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Abstract. We introduce a notion of Grothendieck logical relation and
use it to characterise the definability of morphisms in stable bicartesian
closed categories by terms of the simply-typed lambda calculus with
finite products and finite sums. OQur techniques are based on concepts
from topos theory, however our exposition is elementary.

Introduction

The use of logical relations as a tool for characterising the A-definable elements
in a model of the simply-typed A-calculus originated in the work of Plotkin [10],
who obtained such a characterisation of the definable elements in the full type
hierarchy using a notion of Kripke logical relation. Subsequently, the more gen-
eral notion of a Kripke logical relation of varying arity was developed by Jung
and Tiuryn, and shown to characterise the definable elements in any Henkin
model [4]. Although not emphasised in [4], relations of varying arity are power-
ful enough to characterise relative definability with respect to any given set of
elements considered as constants. The full generality of the approach is demon-
strated in Alimohamed [1], where such relations are used to characterise relative
definability in an arbitrary cartesian closed category.

In general, results about the pure simply-typed A-calculus extend easily to
analogous results for systems containing finite product types. This is not the case
for finite coproduct (sum) types. Although the equational theory of bicartesian
closed categories provides a basic formal system, the syntactic techniques used to
study systems without coproducts fall over in their presence. Two fundamental
properties of this equational theory, decidability (Ghani [3]) and its completeness
relative to the equalities valid in the category, Set, of sets (Dougherty and
Subrahmanyam [2]), were established only recently. It is apparently still an open
question whether the finite model property holds for this theory (although it is
inconceivable that it does not). Also, both the above results have been proved
only for nonempty sums (i.e. with the empty type omitted).

In this paper, we extend the logical relations characterization of relative de-
finability to the simply-typed A-calculus with products and sums (including the
empty type). As might be expected, this requires some development of the theory
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of logical relations. It turns out that what is needed is a natural generalization
of Kripke logical relations of varying arity, in which the base poset (or, more
generally, category) for the relation is endowed with a Grothendieck topology [6].
Using such Grothendieck logical relations, we characterise relative definability in
any bicartesian closed category in which the finite coproducts are stable (as is
the case in Set). We do not know if the characterisation extends also to the non
stable case.

From the categorical point of view our results are best explained in terms
of glueing [12,1]. However, for this conference version of the paper, we keep
our exposition elementary, in the hope that it will be accessible to most type
theorists with some background in categorical semantics.

It should be said that the research in this paper originated as part of a
strategy conceived by the authors for attacking the full abstraction problem for
call-by-value FPC (which includes finite sums). Kripke logical relations of vary-
ing arity had already been used to obtain full abstraction for PCF by O’Hearn
and Riecke [8]. The extension of these results to FPC seemed to us to require an
additional analysis of both partiality and sums. This line of research was never
fully pursued because similar full abstraction results for FPC were soon obtained
by Riecke and Sandholm [11]. However, their treatment of coproducts is some-
what ad hoc (although one does get the feeling that a Grothendieck topology
is at work behind the scenes). We believe that it would be very worthwhile to
integrate our more conceptual approach to coproducts into the full abstraction
picture.

It seems likely that the notion of Grothendieck logical relation will have other
applications. For example, the lengthy and heavily syntactic proof of equational
completeness relative to Set in [2], has hints of Grothendieck toplologies within
it. It is plausible that Grothendieck logical relations will lead to simpler and
more general such completeness proofs.

1 Simply typed lambda calculus with sums

The language we work with is a simply-typed A-calculus with additional types for
finite products and sums. In this section we describe the syntax of the language,
and its interpretation in any bicartesian closed category.

Syntax. We use T,... to range over a set T of base types, and 7,... to range
over types which are specified by the grammar below.

T =T —7| X(n)(Th---ﬂ'n) | +(n)(7—1="‘=7—”) neN

We write 1 and 0 for x(®() and +(9() respectively. We use n-ary products and
sums as primitive to emphasize that all our definitions for the zero-ary cases are
just the natural instances of the general n-ary scheme. This is of particular inter-
est in the case of the empty type 0, which is generally thought of as troublesome,
and often omitted from consideration altogether [3,2].



We use x,... to range over a countably infinite set of variables. A (type)
environment is a finite sequence x; : 7y,...,X, : T, where all the variables are
distinct. We use I,... to range over environments. We write () for the empty
sequence in general, and the empty environment in particular.

Terms are specified according to a T-signature, X', which is a set of pairs of
the form (¢ : 7) assigning types 7 to constants ¢, such that each constant symbol
in X' is assigned only one type. The terms are generated by the rules in Fig. 1. For
notational convenience, we will always omit the superscripts from the injections
in]"™ (¢). As usual we consider terms as identified up to a-equivalence.

For the remainder of the paper we consider a fixed (though arbitrary) set of
base types T and signature Y.

Semantics. For the purpose of this paper, a bicartesian closed category is a
category with finite coproducts, finite products and exponentials (we do not as-
sume finite limits). Let S be bicartesian closed with chosen structure (0, +, 1,
x, =) (here we are distinguishing initial object, binary coproduct, terminal ob-
ject, binary product and exponential). We define canonical finite coproducts by
119 %0 and [TV (Ay, ..., A, Apet) €11 (A4, ..., An) + Apyy. Canoni-
cal finite products H(") (Ay,..., A,) are defined similarly. We use standard no-
tation for injections, projections, the universal maps, and the “evaluation” map
and “Currying” operation associated with the closed structure.

A T-interpretation in S is a function from T to objects of S. Under a T-
interpretation Z every type 7 is interpreted as an object [7]z in the obvious way.
The interpretation of types extends to environments by the usual definition:

[x1:71, oy Xt Tz def H(n)([[ﬂ]]z, oy malz)

A (T, X)-interpretation T in S is a pair (Z¢, Zy) where Zp is a T-interpretation,
and Ty is a function mapping each constant (¢ : 7) € X to a global element
Ix(c) : 1 = [r] in S. Under a (T, X)-interpretation every term I' F ¢ : 7 is
interpreted as a generalised element [I"F ¢ : 7]z : [I'] = [7] in S by:

. . . def
[1 :71,- . Xp T E i 1] =

[CFe:r] ¥ Zo(e)o ()
[[FAx.:7.t:1 — 1] def MO x:m Bt m]
[CHtt): m] € evo ([l Ft:im —n] [Tkt n])
[T (et s xO ()] S (0t n], e [T F b 7a])
[I"F proj,;(t) : 7] def mio[CHt:x™(r,...,m)]
[T+ ing(®) : +™ (. om)] & o[kt
[["F caset of [ing(x1).t1,...,1in,(Xn)-tn] : 7] def
Mz :m bty o], [ L%y s E b o T]] 0
80 o (idpry, [T F ¢+ + (1, ..., 7))

where 6" : C x ([]™ (A1,..., 4n)) = [1"™(C x A1,...,C x A,)) is the dis-
tributivity isomorphism.



1< < _ : X
X1 :TlyeoyXn i Tn FXii T Srzn I'kFe:T (c:7)€
Lx:mibt:m I'tt:m—1m TI'kHti:n
'FXx:m.t:mm—m I'Fi(t):m
't oo I'Fityimy :x (™)
1T 1 . Tn I'kHt:x @, ,Tn) 1<i<n
I'E(tr,.ooytn) : X (11, .0y T0) I'Fproj,(t) : 7
I'Ft:n
1<:<
TrEan () : +0 (71, -, 7m) L=n
Fl—t:—{—(")(ﬁ,...,rn) xi:mibti:r 1<i<n
I'+ case t of [ini(x1).t1,...,inn(xpn)tn] = T
Fig. 1. Term syntax
Ert=t:r
= [
T|EFt=t:r riEkt=tr
F‘E"tlztziT F‘E"tgztgiT
I'Ekti=ts:7
xlle,...,xn:Tn\tlzT{tﬁ,...,tn:dt’nl—t,;:t;;:T,;’ I<i<n
F|E|—t1=t'1:7'1 I_',x:7'1|5,x=,-]x|—t=t':7'2
T|EF tt) =t(t)) :m FIEFXx:n.t=Xx:7.t' i1 —=m
FV(t
TIEF Qx:n.t)(t) =t /x]: 1 'Ekt=Xx:m.t(x):11 =7 * ¢ FV(H)
1< <
'l 2 F proj;(t1,...,tn) =ti: 7 Sizn
T'|E F t=(proj,(t),...,proj, (t)) : x™ (11, ..., 1)
1<2<n

I' | B F case in;(t) of [in1(x1).t1,...,inn(xn).tn] = ti[t/zi] = T

Nxi:m| Ejini(xi) =t H ti=t 7 1<i<n
I' | E F casetof [ini(x1).t1,...,1in,(xp).tx] =t 7

Fig. 2. Equational rules



2 Stable coproducts

To obtain our characterisation of definability, we shall be interested in bicartesian
closed categories which enjoy the additional property that coproducts are stable.

Definition 1 (Stable coproducts). In an arbitrary category, a coproduct
{A; — A}ics is said to be stable if, for every arrow X — A and i € I, there
is a pullback square

| |

and the family {X; — X },¢; is also a coproduct.

Note that, the stability of the empty coproduct amounts to the strictness of
initial objects, which holds in any cartesian closed category [5, Proposition 8.3].

We call a bicartesian closed category stable if it has stable finite coproducts
(for which it suffices that binary coproducts are stable). Any elementary topos
provides an example of a stable bicartesian closed category, and so does any
Heyting algebra (note that the latter example shows that stable coproducts
need not be disjoint).

We next present a sound formal system for deriving equalities between terms,
which is naturally interpreted in stable bicartesian closed categories. The formal
system is essentially equivalent to the system WBCT of [2], which was introduced
as a critical tool in their proof of the completeness of the equational theory of
bicartesian closed categories relative to the valid equations in Set. The fact that
this system has a natural interpretation in any stable bicartesian closed category
has not been observed before.

The proof system is based on a notion of constrained (type) environment
implementing equational assumptions about terms of sum type.

Definition 2 (Constrained environment). The constrained environments
I' | 2, consisting of an environment I'" subject to constraints =, are defined
inductively by the following rules.

r|s ]
O10 Nx:7|Z,x=,x ¢r

NE TFt:+"(m,...,1)
I'x:7 | 2, in;(x) =4

x¢T, 1<i<n

TlyeesTn) ¥

The equational rules manipulate judgements of the form I' | = F t =¢': 7
where both I+t : 7 and I' F ¢’ : 7 are terms. The rules are given in Fig. 2. They
are to be understood as applying only when all the premises and conclusions are
genuine (well-typed) terms as specified above.



Henceforth in this section, let S be a stable bicartesian closed category with
chosen structure. (In addition to the chosen bicartesian closed structure, de-
scribed earlier, we assume a choice of pullbacks for coproduct morphisms. It
is not necessary to assume any coherence conditions for these!) Let 7 be an
interpretation in S. We interpret constrained environments I' | = as monos
[I'| £] — [I']. The definition is by structural induction as follows.

def
= ([O 1O —=T0D) = idi. et
—_— e .
~(hxir| Zx = x] =[] x 7)) % (1| =)= 1) x idyy).
— [ x;:7 | Z,ini(x;) =0 (1) t] — [L'] x [7:] is the pairing (mop;, ¢;)
arising from the following pullback square.

[0 %7 | 2, ini(x) =] —2——[I' | 5]

[7:] o 1™ (- )
Note that, by stability, the family
{pi : [[F7Xl LT ‘ E, ini(xi) = t]] — IIF | E]]}]SZSTL

from (1) is a coproduct. Observe also that, by definition, for a constrained en-
vironment I' | £ of the form x; : 71,...,%n : Tn | X1 =5, X1,...,%Xn =1, Xp, WE
have that ([I" | Z] — [I']) = id[r. Thus the interpretation of constrained envi-
ronments extends that of environments. Furthermore, for any I' | = of the form
(X1 171, X 1T [ B =4 8], Ty =71 1,,), We have an equaliser diagram

(IrFti7{])i=1,n

[ &] —— [I7] - "™, ImD) (2)

([retiri])i=,m

Proposition 1 (Soundness). IfI' =2 F t=1t":7 is derivable then

(r| 21— ) = @) 51— 1 L

The proof is the usual straightforward induction on the structure of derivations,
using the facts observed above.

It would be interesting to obtain a completeness converse to Proposition
1. We do not know if such a result holds, although weaker versions can be
obtained by not insisting that all exponentials exist in S. Also, following [2,
Theorem 5.3], one can show that the proof system is sound and complete for
deriving the equalities between terms in unconstrained environments that are
valid in an arbitrary bicartesian closed category. These issues will be discussed
further in the full version of this paper.



3 Grothendieck logical relations

For each object A of the semantic category S we define the notion of a (cate-
gorical) Kripke relation of varying arity over A. The idea is that the arity of the
relation varies over a category W (of worlds), as specified by a functor a : W — S
(that associates arities to worlds). For each object w of W, the object a(w) is
considered as an arity in the natural internal sense that a(w)-tuples of A are
given by morphisms z : a(w) — A in S. The action of the arity functor a on
morphisms allows such a tuple = of arity a(w) to be reinterpreted along any
change of world ¢ : v — w in W to obtain the a(v)-tuple z o a(¢)). For notational
convenience, we write z - ¢ for z o a(¢)) when a is clear from the context.

Definition 3 (Kripke relation). Given a small category W and a functor
a:W — S, a W-Kripke relation R of arity a over an object A of S is a family
{R(w) C S(a(w), A) }yejw satisfying

(Monotonicity) For every ¢ : w — v in W and every z : a(v) — A in S, if
xz € R(v) then z -9 € R(w).

The notion of Kripke relation has a natural formulation in the language of

presheaves. Writing W for the category of presheaves [W°P  Set], any arity func-

tor a : W — S induces a hom functor a x : S — W given by (ax A)(_) def

S(a_, A) : W°P — Set. A Kripke relation of arity a over A € S is just a sub-
presheaf R C ax A in W. So, a Kripke relation of arity a is a unary relation on
ax A in the internal logic of the presheaf topos W.

Our generalisation of Kripke relation allows us to impose additional structure
on the category of worlds in the form of a Grothendieck topology. A Grothendieck
topology is a collection of covers, which are families of morphisms with the same
codomain, subject to axioms on the collection. A cover {p; : w; — w}ies of w
specifies that information about w can be recovered “locally” by piecing together
relevant information about each of the w; along ;. The formal definition of a
Grothendieck topology specifies the properties that the collection of covers must
satisfy in order for such local determination to behave properly.

Definition 4 (Basis for a topology). A (basis for a Grothendieck) topology
K on a category W consists of a family of (basic) covers K(w) C U, ey W(v, w)
for each object w in W, satisfying:

(Identity) The singleton family {id,, } € K (w).

(Stability) For every family {¢;}icr € K(w) and morphism % : v — w there
exists a family {v,};cs € K(v) such that, for each v; € K(v), there exists
@i € K(w) such that v o 7; factors through ;.

(Transitivity) If {¢; : w; — w}ier € K(w) and {vs}jes, € K(w;) for every
i € I then the family {¢; o v;;}icr, jes; € K(w).

A small category together with a Grothendieck topology is called a site.



Ezample 1. In any category the trivial topology, I, consists only of the singleton
families {id}.

Ezample 2. In a category with stable finite coproducts, the finite coproduct topol-
ogy is given by

{{pi 1wi = whi<i<n | n > 0and {p; : w; = wh<i<n is a coproduct}.

The stability of coproducts ensures that the stability axiom for a Grothendieck
topology is satisfied. Note that the empty family covers an object if and only if
the object is (necessarily strict) initial.

In order to generalise the notion of Kripke relation to take into account a
Grothendieck topology, we add an extra condition establishing that the relation
is determined locally in the sense discussed above.

Definition 5 (Grothendieck relation). Given a site (W, K) and a functor
a:W—S8,a (W, K)-Grothendieck relation of arity a over A € S is a W-Kripke
relation {R(w) C S(a(w), A) },yejw that further satisfies:

(Local character) For every cover {y; : w; — w}ier € K(w) and for all maps
z:a(w)—=Ain S, if z - ¢; € R(w;) for all i € I then = € R(w).

In the case of the trivial topology, the local character property is vacuous and
so any Kripke relation is a Grothendieck relation.

It is instructive to reformulate the notion of a Grothendieck relation in terms
of standard concepts from sheaf theory. For notational convenience, given a
presheaf P in W, for any ¢ : v — w in W and x € P(w) we write z - ¢ for the
element P(y)(z) € P(v). (This generalises our previous notation for presheaves
ax* A to arbitrary presheaves.)

Definition 6 (Closed subpresheaf). Given a site (W, K') and a presheaf P

in W, a subpresheaf R C P is said to be K -closed if, for every cover {yp; : w; —
whier € K(w) and for all ¢ € P(w) if - ¢; € R(w;) for all i € I then z € R(w).

Hence, a Grothendieck relation R of arity a over A is precisely a K-closed sub-
presheaf R C ax A.

There is another, less elementary, characterisation of Grothendieck relations.
Writing Sh(W, K') for the full subcategory of W whose objects are sheaves (for
K) [6], it is well-known (see [6, IIL.5 and V.3] for example) that the embed-
ding Sh(W, K) — W has a (left-exact) left adjoint, the associated sheaf func-
tora : W — Sh(W, K). For every presheaf P, the closed subpresheaves of P
are in natural bijective correspondence with the subsheaves of a(P) [6]. Thus, a
Grothendieck relation of arity a over A is just a subsheaf of a(a x A) in Sh(W, K).
In particular, when the presheaf a x A is already a sheaf for K, a Grothendieck
relation over A is just a subsheaf of a* A. However, we shall not assume in
general that a x A is a sheaf.

We define a category of Grothendieck relations over S whose morphisms are
given by those morphisms of S that preserve the relations.



Definition 7. Given a site (W, K) and an arity functor a : W — S:

1. G(W, K, a) is the category with

objects: given by pairs (A, R) consisting of an object A € S and a (W, K)-
Grothendieck relation R of arity a over A,
arrows (A, R) — (B, S): given by arrows f : A — B in S such that,

for all z: a(w) — A, z € R(w) implies foz € S(w) (3)

identity and composition: as in S.
2. We write U : G(W, K,a) — S for the forgetful functor mapping (A, R) to A.

Proposition 2. For S bicartesian closed, the category G(W, K, a) is bicartesian
closed and the forgetful functor U : G(W, K,a) — S is faithful, and preserves
and creates the bicartesian closed structure.

Proof. Finite coproducts: [[, (4n, R,) = (11, An, \V,, Rn) where (a(w) —— ][, 4,) €
(V,, Bn)(w) iffqer there exists a cover {y; : w; = w}icr € K(w) such that for all

i € I, there exist n; with 1 < n; <n and (a(w;) —— An,) € Rn, (w;) such that
x-p; =1, ox;:a(w;) — [, An-
Finite products: [, (4n, Ry) = (T],, An, A,, Bn) where (a(w) =], An) €
(T1,, Bn)(w) iffaer for all n, (a(w) == ], An —— A,) € Ry (w).
Exponentials: (4, R) = (B,S) = (A = B, S%) where (a(w) g, (A= B)) €
SE(w) iffger for all ¢ : v — w and all (a(v) —— A) € R(v), we have
(f4,z) ev
(a(v) ———= (A= B) x A—— B) € S(v).
O

Although straightforward, the proposition above is the categorical analogue
of the fundamental lemma of logical relations [7], which states that any syntac-
tically definable morphism in & automatically preserves relations. To formulate
this result explicitly, we require further definitions.

Definition 8. Given asite (W, K), an arity functor a : W — S and a Grothendieck
relation R of arity a over A € S, we say that a global element z : 1 — A in S

satisfies R if, for all w € | W |, it holds that (a(w) — 1 - A) € R(w).

Definition 9 (Grothendieck logical relation). Let Z be a (T, X)-interpretation
in a bicartesian closed category S. A Grothendieck logical relation for X under

T is given by: a site (W, K); an arity functor a : W — §; and, a family {Rr}rer
such that:

1. each Ry is a Grothendieck relation of arity a over Z¢(T), and

2. for all (¢:7) € X, it holds that Zx(c) satisfies R,, where we write R, (Rr)
for the Grothendieck relation on [r] ([I']) determined by the bicartesian
closed structure on G(W, K, a) according to the structure of 7 (I).



Lemma 1 (Fundamental Lemma of GLRs). Let S be a bicartesian closed
category and let T be a (T, X)-interpretation in S. For any Grothendieck log-
ical relation (W, K),a,{Rr}rer) for X under I, the following two equivalent
statements hold.

1. For every term I' & t : 7, the interpretation [I' + t : 7] is an arrow
([1, Br) = ([7], R;) in G(W, K, a).
2. For every term -t : 7, the global element [t : 7] : 1 — [7] satisfies R,.

Our motivation for generalising Kripke relations to Grothendieck relation is
to obtain the converse: any global element of S that satisfies all Grothendieck
logical relations is syntactically definable. At present we have such a result only
in the special case that S is stable. This is the content of the theorem below,
which is the principal result of the paper.

Theorem 1 (Definability). Suppose S is a stable bicartesian closed category
and T is a (T, X)-interpretation in S. Then there exists a Grothendieck logical
relation (W, K),a,{Rr}rer) for ¥ under I, such that every global element of
[7] that satisfies R, is definable by a closed term of type 7.

4 Proof of Definability

In this section we prove Theorem 1. Accordingly, suppose S is a stable bicartesian
closed category (with chosen structure) and 7 is a (T, X)-interpretation in S. We
construct a Grothendieck logical relation, satisfying the property of Theorem 1,
based on a syntactic site (W, K) defined below. The construction has similarities
with the syntactic sites used in recent approaches to obtaining intuitionistic
completeness results for intuitionistic logic, see e.g. [9].

Definition 10 (Syntactic site).

1. The category W has
objects: given by constrained environments as in Definition 2,
arrows I'' | £' — I' | =: given by renamings (déf monotone injections)
p: dom(I") — dom(I"), where dom(x;y : Tq,..., %Xy : Tn) def (x1 <+ < xp)
that preserve typing:

3

x:Tel=pkx) :7el’" |
and preserve constraints:
t=,t € E=tl]= t[p] € = |

identities and composition: as for functions.



2. The covers in K are defined inductively by the following rules:
{idgom(ry} € K(I'| Z)

{pjYu{p:T"|E' =T |5} € K(I'| &) Tt:4+M(m, . 7)

0 Ulpow I} | 55— | Ehicien € KT'12)
where I} | = = (I, %}, : 7+ | Z', ing(x},) = t) for any choice of fresh
variables xi,...,x/, and the renamings ¢y : dom(I"") — dom(I", %}, : 73,) are
the inclusion functions.

It follows that any cover {p;} consists entirely of inclusion functions (which
is why I}, | =, can be defined using ¢ rather than ¢[p]). Observe also that a
constrained environment I' | = is covered by the empty family if and only if
there exists a term I' ¢ : 0.

The above definition provides, for every I' b ¢ : +) (7, ..., 7,), sub-basic

covers of the form
{ (F X; + Ty | E, ini(xi) = t) — (F | 5) }]SiSTl
keeping the morphisms as simple a possible whilst allowing the axioms of a
Grothendieck topology to hold. For instance, the stability axiom holds because
for any inclusion
v (Dyxiom | 2, ing(xy) =t) — IT'| E
(as present in the non-trivial covers) and any renaming p: I | &' — ' | =, we

have a commuting diagram:

x; = x'
(M, x o7 | 2 ing(x) = tp]) —2 5 (m xiom | S, ing(x) = 1)

('l =)

p

for any x' not in I'". Observe that the possibility of morphisms renaming variables
is crucial here, as the variable x; may already appear in the environment I"’. Thus
the stability of covers would not hold if we only allowed inclusions as morphisms
in W. Indeed, the category W is not a preorder.

Definition 11 (Standard arity functor). The standard arity functor s :
W — S sends any constrained environment I' | = to its interpretation [I" | £,
and any renaming p : I'" | &' — I' | £ to the unique map s(p), given by the
universal property of the equaliser [I" | =] — [I'] of (2) in Section 2, such that
the square below commutes.

[ 57 —— 11"
s(0) ymxgr (4)

<~

[ E] —— 111



For a cover {v; : (I,x; : 7 | £,in;(x;) = t) = I' | Ehi<i<n in K it follows,
from (1) and the stability of coproducts, that the family {s(s;)}1<i<n is a
coproduct in S. By induction, this property extends to arbitrary covers in K and
hence we have the following consequence.

Proposition 3. For every cover { p; : I; | Z; — ' | 2}, the family { s(p;) :
I | =] =1L 2]} is a coproduct.
Corollary 1. For all A € | S|, the presheaf s+ A in W is a sheaf for K.

The key lemma for establishing the definability result follows.

Lemma 2. For every cover { p; : I; | Z; = ' | £ } and every family of terms
{I;Ft;:7} there exists a term I' -t : 7 such that

2. IfC'Ft :7issuchthat I; | E; b t; =t -7 foralli, then ' | EFt =¢:7.
3. The diagram below commutes for all i

=] —2%0  r| =]

T

[

[iktir]

. _ [r+¢:7]
iff = = (7| 51— [1] 22271 1)),
Proof. (1) (2) To a derivation D of a cover { p; : [; | Z; — I' | £ } and terms
{I;Ft;:7} we associate a term ' + T(D,{I; F t; : 7}) : 7 by induction on

the structure of the derivation as follows.
def

- T({iddom } {Fl—t T}) =t
— For r the rule
{pi}ies U{p}
{pities U{potktici<n
where v, : (INxg 7 | =, ing(xx) =) = ' | =, we set
T(Dr Aty 7hjes UL, xp : T g Thi<k<n)

def T(D{I;Ftj:7}jes U{IF caset of [ini(x1).t1,...,inp(xp).tn] : T})

That the term T (D, {I; F t; : 7}) has the desired properties can be shown by
induction using the equational rules.

(3) By Proposition 3, because

(5 | 2] — ] =
= ([I7 ]| &i] 3] [t I=1) , by Proposition 1
— ([} | =] [0 (Tp;(x))xer (] [THt:r] [7])
= (I 1 2] 22l 2 — ) ) by ()




Proposition 4. Let S be a stable bicartesian closed category (with chosen struc-
ture) and let T be a (T, X)-interpretation in S. Then

1. for

— def - [I+t:1]
Ra(l'|2) S A{M | E] =T ——1[1} . (5)
((W,K), s, {Rr}rer) is a Grothendieck logical relation for X under T;

2. for every type T,

[r+¢:7]

R Z)={1I" 5] = 1[I [7] }

Proof. (1) Follows from (2) below.

(2) By induction on the structure of 7.

7 =T: By (5).

T=T1— Ty
(2) Let m = ([I'| Z] — [T]) and m’ = ([T" | 2] — [I"])
Forp:I"| 52— T |Z and z € R.(I" | £') we have, by induction, that
x=[I"F1t:7n]om' for some t'. Thus, to establish that [I' F ¢ : 77 — 7] om
isin R, —,(I' | =) we need show that evo ([I" -t : 7y — m]omos(p), [+
t':m]om')isin R, (I | E").
Using that m o s(p) = (Tpx)xer om' and that [I' ¢ : 7 — 1] o (Tpx)xer =
[I" & t[p] : 1 — 72] one sees that evo ([I'+t: 7 — m]omos(p),[I"F ¢ :
m]Jom') = [I" F t[p](t') : 72] o m' and, by induction, we are done.
(C) Let

f € Rpyear(I| 5) (6)

Recall that ([I'x : | 5,x =5 x] — [I'] x [;1]) = m x idf; where
m = ([I'| Z] — [I']). Thus, for ¢ : (INx : 7 | &,x =, x) = ' | £ the
inclusion, we have that s(¢) =m : [I" | Z] x [n] =L | =]
Since, by induction, o = [Ix : 71 Fx: 7] o (m xidpp) : [ | Z] x [n] —
[f]isin R, ([ x: 7 | Z,%x =, x) it follows from (6) that evo (fomy,ma) is
inR,,(Ix:7 | E,x =4 x).So, again by induction, evo (fom,m) = [[,x :
71 F t: mp]o(mxidp,,y) for some ¢, and hence f = [I" = Ax : 71.t : 7y — Taom.
7=x" (1, ..., 1)
O Tet m = (T | 5] — [1]).
By induction, for 1 < i < n, mio [+t : x™(r,...,7,)]om = [ F
proj,(t) : iJ om isin R, (I" | Z). Thus, [I'F t: x™(ry,...,7,)] om is in
Ry (ry,ir) L | E).
(C) Let 2 € Ryy(ry,....;.y(I" | Z). Then, for 1 < i < m, we have that
miox € Ry (I | ). By induction, m; ox = [I' F t; : 7;] o m, where
m=([I"| Z] — [I7]), for some t; (1 <i<mn). Thus, z = [I"'F (t1,...,t) :
x (1, 0 1)) om.
=401, ., 1)




(D) Let m = ([I"' | E] —[I1) and, for x; € I' (1 <i < n), let m; = ([[,x%; :
Ti | E,ini(xi) =4 ™) f]] — [[F]] X [[Tl]]).

By induction, we have that moom; = [[,%; : 7, b x; : ;] om; isin R, (I, x; :
T; | =, ing (%) ) (11, ) t) for all 1.

Consider the cover

.....

{(Ixi o7 | 240i(%0) =40 (ryry ) —— T Z hicicn

Then since, for 1 < i < n, the diagram below commutes,

pi=8(Li)

[ x : 7 | =, ini(x;) = 1]

(mopi,qi)

¢

[7:] m H(n) (T1,- -, Tn)

it follows that [Tt : +"(r,...,7,)] om isin Ry (ry,ey L[ Z).

(C) Ifx € Rye(ry,...r,)(I" | ) then there exists a cover { p; : I | Z; — I |
Z } such that for all 4, using the induction hypothesis, there exist I F ¢; : 7y,
with 1 < n; < n such that for all ¢

S(pi)

5 | =i

L ") (ry,...
] [FiFing (t:):+") (r1,...,70)] [+, 7l

Hence, by Lemma 2, we are done.

Corollary 2. For the Grothendieck logical relation (W, K), s, {R1}rer), a global
element of [7] in S satisfies R, if and only if it is definable by a closed term of
type T.

5 Further results

In the full version of this paper, we shall show that Theorem 1 can be strength-
ened by requiring that a “universal” site (W, K) can be found in which W is
a partial order. This strengthening could be proved directly by making clumsy
modifications to the construction of the syntactic site (W, K) given in Section
4. Tt is preferable, however, to derive the result by means of an elegant general
construction. As in the well-known construction of the Diaconescu cover of a



Grothendieck topos [6, IX.9], any site (W, K') determines a related site D(W, K)
over a poset D(W) together with a surjective functor dw : D(W) — (W). We
have proved that, for any arity functor ¢ : W — S (for S bicartesian closed),
there is an associated full and faithful bicartesian closed functor G(W, K, a) —
G(D(W),D(K),adw). This means that our definability result for the syntactic
site (W, K) yields the desired poset-based definability result for D(W, K).
Other aspects of the paper also benefit from a more abstract categorical
treatment. For example, the construction of the category G(W, K, a) is an ex-
ample of the subscone variant of glueing [1], in which the objects are restricted

to K-closed monos (in W) Essentially this amounts to glueing relative to a fac-
torization system. The analysis of the structure on G(W, K, a) can be performed
entirely at this more general level.

Finally, it is also possible to give syntax-free account of definability. For any
bicartesian closed functor F' : B — S where B is small and S is stable, there
exists a site (W, K) (with W a poset) and an arity functor a : W — S such that
F factors as UG where G : B — G(W, K, a) is a full bicartesian closed functor.
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