from
appropriate siting of DG, whether driven by central planning
or a system of financial incentives, are increasing. In order
to maximise the potential of a network to accommodate DG,
careful planning is required as connection of generation at
some locations might significantly reduce the total capacity
for DG [19], [22], and hence limit export to the transmis-
sion system. This is a particular concern where connection
applications are dealt with on a first-come, first-served basis,
without an analysis of the consequences for the network’s total
capacity.

When assessing network capacity for connection of gener-
ation, it is necessary to consider all significant technical and
physical constraints. Most DG studies have, however, over-
looked a particular requirement of the distribution networks:
voltage step constraints on loss of a generator, which is a quite
distinct issue from voltage rise. Voltage step changes occur
when a DG is started up or suddenly disconnected from the
network, and limits are typically placed on the maximum step
change allowed. In particular, in the UK, the Energy Networks
Association’s Engineering Recommendation (ER) P28 [23]
specifies a limit of 3% for infrequent planned switching events
or outages, and 6% for unplanned outages (e.g. faults). There
appears to be variation in UK practice regarding the allowable
magnitude and frequency of voltage step changes (with some
DNOs setting less stringent design limits in weak parts of their
networks [24]). Work by the Energy Networks Association
is ongoing to establish definitive practice. As a result, it
remains crucial to take voltage step changes into account when
evaluating the accommodation of new DG [25], [26].

While the process of starting a generator may lead to step
changes in voltage levels, the sudden disconnection of a DG
unit from the network due to faults or other causes will be
the primary concern here. ER G75/1 [27] defines voltage step
change:

Following system switching, a fault or a planned
outage, the change from the initial voltage level to
the resulting voltage level after all the Generating
Unit automatic voltage regulator (AVR) and static
var compensator (SVC) actions, and transient de-
cay (typically 5 seconds after the fault clearance
or system switching) have taken place, but before
any other automatic or manual tap-changing and
switching actions have commenced.

When using a power flow-based model to assess voltage step
change, it can therefore be defined as the difference between
the voltage level when the generation unit is connected, and
the steady state voltage level with the same network topology
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Fig. 1. Two bus system for voltage step analysis.

but with the generator disconnected. Clearly, evaluating the
voltage step change caused by disconnection of a single DG
unit is a straightforward procedure. Nonetheless, the com-
plexity of the problem increases significantly when multiple
generators are considered in a planning problem, since a single
solution must satisfy the voltage step constraint on loss of each
generator.

This paper proposes a optimal power flow (OPF) method for
assessing the DG capacity of network which for the first time
includes voltage step limits on loss of a generator, in addition
to the usual OPF constraints (e.g. voltage level, thermal).
This work builds on earlier studies on generation capacity
assessment by mathematical optimisation [19]. Voltage step
constraints are incorporated using a security constrained OPF-
like formulation, where the contingencies considered are out-
ages of generators rather than branches. While a 3% limit
has been used for most of the examples in this paper, the
methodology presented is generic, and would apply at any
including the wider 6% UK limit for unplanned outages, and
the 5% limit in common use in the USA [28].

This paper is structured as follows: Section II introduces
the voltage step issue by way of a simple two-bus model. In
Section III, the method for using an optimal power flow (OPF)
model to determine network capacity for DG is described
with the inclusion of voltage step constraints. Results from
the method’s application to a real part of the UK distribution
network are presented and discussed in Sections IV and V.
This demonstrates that a voltage step limit can actually be
more restrictive of DG capacity than a voltage level limit with
the same bounds. Finally, conclusions are drawn in Section
VI. A full mathematical specification of the model is given in
Appendix A.

II. VOLTAGE RISE AND VOLTAGE STEP

Voltage rise and voltage step are related but distinct phe-
nomena. The differences between them may be illustrated using
the two bus system shown in Fig. 1. This consists of a Grid
Supply Point (GSP) at bus A, and load and generation at bus
B.

Where power is exported from the DG towards bus A, the
steady state voltage rise VBA between buses A and B is given
approximately by

VBA = (PDG − PL)R + (QDG −QL) X, (1)

where PDG and QDG are the real and reactive outputs
of the generator. Subtracting the voltage rise with the DG
disconnected from the voltage rise with the DG connected, the
voltage step VS at bus B on loss of the generator (assuming

that the voltage at A remains constant) is

VS = − (PDGR + QDGX) . (2)

Unlike voltage rise, the step depends on the full output of
the generator, and is not mitigated by load at the bus, or by
transformer tap settings. As a consequence, for a given limit
on percentage deviation, the voltage step limit is expected
to restrict DG capacity more than the commonly considered
voltage level limits.

If the generator is operated at lagging power factor, the
reactive flow tends to reinforce the voltage step (and rise) due
to the the generator active power output. At leading power
factor the reactive flow tends to reduce the voltage step;
conceivably, should the generator consume enough reactive
power the voltage step may be upward.

The robustness of this simple two-bus model for assessing
quantitatively voltage step changes will be explored in Section
V. Nevertheless, it will be useful in interpreting qualitatively
the results presented later.

III. DG CAPACITY ANALYSIS USING OPF MODELS

A. Previous Work

A range of optimisation tools have been applied to prob-
lems in optimal DG siting. In network generation capacity
assessment (or, alternatively, capacity allocation) these range
from the use of a full AC optimal power flow (OPF) model
[19], and linear programming models including approximate
implementations of fault, voltage and thermal constraints [22],
to the use of genetic algorithms [29] (which also considered
investment and operational costs, and losses, in a multi-
objective problem). Other approaches to DG optimisation
problems at distribution level have included tabu search for
loss minimisation [30] and a genetic algorithm to decide the
optimal investment schedule over a number of years [15] (this
allows the consideration of investment deferral benefits from
DG.)

The OPF for DG capacity analysis is based on the concept
that the network’s capacity for new generation may be found
by placing DG expansion sites at the appropriate buses, and
using an OPF model to evaluate the maximum total gener-
ation which the network can support at these sites [19]. It
requires only slight modifications to the OPF model used for
classical applications such as cost minimisation, which already
includes Kirchhoff’s laws, thermal and voltage constraints.
The capacity at each site is a decision variable in the problem,
as opposed to a fixed parameter. As is common with DG
[31], the generators are assumed to be run in constant power
factor mode (i.e. with no voltage control), although alternative
operational modes are possible [32]. This method has already
been extended to include fault level constraints [33] and
evaluating the maximum capacity with a fixed number of DG
sites [34].

The objective function is simply the total DG active power
capacity in the network, i.e. the sum over the individual
capacities pn of the new generators n:

max
∑

n∈N

pn. (3)
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The simplest version of the OPF method may be implemented
in some commercial power systems modelling packages [19].
However, more advanced features such as voltage step and
fault level constraints necessitate a bespoke OPF formulation.
A full model specification is given in Appendix A.

B. Voltage Step Constraints

With voltage step defined on the basis of conditions pre-
and post-disconnection of the DG, it can be viewed as being
analagous to a line outage contingency. Line outage security
constraints have been included in OPF models for many
years; these models are typically referred to as Security
Constrained OPFs (SCOPF, see [35] for a review of methods
and applications). The generic formulation is to include as
constraints in the OPF a set of power flow equations in the
revised network topology for each outage considered. This
ensures that immediately post-contingency all load can still be
supplied with no voltage and thermal limit violations. For the
full nonlinear AC OPF required for distribution networks, the
entire power flow must be inserted into the model to implement
limits even on just one line.

Voltage step constraints can be implemented similarly to the
SCOPF where each contingency is an outage of a new DG site,
and is therefore labelled by an index n′. For each contingency
network a set of power flow equations is added as constraints
to the OPF model. The contingency power flow equations are
identical to the base case ones with the exceptions that the
power injected from the outage generator is zero, and that
contingency voltage variables, line flows, etc. are used in the
constraints where appropriate.

The voltage step constraint itself takes the form

Vb − V +
S ≤ Vn′,b ≤ Vb + V +

S ∀ n′ ∈ N, (4)

where for an outage of generator n′, the contingency voltage
Vn′,b at bus b must differ from by no more than V +

S from the
pre-outage voltage Vb.

C. Voltage Regulation

Transformer tap settings are used in distribution networks
to keep the secondary bus voltages as close to target voltage
(typically nominal) as possible. Although real tap changers
operate in discrete steps, in the OPF the tap ratios are treated
as continuous decision variables (modelling discrete settings
would result in a much harder mixed integer nonlinear optimi-
sation problem.) Following the practice in [19], all transformer
secondary buses are constrained to exactly nominal voltage
in the intact network. The existence of parallel transformers
between the same bus or multiple paths through the network
means that highly unbalanced power flows on transformer
pairs are possible. In order to avoid this, multiple transformers
connected in parallel to the same bus are constrained such that
their tap settings are equal. This mirrors actual transformer
practice, although it is also possible to limit the difference in
tap settings where multiple paths are not exactly equivalent. To
meet the definition of voltage step change (Section I), the tap
settings applied in the post-outage contingency power flows
are identical to those in the pre-outage flows (i.e. the voltage

step is defined before the transformers have time to react to
the loss of infeed).

D. Redundancy Constraints

Distribution networks are designed with built-in redundancy
in order to ensure continuity of supply during outages [36].
Typically the multiple supply paths to the load would take the
form of parallel transformers at substations, and double circuits
or reconfigurable connections to neighbouring sections of the
network. Where DG is expected to export significant amounts
of power through parallel sets of transformers and circuits, the
worst-case firm connection assessment would assume that one
of the circuits is out-of-service. This will typically reduce the
connectable capacity at that site, and as a result may influence
capacity elsewhere. To ensure that the flow may be carried
by one component alone during an outage, an approximate
approach is to constrain the total flow in parallel pairs of
components to the smaller of the components’ thermal limits.
While it does not treat exactly parallel network sections whose
layouts are not exactly symmetrical, it barely increases the
size of the mathematical optimisation problem. Further work
is planned on this.

E. Implementation

The OPF is implemented in the AIMMS optimisation mod-
elling environment [37], a high level language in which the
model structure is defined in a manner almost identical to
its paper formulation (given in Appendix A). In common with
other optimisation modelling languages [38], the mathematical
program is generated by AIMMS from the model structure
and data with the first and second derivatives of the con-
straints evaluated automatically for non-linear models. The
mathematical program is sent to the CONOPT general reduced
gradient solver [37], which has proved absolutely reliable in
convergence on a class of much larger security-constrained
OPF problems [39], and is reasonably efficient.

IV. CASE STUDY

A. Test Network

The capacity evaluation method is demonstrated on the
small section of the UK distribution network shown in Fig. 2,
a subsection of the network presented in the original paper
to use OPF for DG capacity evaluation [19]. The mainly rural
network has significant potential for wind and other renewable
developments, and is representative of many UK networks.
Key network parameters are listed in Appendix B.

For the initial analysis, voltage step constraints are ignored
and potential DG is allowed to connect at buses 21, 23 and
26. The secondary buses of transformers are regulated to
nominal voltage, with tap ratios constrained between 0.9 and
1.1, and the tap settings of parallel transformers allowed to
vary independently. In the base case, steady-state bus voltages
at 11 and 33 kV are constrained within ±3% of nominal to
satisfy the more onerous planning requirements of Engineering
Recommendation P28 [23], rather than the ±6% allowable by
statute [40]. The GSP at bus 6 is at nominal voltage.
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Fig. 3. DG capacity without (top) and with (bottom) voltage step constraints
applied for three DG power factors.

The maximum DG capacity (MW) available in the network
is shown in Fig. 3 (top) for DG power factors fixed at 0.95
lagging, unity and 0.95 leading. The results are consistent with
those presented using the same network in [19]. The active
inequality constraints, i.e., those restricting DG capacity, are
listed in Table I where V (+,−)(b) denotes the (upper,lower)
voltage limit at bus b and f+(l, t) the thermal limit on a line
or transformer.

The capacity available at leading DG power factor exceeds
that at lagging power factor by around 21 MW. Operation
at lagging power factor results in a tendency for active and
reactive power flows to be in the same direction, jointly
contributing to voltage rise. In this case upper voltage limits

TABLE I
ACTIVE CONSTRAINTS WITHOUT VOLTAGE STEP CONSTRAINTS

Power factor Active constraints
0.95 lagging V +(b22), V +(b24), f+(t20−21)

unity V +(b25), f+(l20−22), f+(t20−21)

0.95 leading f+(l20−22), f+(t20−21), f+(t25−26)

TABLE II
ACTIVE CONSTRAINTS WITH VOLTAGE STEP CONSTRAINTS ENFORCED

Power factor Active constraints
0.95 lagging f+(t20−21), V −S (b23, g23), V −S (b26, g26)

unity f+(t20−21), V −S (b23, g23), V −S (b25, g26)

0.95 leading f+(l20−22), f+(t20−21), f+(t25−26)

on the 33 kV feeders (at buses 22 and 24) constrains capacity
at buses 23 and 26 to 31 MW and zero MW respectively.
At leading power factor, active and reactive flows are in
opposite directions, reducing voltage rise, with thermal limits
becoming binding. As the circuits from bus 6 to 20 have high
capacity and relatively low reactance, the generation at bus 21
is always restricted to around 9 MW by the thermal limit of
the transformer connecting it to bus 20.

B. Applying Voltage Step Constraints

If a limit of ±3% is placed on the voltage step at each
bus on loss of a generator, the DG capacity able to be
connected changes as shown in Fig. 3 (bottom), as do the
active constraints (Table II). In addition to the symbols defined
earlier, V +

S (b, g) and V −
S (b, g), respectively denote the upper

and lower voltage step constraint at bus b when generator g
disconnects. Upwards voltage steps are taken as positive and
vice versa.

At leading power factor, the result is identical to that without
step constraints as, once more, active and reactive power
contributions to the voltage step partly cancel and the thermal
constraints become active before the voltage step limits.

The voltage step constraints significantly reduce the total
generation capacity at lagging and unity power factors (by
22 and 32 MW respectively). Capacity at buses 23 and 26 is
constrained by the allowed voltage step at those buses or the
primary bus of the associated transformer, when the voltage
steps are not mitigated by the DG reactive power export. The
‘primary bus’ constraint is active at unity power factor, on
disconnection of the DG at bus 26; the voltage step of −3%
at bus 25 is then slightly greater than that of −2.94% at
bus 26. This unexpected result occurs because the transformer
connecting 25 and 26 is modelled as having reactance only.
With no reactive power flow from the DG the transformer
impedance effectively makes no contribution to the voltage
step. Capacity at bus 21 remains the same on imposition of
voltage step constraints; it is still restricted by the thermal
constraint on its associated transformer.

It is notable that here the voltage rises at generators are
smaller than the voltage steps on loss of the generators. As
stated in Section II, this will usually be the case as voltage
rise is for a given network state determined by the actual
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TABLE III
OPTIMAL REAL POWER CAPACITIES AND POWER ANGLES.

Generator Capacity (MW) Power factor
Bus 21 9.62 0.980 lagging
Bus 23 49.83 0.978 leading
Bus 26 5.49 0.955 leading

Total 64.94

power flows (i.e. generation minus load) whereas voltage steps
are determined by the generator output without subtraction
of demand. In addition, voltage rise may be reduced using
transformer settings, whereas this has a much smaller influence
over the step changes.

C. Variable Power Factor

It is clear that the DG power factor plays a major role in
determining maximum capacity. As a result, where flexibility
of power factor is allowed, capacity can be increased [32].
To investigate this further, the DG power factors (strictly the
power angles) were treated as independent decision variables
in the OPF. Re-running the assessment with power factor
allowed to vary between 0.95 leading and lagging, the optimal
DG parameters are as shown in Table III; the total capacity
increases by 3MW over the 0.95 leading power factor case.

With the increase in control variables, the number of active
constraints restricting the optimal solution increased from
three to six: voltage step at V +

S (g23, b22) and V +
S (g26, b25);

thermal constraints f+(l20−22), f+(t20−21) and f+(t25−26);
and the lower tap limit on the bus 7 to 20 transformer.
Independently of the other generators, DG capacity at bus 21
is always limited by the transformer thermal constraint with
the power factor chosen to maximise the real power export.
At the other two buses, the optimal power factor is usually
determined by the voltage step and rise limits.

Results obtained with synchronisated tap settings for par-
allel transformers have been compared with those where tap
settings are allowed to vary independently. For the variable
power factor case, the capacity under independent operation
is negligible, but the reactive flows between buses 6 and
20 become highly unbalanced (the synchronised case showed
approximately equal reactive flows.)

When redundancy constraints are added (so that where
parallel branches exist one branch alone can support the entire
power flow in case of an outage, see Section III-D) the network
capacity reduces by 10.7 MW. The change occurs on bus 23
alone; the circuits connected to bus 20 have sufficiently high
limits that the redundancy constraints do not affect the other
generator sites.

D. Dependence of Capacity on Voltage Step Limit

The variation of optimal DG capacity with allowable voltage
steps of up to 6% is shown in Fig. 4 for the fixed and variable
power factor cases. Fig. 5 shows the classes of active con-
straints which limit the capacity in the variable power factor
case. At fixed power factors of 0.95 lagging and unity there
is an approximately linear relationship between connectible
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Fig. 4. Variation of the optimal DG capacity with maximum allowed voltage
step, both a range of fixed power factors and for variable power factors.

capacity and allowable voltage step with the maximum voltage
step acting as a significant constraint on capacity. At 0.95
leading power factor the capacity is very sensitive to voltage
step limit, although when the limit exceeds 3% its effect is
mitigated sufficiently that other constraints become active.

Operation with variable power factor again allows greater
capacity to connect across all voltage step limits, and is
slightly less sensitive to voltage step limits than leading power
factor operation. As might be expected, at small voltage step
tolerances, these constraints dominate, although this could be
alleviated to some extent by allowing a wider range of power
factors. The first qualitative change occurs when the step limit
reaches 2%, at which point the only two active step constraints
are those at the primary buses of the transformers connected
to buses 23 and 26, on loss of the generators at those buses.

As the step constraint is relaxed further, the upper voltage
limit at bus 25 becomes active in place of the step constraint
on loss of the generator at 26. Finally, with the step limit
above 5%, the allowed range of power angles does not allow
sufficient reactive power generation to maintain the voltage
limit at 25 with the associated transformer at its thermal limit,
and some generation capacity transfers from bus 26 to bus 23.

When a thermal limit in one of the parallel branches is
active, the relevant redundancy constraint reduces the effec-
tive degrees of freedom of the system by one; this is why
for voltage step limits above 2% there are only five active
constraints.

V. DISCUSSION

This paper demonstrates a novel and effective means of in-
corporating voltage step change constraints within assessment
of distribution network capacity for connecting new DG. This
is believed to be the first work to demonstrate the importance
of voltage step change in the context of DG connection and
planning. The step constraints are included within the OPF
in a manner that mirrors that of the well known security
constrained OPF by including contingency power flow equa-
tions in the optimisation model. The enforcement of relatively
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strict voltage step constraints has a significant negative impact
on the amount of DG capacity that may be accommodated,
more so than an equivalent limit on voltage rise. Voltage step
constraints are most significant at lagging power factors when
the active and reactive power flow contributions reinforce each
other. It has been shown that operation at leading power factor
alleviates both voltage and voltage step constraints allowing
greater volumes of DG to connect. However, as progressively
wider step change limits are allowed, more network capacity
becomes available.

The exact voltage step model, which includes generator
outage contingency power flow constraints in the OPF adds
significantly to the computational overhead (including nc

contingency flows multiples the size of the OPF model by
approximately nc + 1.) The possibility of using the simpler
two bus model from Section II as an approximate method
of enforcing voltage step constraints has been examined as a
means of reducing the computational burden.

The approximate expression for the voltage step given in (2)
was evaluated using as inputs the impedances of the network
from buses 21, 25 and 26 to the grid supply point at bus 6, and
the fixed power factor active and reactive power injections for
the optimal DG capacities in Fig. 3. The approximation was
found to be fairly good at lagging and unity power factor.
However, as Fig. 6 shows, its performance at leading power
factor is poor with, for example, the sign of the voltage step on
loss of generator 23 incorrectly predicted. This is because the
active and reactive power flows have opposite signs but similar
magnitudes, which magnifies the relative error. As leading
power factors are likely to provide the optimal capacity where
step constraints are significant, the full contingency approach
demonstrated here will therefore be necessary.

This paper has been primarily motivated by the assessment
of network generation capacity, with one additional applica-
tion being to consider whether a proposed DG project will
adversely affect the capacity of the network to host DG
elsewhere. The Lagrange multipliers of the various constraints
could guide planning decisions, by giving guidance as to where
the greatest benefit can be obtained from the relaxation of
voltage and thermal constraints [41]. It must be remembered
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Fig. 6. Comparison of the exact voltage steps at the generator buses with the
two bus approximation from Section II. Solid lines denote the exact approach,
and dotted lines the approximate approach. In each case the optimal generator
capacities with a voltage step limit of 3% are used.

however that Lagrange multipliers only give the effect of
marginal constraint relaxations; as a constraint is relaxed
further, another may become active and prevent further benefit.

Beyond this particular application, this paper provides an
example of the flexibility of the OPF approach to network
generation capacity assessment. Within an appropriate optimi-
sation modelling environment, a variety of additional technical
constraints may be implemented in a fairly straightforward
manner, by including contingency power flow constraints in
an security-constrained OPF-like manner.

VI. CONCLUSIONS

The voltage step change that occurs on the sudden dis-
connection of a distributed generator an area of concern for
distribution network operators. To explore how voltage step
limits influence the amount of DG that can be connected
within a distribution network, voltage step constraints have
been incorporated in a novel way within an established OPF-
based method for determining the capacity of the network to
accommodate DG.

The assessment shows that enforcement of relatively strict
voltage step constraints has a significant impact on the amount
of DG capacity that may be accommodated, more so than
an equivalent limit on voltage rise. Voltage step constraints
have the greatest impact at lagging DG power factors when
the active and reactive power flow contributions reinforce
each other, while operation at leading power factor tends
to alleviate both voltage and voltage step constraints. It has
been demonstrated that where progressively wider step change
limits are allowed, there is significant benefit in enabling
greater amounts of DG to connect.

APPENDIX A
FULL OPF FORMULATION

A. Base Case OPF

All new generators n ∈ N are assumed to be available.
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1) Objective function - maximise new DG capacity (MW):

max
∑

n∈N

pn, (5)

where pn is the real power capacity of new generator n, and
N is the set of all new generators.

2) Capacity constraint for DG (MW):

p−n ≤ pn ≤ p+
n ∀ n ∈ N (6)

p±n are the upper and lower limits on the capacity of new
generator n.

3) Grid Supply Point: Within this test example, there is
a single GSP of unlimited capacity; hence, the grid supply
variables pX

x and qX
x are unrestricted in range. The GSP will be

the slack bus in the power flow models, and hence its voltage
phase is to be zero:

δβGSP = 0, (7)

where the location of the GSP is βGSP.
4) Bus voltage level constraint:

V −
b ≤ Vb ≤ V +

b ∀ b ∈ B (8)

Vb is the voltage level at bus b for the base-case power flow
(i.e. all generators connected). V ±

b are the upper and lower
voltage limits at bus b, and B is the set of buses.

5) Kirchhoff voltage law (KVL) - lines: At two terminal
buses for line l (denoted β1

l and β2
l ) the active and reactive

power injections onto the line are given in terms of voltage
levels and phases by the standard KVL formula. At bus 1, the
active (f1,P

l ) and reactive (f1,Q
l ) injections are given by:

f1,P
l = glV (β1

l )2 −
V (β1

l )V (β2
l )

[
gl cos

(
δ(β1

l )− δ(β2
l )

)

+bl sin
(
δ(β1

l )− δ(β2
l )

)]
(9)

f1,Q
l = −blV (β1

l )2 −
V (β1

l )V (β2
l )

[
gl sin

(
δ(β1

l )− δ(β2
l )

)

−bl cos
(
δ(β1

l )− δ(β2
l )

)]
(10)

f
(1,2),(P,Q)
l are the real (P ) and reactive (Q) power injections

onto the two connection buses (1, 2) of l. gl and bl are
respectively the conductance and susceptance of line l. The
active and reactive equations for injection at bus β2

l may be
obtained by transposing the labels 1 and 2 in (9) and (10).
These constraints must be applied for all lines l in L, the set
of all lines.

6) Kirchhoff voltage law - transformers: These are identical
in form to the KVL constraints for lines, except that the
primary voltage must be divided by the transformer tap ratio
τt. For instance, the KVL expression for real power injection
at the primary:

f1,P
t =

∣∣∣∣
Vβ1

τ

∣∣∣∣
2

gt (11)

−
∣∣∣∣
Vβ1

τ

∣∣∣∣ |Vβ2 | [gt cos(δβ1 − δβ2) + bt sin(δβ1 − δβ2)]

The primary and secondary buses are denoted 1 and 2 re-
spectively, and the injections defined as for the lines. These

constraints must be applied for all transformers t in T , the set
of all transformers.

7) Tap ratio limit:

τ−t ≤ τt ≤ τ+
t ∀ t ∈ T (12)

where τ±t are the upper and lower limits on the tap ratio of
transformer t.

8) Kirchhoff current law: The sum of the grid supply and
generation at bus b is equal to the total power injected onto
lines and transformers plus the nodal demand at b. ∀ b ∈ B,

∑

x∈Xb

pX
x +

∑

n∈Nb

pn =
∑

l∈L

pLT
b + dP

b (13)

∑

x∈Xb

qX
x +

∑

n∈Nb

(tan φn)pn =
∑

l∈L

qLT
b + dQ

b (14)

The terms (p, q)LT
b are the sum of all power injections onto

lines and transformers at b. The reactive power line injection
term includes the capacitance term

− (Vb)2

2


 ∑

l∈L|β1
l
=b

bC
l +

∑

l∈L|β1
l
=b

bC
l


 ,

where bC
l is the shunt capacitance of the line.

9) Flow limit constraints: Constraints on power injections
at each end of lines, and the primary and secondary buses of
transformers:

(f (1,2),P
l )2 + (f (1,2),Q

l )2 ≤ (f+
l )2 ∀ l ∈ L (15)

(f (P,S),P
t )2 + (f (P,S),Q

t )2 ≤ (f+
t )2 ∀ t ∈ T (16)

B. Voltage Regulation Constraints

Tb is defined as the set of transformers whose secondary
bus is b, and which therefore regulate bus b.

1) Voltage regulation constraint: For the results presented
here, the voltage of regulated buses is 1 p.u. in the base case
power flow. This is formulated in the AIMMS optimisation
environment as:

Vb = 1 ∀ {b ∈ B|Tb 6= ∅} (17)

(the regulated buses are those where Tb is not empty.)
2) Parallel transformer constraint: A simple model for

synchronised operation of transformers which regulate the
same bus is to constrain their tap ratios to be equal:

τt1 = τt2 ∀ b ∈ B, (t1 6= t2) ∈ Tb (18)

Alternatively, enforcing a maximum difference between the
tap ratios would be almost as straightforward.

C. Transformer Outage Constraints

The total power flow across a pair of parallel transformers
is constrained below the thermal limits of each. ∀ (b ∈ B, t ∈
Tb), ( ∑

t′∈Tb

f1,P
t′

)2

+

( ∑

t′∈Tb

f1,Q
t′

)2

≤ (
f+

t

)2
(19)
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D. Generator Outage Contingency Constraints

The following constraints are added to the model for all
generators n′ ∈ N to ensure that thermal and voltage step
constraints are met on loss of a generator (here, contingency
voltage level constraints are not enforced.) The symbols used
are the same as before, except that the contingency power flow
variables are indexed by generator outage n′.

1) Grid Supply Point: The GSP is a (V, δ) bus which is
enforced by the following constraints:

δc,bGSP = 0 (20)
Vn′,bGSP = VbGSP (21)

All other buses including load and DG sites are (P, Q) buses.
2) Kirchhoff voltage law: The KVL expressions are identi-

cal to the base case except that contingency flow and voltage
variables are used. As the voltage step is defined before
remedial action can be taken, the base case tap ratios τt are
used.

3) Kirchhoff current law: ∀ b ∈ B,
∑

x∈Xb

pX
n′,x +

∑

n∈Nb 6=n′
pn =

∑

l∈L

pLT
n′,b + dP

b (22)

∑

x∈Xb

qX
n′,x +

∑

n∈Nb 6=n′
(tan φn)pn =

∑

l∈L

qLT
n′,b + dP

b (23)

4) Flow limit constraints: These take the same form as the
base case lines and transformers apart from the presence of
contingency flow variables, e.g.

(f1,P
n′,l )

2 + (f2,Q
n′,l )

2 ≤ (f+
l )2 ∀ l ∈ L (24)

Here, it is assumed that the contingency thermal limits are the
same as those for the intact network but higher emergency
ratings can be used.

5) Voltage step constraint:

Vb − V S,+ ≤ Vn′,b ≤ Vb + V S,+ ∀ n′ ∈ N, (25)

where V S,+ is the voltage step limit.

APPENDIX B
TEST NETWORK PARAMETERS [19]

All parameters are in per unit on a 100 MVA base.

A. Loads
Bus dP

b dP
b

21 1.626 0.358
23 18.430 4.059
26 0.976 0.215

B. Line Impedances and Thermal Limits (f+
l )

Line Rl Xl Bc f+
l

6− 7 0.02227 0.04961 0.01125 1.32
6− 8 0.02186 0.04849 0.01082 1.32
20− 22 0.33980 0.04849 0 0.19
20− 24 0.25840 0.45350 0 0.27
24− 25 0.87170 0.62470 0 0.11

C. Transformer Impedances and Thermal Limits (f+
t )

Transformer Rt Xt f+
t

7− 20 0.00961 0.24533 0.60
8− 20 0.01069 0.25083 0.60
20− 21 0 0.625 0.24
20− 23 0 0.208 0.24
24− 23 0 0.208 0.24
25− 26 0 1.0 0.05
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