

Edinburgh Research Explorer

Checking Individual Agent Behaviours in Markov Population
Models by Fluid Approximation
Citation for published version:
Bortolussi, L & Hillston, J 2013, Checking Individual Agent Behaviours in Markov Population Models by
Fluid Approximation. in M Bernardo, E Vink, A Pierro & H Wiklicky (eds), Formal Methods for Dynamical
Systems: 13th International School on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM 2013, Bertinoro, Italy, June 17-22, 2013. Advanced Lectures. Lecture Notes in
Computer Science, vol. 7938, Springer-Verlag GmbH, pp. 113-149. https://doi.org/10.1007/978-3-642-
38874-3_4

Digital Object Identifier (DOI):
10.1007/978-3-642-38874-3_4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Formal Methods for Dynamical Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 13. Mar. 2024

https://doi.org/10.1007/978-3-642-38874-3_4
https://doi.org/10.1007/978-3-642-38874-3_4
https://doi.org/10.1007/978-3-642-38874-3_4
https://www.research.ed.ac.uk/en/publications/dfc05e9d-0cdf-41fb-b4d3-9f78691ecafb

Checking Individual Agent Behaviours in
Markov Population Models by Fluid

Approximation

Luca Bortolussi1 and Jane Hillston2

1 Department of Mathematics and Geosciences
University of Trieste, Italy.

CNR/ISTI, Pisa, Italy.
luca@dmi.units.it

2 Laboratory for the Foundations of Computer Science,
School of Informatics, University of Edinburgh, UK.

jane.hillston@ed.ac.uk

Abstract. In this chapter, we will describe, in a tutorial style, recent
work on the use of fluid approximation techniques in the context of
stochastic model checking. We will discuss the theoretical background
and the algorithms working out an example.
This approach is designed for population models, in which a (large)
number of individual agents interact, which give rise to continuous time
Markov chain (CTMC) models with a very large state space. We then
focus on properties of individual agents in the system, specified by Con-
tinuous Stochastic Logic (CSL) formulae, and use fluid approximation
techniques (specifically, the so called fast simulation) to check those prop-
erties. We will show that verification of such CSL formulae reduces to
the computation of reachability probabilities in a special kind of time-
inhomogeneous CTMC with a small state space, in which both the rates
and the structure of the CTMC can change (discontinuously) with time.
In this tutorial, we will discuss only briefly the theoretical issues behind
the approach, like the decidability of the method and the consistency of
the approximation scheme.

Keywords: Stochastic model checking; fluid approximation; mean field
approximation; reachability probability; time-inhomogeneous Continu-
ous Time Markov Chains

1 Introduction

In recent years there has been a growing interest in the use of mean field or
fluid approximation techniques in the analysis of large scale models of dynamic
behaviour. In particular there have been a number of attempts to integrate these
mathematical approximations with formal modelling techniques originating in
theoretecial computer science. Specifically, fluid approximation techniques are
cross-fertilising with quantitative formal methods, mainly Stochastic Process

ttotterd
Typewritten Text
Bortolussi, L., & Hillston, J. (2013). Checking Individual Agent Behaviours in Markov Population Models by Fluid Approximation. In Bernardo, M., Vink, E., Pierro, A., & Wiklicky, H. (Eds.), Formal Methods for Dynamical Systems. (pp. 113-149). (Lecture Notes in Computer Science). Springer Berlin / Heidelberg. doi: 10.1007/978-3-642-38874-3_4

Algebras (SPA), giving birth to a new class of quantitative analysis techniques
for large scale population models, described by continuous time Markov chains
(CTMC) [7, 8, 31, 27, 16, 9].

Whereas process algebra models can be viewed as agent-based descriptions
in which the behaviour of each entity in the system is described in detail, fluid
or mean field methods focus instead on the more abstract population view of
the system. In order to move from the process algebra description to a mean
field approximation, individuality of agents must be abstracted and a collective
or counting abstraction employed [27]. This leads to an aggregated state rep-
resentation, in which the system is described by variables counting the number
of agents in each possible state. Then, the discrete state space of the CTMC is
approximated by a continuous one, and the stochastic dynamics of the process
is approximated by a deterministic one, meaning that states no longer evolve
through discrete jumps based on the interleaved state changes of individuals.
Instead the state variables are assumed to be subject to continuous change ex-
pressed by means of a set of differential equations. The correctness of this ap-
proach is guaranteed by limit theorems [34, 21, 22], showing the convergence of
the CTMC to the fluid ODE for systems of increasing population size.

On the one hand, fluid approximation has been used in the context of stochas-
tic process algebras mainly to approximately compute the average transient dy-
namics, or to approximate the average steady state, when possible [49, 48]. It
has also been used to estimate fluid passage times [25, 26].

On the other hand, stochastic process algebra models can also be analysed
using quantitative model checking. These techniques have a long tradition in
computer science and provide powerful ways of querying a model and extracting
information about its behaviour. In the case of stochastic model checking, there
are some consolidated approaches, principally based on checking Continuous
Stochastic Logic (CSL) formulae [5, 4, 45], and these are supported by software
tools which are in widespread use [36, 37]. All these methods, however, suffer
(in a more or less relevant way) from the curse of state space explosion, which
severely hampers their practical applicability particularly for population models.

One possibility to mitigate the state space explosion problem is to combine
fluid approximation techniques with stochastic model checking, obtaining effi-
cient approximate algorithms for checking formulae against population models.
In this tutorial, we will present a first attempt in this direction [12, 13], in which
mean field approximation is used to carry out approximate model checking of
behaviours of individual agents in large population models, specified as CSL for-
mulae. This is made possible by a corollary of the fluid convergence theorems,
known by the name of fast simulation [24, 22], which characterises the limit be-
haviour of a single agent in terms of the solution of the fluid equation: the agent
senses the rest of the population only through its “average” evolution, as given
by the fluid equation. The idea of [12, 13] is to check individual properties in this
limit model, rather than on the full model with N interacting agents. In fact,
extracting metrics from the description of the global system can be extremely
expensive from a computational point of view. Fast simulation, instead, is a very

2

compact abstraction of the system and the evolution of a single agent (or of a
subset of agents) can be computed efficiently, by decoupling its evolution from
the evolution of its environment and hence reducing the dimensionality of the
state space by several orders of magnitude. A central feature of the abstraction
based on fluid approximation is that the limit model of an individual agent is
a time-inhomogeneous CTMC (ICTMC). This introduces some additional com-
plexity in the approach, as model checking of ICTMC is far more difficult than
the homogeneous-time counterpart. Nevertheless we can learn from the previ-
ous techniques for model-checking CSL properties on time-homogeneous CTMC,
and develop suitable approaches for ICTMCs.

In this tutorial, we will present the work of [12, 13] in detail, using a network
epidemic model as a simple running example. We will start by setting the context
by presenting a simple modelling language for population CTMC (Section 2),
discussing CSL and properties for individual agent (Section 3), and introducing
some fundamental concepts about fluid approximation and fast simulation (Sec-
tion 4). We will then turn to explain in detail the model checking procedure for
ICTMC, considering first non-nested properties (Section 5), and then turning to
nested CSL formulae (Section 7). The difficulty in this case is that the truth of
a formula depends on the time at which the formula is evaluated, hence we need
algorithms to compute this functional dependence (Section 6). The algorithms
to model check nested formulae are presented only informally, by means of the
running example (Section 7). We also discuss briefly two theoretical aspects of
the work in [12, 13], namely decidability of the model checking algorithm for
ICTMC and convergence of the truth value of CSL formulae for an individual in
a system with a finite population level to the truth for the limit individual model
(Section 8). We discuss the related work in Section 9 and finally, we sketch some
conclusions in Section 10.

2 Population Models

In this section, we will introduce a simple language to construct Markov mod-
els of populations of interacting agents. We will consider models of processes
evolving in continuous time, although a similar theory can be considered for
discrete-time models (see, for instance, [14]). In principle, we can have different
classes of agents, and many agents for each class in the system. Furthermore, the
number of agents can change at runtime, due to birth or death events. Models of
this kind include computer networks, where each node (e.g. server, client) of the
network is an agent [38], biological systems (in which molecules are the agents)
[47], ecological systems (in which individual animals are the agents) [11], and
so on. However, to keep notation simple, we will assume here that the num-
ber of agents is constant and equal to N (making a closed world assumption).
Furthermore, in the notation we do not distinguish between different classes of
agents.

In particular, let us assume that each agent is a finite state machine, with in-
ternal states taken from a finite set S, and labelled by integers: S = {1, 2, . . . , n}.

3

We have a population of N agents, and denote the state of agent i at time t, for

i = 1, . . . , N , by Y
(N)
i (t) ∈ S. Note that we made explicit the dependence on N ,

the total population size.

A configuration of a system is thus represented by the tuple (Y
(N)
1 , . . . , Y

(N)
N).

This represention is based on treating each agent as a distinct individual with
identity conferred by the position in the vector. However, when dealing with pop-
ulation models, it is customary to assume that single agents in the same internal
state cannot be distinguished, hence we can move from the individual represen-
tation to the collective representation by introducing n variables counting how
many agents are in each state. Hence, we define

X
(N)
j =

N∑
i=1

1{Y (N)
i = j}. (1)

Note that the vector X(N) = (X
(N)
1 , . . . , X

(N)
n) has a dimension independent of

N , and will be equivalently referred to as the collective, population, or counting

vector. The domain of each variable X
(N)
j is obviously {0, . . . , N}, and, by the

closed world assumption, it holds that
∑n
j=1X

(N)
j = N . Let us denote with S(N)

the subset of vectors of {1, . . . , N}n that satisfy such constraint.
Up to now, we just described the state space of our population models. In

order to capture their dynamics, we will specify a set of possible events, or
transitions, that can change the state of the system. Each such event will involve
just a small, fixed, number of agents, usually one or two, but we will in any case
describe it from the perspective of the collective system.
Events are stochastic, and take an exponentially distributed time to happen,
with a rate depending on the current global state of the system. Hence, each
event will be specified by a rate function, and by a set of update rules, telling
us how many and which agents are involved and how they will change state.
The set of events, or transitions, T (N), is made up of elements τ ∈ T (N), which

are pairs τ = (Rτ , r
(N)
τ). More specifically, Rτ is a multi-set of update rules of

the form i → j, specifying that an agent changes state from i to j when the
event fires. As Rτ is a multiset, we can describe events in which two or more
agents in state i synchronise and change state to j. The exact number of agents
synchronising can be extracted looking at the multiplicity of rule i → j in Rτ ;
let us denote such a number by mτ,i→j . Note also that Rτ is independent of N ,
so that each transition involves a finite and fixed number of individuals.
In order to model the effect of event τ on the population vector, we will construct
from Rτ the update vector vτ in the following way:

vτ,i =
∑

(i→j)∈Rτ

mτ,i→jej −
∑

(i→j)∈Rτ

mτ,i→jei,

where ei is the vector equal to one in position i and zero elsewhere. Then, event
τ changes the state from X(N) to X(N) + vτ .

The other component of event τ is the rate function r
(N)
τ : S(N) → R≥0, which

4

susceptible

infected
inactive

patched

infected
active

ext inf infect

infect

activate

inactivate

patch high

patch low

patch low

loss

Fig. 1. States and transitions of a single computer in the p2p network epidemic model.

depends on the current state of the system, and specifies the speed of the cor-
responding transition. It is assumed to be equal to zero if there are not enough
agents available to perform a τ transition, and it is required to be Lipschitz
continuous (when interpreted as a function on real numbers).

All these bits of information are collected together in the population model

X (N) = (X(N), T (N),x
(N)
0), where x

(N)
0 is the initial state. Given such a model,

it is straightforward to construct the CTMC X(N)(t) associated with it, exhibit-
ing its infinitesimal generator matrix. First, its state space is S(N), while its
infinitesimal generator matrix Q(N) is the |S(N)| × |S(N)| matrix defined by

qx,x′ =
∑
{rτ (x) | τ ∈ T , x′ = x + vτ}.

Remark 1. We note here that in this formalism we can still easily model multiple
classes of agents. This can be done by partitioning the state space S into subsets,
and allowing state changes only within a single subset. Furthermore, the rule set
can be easily modified to include the possibility of birth and death events: we
just need to add rules of the form ∅ → i (birth of an agent in state i) or i → ∅
(death of an agent in state i). Most of the theory presented below works for open
models as well, see [13] for further details, but here we stick to the closed world
assumption to simplify the presentation.

5

2.1 Running Example: a Worm Epidemic in a P2P Network

We introduce now the running example of this tutorial, which will be used to dis-
cuss the main ideas and algorithms. We consider a model of a worm epidemic in
a peer-to-peer (P2P) network, which is comprised of N computers. For simplic-
ity, we ignore new connections and disconnections, so that the number of nodes
is constant (thus keeping the closed world assumption). Initially, nodes are vul-
nerable to the infection (susceptible S), and they can be infected by the worm
in two ways, either by external infection (ext inf), for instance by receiving an
infected email message, or by the malicious action of an active infected node
(infect). Infected nodes can themselves be in two states: active and inactive.
An inactive infected node remains dormant and does not spread infection. In
this way, the worm is harder to detect. An active node, instead, spreads the in-
fection by sending messages to other computers in the network. The worm policy
is to alternate between active and inactive states (activate and deactivate),
to minimise the chances of being patched. All newly infected nodes start in
the inactive state. Patching happens in all computers of the network (patch s,
patch d, and patch i), but we assume that the patching rate is higher for active
nodes (patch i), due to their anomalous activity in the P2P network. Patched
nodes are immune, and cannot be infected by the worm. However, after some
time the worm mutates, and immunity is lost (loss). A diagrammatic view of a
network node is given in Figure 1.

To describe this system in the modelling language of this section, we need to
specify the collective variables, which in this case are four: Xs, for susceptible
nodes, Xd, for infected and dormant nodes, Xi for infected and active nodes,
and Xp for patched nodes. Furthermore, we need 8 transitions or events whose
rate and rule sets are described below:

ext inf: Rext inf = {s→ d}, r
(N)
ext inf = kextXs;

infect: Rinfect = {s→ d, i→ i}, r(N)
infect =

kinf
N XsXi;

activate: Ractivate = {d→ i}, r
(N)
activate = kactXd;

deactivate: Rdeactivate = {i→ d}, r
(N)
deactivate = kdeactXi;

patch s: Rpatch s = {s→ p}, r
(N)
patch s = klowXs;

patch d: Rpatch d = {d→ p}, r
(N)
patch d = klowXd;

patch i: Rpatch i = {i→ p}, r
(N)
patch i = khighXi;

loss: Rloss = {p→ s}, r
(N)
loss = klXp;

In the previous list, the symbols k· appearing in the rate functions are model
parameters that describe the rate of an action involving a single object or a
single pair of objects (for infect). Note that the parameter for the internal in-
fection rate is divided by N . This corresponds to the classical density dependent
assumption for epidemic models: each infected node sends messages to other
random network nodes with rate ki, thus hitting a susceptible node with proba-
bility Xs/N . The total rate of infection is then obtained by multiplying kiXs/N
by the number of infected nodes Xi.

6

3 Individual Agents Properties

We turn now to discuss the class of properties we are interested to check. As
announced in the introduction, we will focus on individual agents, asking ques-
tions about the behaviour of an arbitrary individual agent in the system. These
properties are quite common in performance models and in network epidemics
[26], whenever we are interested in checking some aspect of the system from the
point of view of a single user. For instance, in client/server systems, we may
be interested in quality-of-service metrics, like the expected service time [38]. In
network epidemics, instead, we may be interested in properties connected with
the probability of a single node being infected in a certain amount of time, or in
the probability of being patched before being infected [31]. Other classes of sys-
tems can be naturally queried from the perspective of a single agent, including
ecological models [46] (survival chances of an individual or foraging patterns),
single enzyme kinetics in biochemistry [43] (performance of an enzyme), but also
crowd models [39] or public transportation models in a smart city.

Running example. Some properties of interest of individual nodes in the worm
epidemic model are listed below:

– What is the probability of a node being infected within T units of time?
– Is the probability of a single node remaining infected for T units of time

smaller than p1?
– Is the probability of a node being patched before getting infected larger than
p2?

– What is the probability of being patched within time T1, and then remaining
uninfected with probability at least p3 for T2 units of time?

What is shared by all those properties is the fact that they can be expressed
in Continuous Stochastic Logic (CSL) [5], a well known extension to the stochas-
tic setting of the non-deterministic Computational Tree Logic [20], which is also
supported by the probabilistic model checker PRISM [37]. We will now intro-
duce CSL, and then show how the previous properties can be expressed in this
language.

3.1 Continuous Stochastic Logic

In this section we consider generic labelled stochastic processes [4, 5]. A labelled
stochastic process is a random process Z(t), with state space S and a labelling
function L : S → 2P , associating with each state s ∈ S, a subset of atomic
propositions L(s) ⊂ P = {a1, . . . , ak . . .} true in that state: each atomic propo-
sition ai ∈ P is true in s if and only if ai ∈ L(s). We require that all subsets of
paths considered are measurable3.

3 Measurability is a technical condition that guarantees that the probability of a set
is defined.

7

This is a very general definition, and encompasses all the cases we will en-
counter in the rest of the paper: CTMC, time-inhomogeneous CTMC, projections
of CTMC on a subset of variables. In particular, the condition on measurability
will always be satisfied. From now on, we always assume we are working with
labelled stochastic processes.

A path of Z(t) is a sequence σ = s0
t0−→ s1

t1−→ . . ., such that the probabil-

ity of going from si to si+1 at time tσ[i] =
∑i
j=0 tj , is greater than zero. For

CTMCs, this condition is equivalent to qsi,si+1
(tσ[i]) > 0, where Q = (qij) is the

infinitesimal generator matrix. We denote by σ@t the state of σ at time t, with
σ[i] the i-th state of σ, and with tσ[i] the time of the i-th jump in σ.

A time-bounded CSL formula ϕ is defined by the following syntax:

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | P./p(ψ)

ψ ::= X[T1,T2]ϕ | ϕ1U
[T1,T2]ϕ2

where a is an atomic proposition, p ∈ [0, 1] and ./∈ {<,>,≤,≥}. ϕ are known
as state formulae and ψ are path formulae.

The satisfiability relation of ϕ with respect to a labelled stochastic process
Z(t) is given by the following rules:

– s, t0 |= a if and only if a ∈ L(s);

– s, t0 |= ¬ϕ if and only if s, t0 6|= ϕ;

– s, t0 |= ϕ1 ∧ ϕ2 if and only if s, t0 |= ϕ1 and s, t0 |= ϕ2;

– s, t0 |= P./p(ψ) if and only if P{σ | σ, t0 |= ψ} ./ p.

– σ, t0 |= X[T1,T2]ϕ if and only if tσ[1] ∈ [T1, T2] and σ[1], t0 + tσ[1] |= ϕ.

– σ, t0 |= ϕ1U
[T1,T2]ϕ2 if and only if ∃t̄ ∈ [t0 +T1, t0 +T2] s.t. σ@t̄, t̄ |= ϕ2 and

∀t0 ≤ t < t̄, σ@t, t |= ϕ1.

Note that the restriction to the time-bounded fragment of CSL means that
we do not consider the steady state operator and we allow only time-bounded
properties. This last restriction is connected with the nature of the fluid approx-
imation (see Theorems 1 and 2 below), which hold only on finite time horizons.
See [12, 13] and Section 7 for further details.

Running example. Consider the informal properties of the network epidemic
model listed at the beginning of this section. We can easily rephrase them as CSL
formulae (either state or path formulae), using the following atomic propositions,
interpreted in the obvious way on the states of Figure 1: ainfected, apatched. In
the following, we use the convention that path formulae are denoted by ψ and
state formulae are denoted by ϕ.

– ψ1 = F [0,T]ainfected (a node is infected within T units of time);

– ϕ1 = P<p1(G[0,T]ainfected) (the probability of a single node remaining in-
fected for T units of time is smaller than p1);

8

– ϕ2 = P>p2(¬ainfectedU[0,T]apatched) (the probability of a node being patched
before getting infected is larger than p2);

– ψ2 = F [0,T1](apatched ∧ P≥p3(G[0,T2]¬ainfected)) (a node is patched within
time T1, and then remains not infected with probability at least p3 for T2

units of time).

where F [0,T]ϕ is an abbreviation for true U[0,T]ϕ and G[0,T] is an abbreviation
for ¬F [0,T]¬ϕ.

Model checking of CSL formulae for time-homogeneous CTMC proceeds
bottom-up on the parse tree of the formula [5]. Checking atomic propositions
and boolean operators is trivial. The difficult part is to compute the probability
of path formulae. Then this probability is compared with the threshold in the
quantifier operator to establish the truth of quantified path formulae. Comput-
ing the probability of a next CSL formula P./p(X

[T1,T2]ϕ) is usually reduced to
the computation of the integral, based on the probability of making a jump in
the time interval and the probability that the new state satisfies ϕ. For a time-
homogeneous CTMC this can be solved analytically. Dealing with until CSL
formula P./p(ϕ1U

[T1,T2]ϕ2) is more complex. For a time-homogeneous CTMC
Z(t), it can be reduced to the computation of two reachability problems, which
themselves can be solved by transient analysis [5]. In particular, consider the sets
of states U = J¬ϕ1K and G = Jϕ2K and compute the probability of going from
state s1 6∈ U to a state s2 6∈ U in T1 time units, in the CTMC in which all U -states
are made absorbing, π1

s1,s2(T1). Furthermore, consider the modified CTMC in
which all U and G states are made absorbing, and denote by π2

s2,s3(T2−T1) the
probability of going from a state s2 6∈ U to a state s3 ∈ G in T2 − T1 units of
time in such a CTMC. Then the probability of the until formula in state s can
be computed as Ps(ϕ) =

∑
s3∈G,s2 6∈U π

1
s1,s2(T1)π2

s2,s3(T2−T1). The probabilities

π1 and π2 can be computed using standard methods for transient analysis (e.g.
by uniformisation [28] or by solving the Kolmogorov equations [42]).

4 Fluid Approximation

In this section we will introduce some concepts of fluid approximation and mean
field theory. The basic idea is to approximate a CTMC by an Ordinary Dif-
ferential Equation (ODE), which can be interpreted in two different ways: it
can be seen as an approximation of the average of the system (usually a first
order approximation, see [15, 50]), or as an approximate description of system
trajectories for large populations. We will focus on this second interpretation,
which corresponds to a functional version of the law of large numbers: instead
of having a sequence of random variables, like the sample mean, converging to a
deterministic value, like the true mean, in this case we have a sequence of CTMC
(which can be seen as random trajectories in Rn) for increasing population size,
which converge to a deterministic trajectory, the solution of the fluid ODE.

9

In order to properly speak about convergence, we need to formally define the
sequence of CTMC to be considered. The collective model of Section 2 depends
on the total population N , yet models of different population sizes cannot be
directly compared, as it would not make sense to compute a distance between
a population of the size of hundreds with a population of the size of billions:
the distance will be astronomically large because of the difference in population
sizes. Hence, to make the comparison meaningful, we normalise the populations,
by dividing each variable for the total population N . In this way, the normalised

population variables X̂(N) = X(N)

N , or population densities, will always range
between 0 and 1 (for the closed world models we consider here), and so the
behaviour for different population sizes can be compared. In the case of a con-
stant population, normalised variables are usually referred to as the occupancy
measure, as they represent the fraction of agents in each state.

When we perform the normalisation, we need to impose an appropriate scal-
ing to update vectors, initial conditions, and rate functions of the normalised
models. Let X (N) = (X(N), T (N),X0

(N)) be the non-normalised model with to-

tal population N and X̂ (N) = (X̂(N), T̂ (N), X̂
(N)
0) the corresponding normalised

model. We require that:

– initial conditions scale appropriately: X̂
(N)
0 = X0

(N)

N ;

– for each transition (Rτ , r
(N)
τ (X)) of the non-normalised model, define r̂

(N)
τ (X̂)

to be the rate function expressed in the normalised variables (obtained from

r
(N)
τ by a change of variables). The corresponding transition in the nor-

malised model is (Rτ , r̂
(N)
τ (X̂)), with update vector equal to 1

N vτ .

We further assume, for each transition τ , that there exists a bounded and Lip-
schitz continuous function fτ (X̂) : E → Rn on normalised variables (where E

contains all domains of all X̂ (N)), independent ofN , such that 1
N r̂

(N)
τ (x)→ fτ (x)

uniformly on E. In accordance with the previous subsection, we will denote the
state of the CTMC of the N -th non-normalised (resp. normalised) model at time

t as X(N)(t) (resp. X̂(N)(t)).

Running example. Consider again the network epidemic model, which is eas-
ily seen to satisfy all the assumptions before. The conditions for the rate func-
tions are easily verified. They hold trivially for linear rate functions, for instance
kextXs = Nkext

Xs
N , and they also hold for the non-linear rate function modelling

internal infections, due to the density dependent scaling of the rate constant with
respect to the total population N , i.e.

kinf
N XsXi = Nkinf

Xs
N

Xi
N .

4.1 Deterministic limit theorem

In order to present the “classic” deterministic limit theorem, consider a sequence
of normalised models X̂ (N) and let vτ be the (non-normalised) update vectors.

The drift F (N)(X̂) of X̂ , which is formally the mean instantaneous increment of

10

model variables in state X̂, is defined as

F (N)(X̂) =
∑
τ∈T̂

1

N
vτ r̂

(N)
τ (X̂) (2)

Furthermore, let fτ : E → Rn, τ ∈ T̂ be the limit rate functions of transitions
of X̂ (N). The limit drift of the model X̂ (N) is therefore

F (X̂) =
∑
τ∈T̂

vτfτ (X̂), (3)

and F (N)(x)→ F (x) uniformly as N −→ ∞, as easily checked. The fluid ODE
is

dx

dt
= F (x), with x(0) = x0 ∈ S.

Given that F is Lipschitz in E (since all fτ are), this ODE has a unique solution
x(t) in E starting from x0. Then, one can prove the following theorem:

Theorem 1 (Deterministic approximation [34, 21]). Let the sequence

X̂(N)(t) of Markov processes and x(t) be defined as before, and assume that

there is some point x0 ∈ S such that X̂(N)(0) → x0 in probability. Then, for
any finite time horizon T <∞, it holds that as N −→∞:

P
{

sup
0≤t≤T

||X̂(N)(t)− x(t)|| > ε

}
→ 0.

Running example. Focus on the internal infection infect. It can be easily
seen that the update vector associated with the rule set Rinfect is vinfect =
(−1, 1, 0, 0), given the ordering (s, d, i, p) of S. Similarly for each of the other
transitions. Hence, we obtain the following set of fluid ODEs, whose solution
is compared with single trajectories of the CTMC, for different populations, in
Figure 2:

dxs(t)

dt
= −kextxs − kinfxsxi − klowxs + klossxp

dxd(t)

dt
= kextxs + kinfxsxi − kactxd − klowxd + kdeactxi

dxi(t)

dt
= kactxd − kdeactxi − khighxi

dxp(t)

dt
= klowxs + klowxd + khighxi − klossxp

(4)

4.2 Fast simulation

We now consider what happens to a single individual in the population when
the population size goes to infinity. Even if the collective behaviour tends to a

11

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

pr
ob

ab
ili

ty

●

●

●

●
●

●

●
●

● ●
● ● ●

● ●
●

CTMC N=100
ODE

●

s
d
i
p

(a) N = 100

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

pr
ob

ab
ili

ty

●

●

●

●

●

●
●

● ●
● ● ● ● ● ● ●

CTMC N=1000
ODE

●

s
d
i
p

(b) N = 1000

Fig. 2. Comparison between the limit fluid ODE and a single stochastic trajectory
of the network epidemic example, for total populations N = 100 and N = 1000.
Parameters of the model are kext = 0.01, kinf = 5, kact = 0.1, kdeact = 0.1, klow =
0.005, khigh = 0.1, kloss = 0.005, while initial conditions are X̄s(0) = 1, X̄d(0) = 0,
X̄i(0) = 0, and X̄p(0) = 0.

deterministic process, an individual agent will still behave randomly. However,
the fluid limit theorem implies that the dynamics of a single agent, in the limit,
becomes independent of other agents, and it will sense them only through the
collective system state, described by the fluid limit. This asymptotic decoupling
allows us to find a simple, time-inhomogenous, Markov chain for the evolution
of the single agent, a result often known as fast simulation [22, 24].

Let us explain this point formally. We focus on a single individual Y
(N)
h (t),

which is a (Markov) process on the state space S = {1, . . . , n}, conditional on

12

the global state of the population X̂(N)(t). Denote by Q(N)(x) the infinitesimal

generator matrix of Y
(N)
h , described as a function of the normalised state of the

population X̂(N) = x, i.e.

P{Y (N)
h (t+ dt) = j | Y (N)

h (t) = i, X̂(N)(t) = x} = q
(N)
i,j (x)dt.

We stress that Q(N)(x) describes the exact dynamics of Y
(N)
h , conditional

on X̂(N)(t), and that this process is not independent of X̂(N)(t). In fact, the

marginal distribution of Y
(N)
h (t) is not a Markov process.

This means that in order to capture its evolution in a Markovian setting, one

has to consider the whole Markov chain (Y
(N)
h (t), X̂(N)(t)).

The rate matrix Q(N)(x) can be constructed from the rate functions of global
transitions by computing the fraction of the global rate seen by an individual

agent that can perform it. To be more precise, let r
(N)
τ (X) be the rate function

of transition τ , and suppose i → j ∈ Rτ (and each update rule in Rτ has

multiplicity one). Then, transition τ will contribute to the ij-entry q
(N)
ij (X) of

the matrix Q(N)(X) with the term 1
Xi
r

(N)
τ (X) = 1

X̂i
r̂

(N)
τ (X̂), which converges

to 1
X̂i
fτ (X̂). Additional details about this construction (taking multiplicities

properly into account) can be found in [12, 13], see also the example below. From
the previous discussion, it follows that the local rate matrix Q(N)(x) converges

uniformly to a rate matrix Q(x), in which all rate functions r̂
(N)
τ are replaced

by their limit fτ . We now define two processes:

– Z(N)(t), which is the stochastic process describing the state of a random

individual Y
(N)
h (t) in a population of size N , marginalised with respect to

the collective state X̂(N)(t).
– z(t), which is a time-inhomogeneous CTMC (ICTMC), on the same state

space S of Z(N), with time-dependent rate matrix Q(x̂(t)), where x̂(t) is the
solution of the fluid equation.

The following theorem can be proved [22]:

Theorem 2 (Fast simulation theorem). For any T < ∞, P{Z(N)(t) 6=
z(t), for some t ≤ T} → 0, as N →∞.

This theorem states that, in the limit of an infinite population, each agent
will behave independently from all the others, sensing only the mean state of
the global system, described by the fluid limit x(t). This asymptotic decoupling
of the system, which can be generalised to any subset of k ≥ 1 agents, is also
known in the literature under the name of propagation of chaos [9].

Running example. Consider again the worm epidemic, and focus on a single
node in the network. In order to construct the local rate matrix Q(N)(x), we
need to consider each single transition and compute the portion of rate function
seen from a single node, dividing by the population variable corresponding to

13

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

pr
ob

ab
ili

ty

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ●

CTMC N=100
ODE

●

s
d
i
p

(a) N = 100

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

pr
ob

ab
ili

ty

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ●

CTMC N=1000
ODE

●

s
d
i
p

(b) N = 1000

Fig. 3. Comparison between the solution of the Kolmogorov equations for the limit
model of an individual agent and an estimate of the solution for an individual agent
in a finite population, of size N = 100 or N = 1000. The estimate for the finite
population has been obtained by statistical means, taking the sample average of the
indicator functions of each local state, for a grid of 1000 time points. Averages have
been taken from 10000 samples. Parameters of the model are as in Figure 2.

the local state involved in the transition. With reference to Figure 1, we obtain
the following local rate functions:

14

ext inf: s→ d,
1

Xs
r

(N)
ext inf = kext;

infect: s→ d,
1

Xs
r

(N)
infect =

1

N
kinfXi = kinf X̂i;

activate: d→ i,
1

Xd
r

(N)
activate = kact;

deactivate: i→ d,
1

Xi
r

(N)
deactivate = kdeact;

patch s: s→ p,
1

Xs
r

(N)
patch s = klow;

patch d: d→ p,
1

Xd
r

(N)
patch d = klow;

patch i: i→ p,
1

Xi
r

(N)
patch i = khigh;

loss: p→ s,
1

Xp
r

(N)
loss = kloss;

Note that all the local rate functions are independent of N , and so Q(N)(x) =
Q(x). Ordering S as (s, d, i, p), it follows that

Q(x) =

−kext − kinfxi − klow kext + kinfxi 0 klow

0 −kact − klow kact klow
0 kdeact −kdeact − khigh khigh

kloss 0 0 − kloss

Therefore, the limit ICTMC of an individual agent depends on the solution of
the fluid equation only via the fraction of infected and active nodes, xi(t). A
numerical comparison of the transient probability for the limit individual agent
z(t) and an individual agent Z(N)(t) in a finite population model (for N = 100
and N = 1000) is shown in Figure 3. For N = 1000, it is almost impossible to
distinguish between the two transient probabilities.

5 Checking CSL properties for individual agents

CSL model checking is computationally expensive and can become prohibitively
so for large CTMC models, such as population models. The same is true of
transient analysis of CTMCs but fluid approximation has provided a highly
efficient means to obtain high quality approximations for population models in
this case. Therefore it is natural to consider whether fluid approximation can
also be exploited to find good, efficient approximations in CSL model checking.
For properties that relate to a single arbitrary agent in a population model, we
will demonstrate that this is indeed the case if we exploit the fast simulation
property established in Theorem 2.

In the fluid approximation of a CSL property ϕ for an arbitrary individual
agent Z(N)(t) in a population of size N we exploit Theorem 2 and replace Z(N)(t)
by its fluid limit z(t), checking ϕ on z(t). The essential advantage in doing this is

15

that, in order to properly compute the satisfaction of CSL formulae for Z(N)(t)

we need to take into account the whole population model X̂(N)(t). This results in
a huge state space that is out of reach of CSL model checkers. Simulation-based
methods, like statistical model checking [29], may be exploited for this purpose
for moderately sized populations (this is what we do to compare our approximate
method with the results for the proper stochastic model), but simulation becomes
extremely costly when the population increases.

As we will show in the rest of the chapter, checking properties on z(t) is much
more efficient, and the error seems to remain small. In addition to experimental
validation, Theorem 2 provides us with the means of formally showing that
the result of checking CSL properties on z(t) and on Z(N)(t) will be the same,
provided N is sufficiently large.

In replacing Z(N)(t) with z(t), however, we have to face the fact that z(t) is
a time-inhomogeneous CTMC. It turns out that working with ICTMC is much
more complex, because of the dependency of the satisfaction of a formula on
time. In fact, if we inspect the definition of CSL semantics in Section 3.1, we can
observe that the satisfaction relation depends on a state of the model and on the
time at which the formula is evaluated. This particularly affects the computation
of the probabilities of path formulae. In the case of time-homogeneous CTMC,
time dependency is not an issue, as rates are constant, hence starting the system
at time t0 > 0 is the same as starting it at time 0. But when rates depend on
time, this is no longer the case. What can happen is schematically depicted in
the figure below.

p

true

false

T(ϕ, s, t)

Ps(ψ, t)

t

In this figure, we show a hypothetical scenario in which the probability of a
path formula ψ is plotted against the time t at which the formula is evaluated.
When we compare this function with the threshold p in the probability operator
of ϕ = P./p(ψ), it can happen that this function is above p for some time
instants and below it for some other time instants. It follows that the truth
T(ϕ, s, t) of a CSL temporal formula in a state s ∈ S, can itself depend on the
time at which the formula is evaluated. This makes CSL model checking for
time-inhomogeneous CTMC a much more delicate business: we need to compute
not a single probability for a path formula, but its probability as a function of
time, and we further need to take into account the time-dependent truth of CSL
formulae when checking nested formulae.

In the rest of the chapter, we will first discuss how to compute next state
and reachability probabilities (the two main building blocks of CSL algorithms)
when the next-state set or the goal/unsafe sets are independent of time (Sec-
tions 5.1 and 5.2), facing also the problem of computing the dependency of such

16

probabilities on the initial time (Section 6). Then, we will move to nested CSL
formulae, and give an intuition on how to compute path probabilities in the case
of nested temporal operators (Section 7). Finally, in Section 8 we will briefly dis-
cuss theoretical properties, like decidability of the algorithms and convergence
of CSL truth as population increases.

5.1 Next State Probabilities

In this section, we will show how to compute the probability that the next state
in which an agent jumps belongs to a given set of states S0 ⊆ S, constraining
the jump to happen between time [t0 +T1, t0 +T2], where t0 is the current time.
This is clearly at the basis of the computation of the probability of next path
formulae.
Let Z(t) be a CTMC with state space S and infinitesimal generator matrix
Q(t). We indicate with Pnext(Z, t0, T1, T2, S0)[s] the probability of the set of
trajectories of Z jumping into a state in S0, starting at time t0 in state s, within
time [t0 + T1, t0 + T2]. Hence, Pnext(Z, t0, T1, T2, S0) is a vector of probabilities,
one for each state s ∈ S.

For any fixed t0, the probability Pnext(Z, t0, T1, T2, S0)[s] is given by the
following integral [51, 30]

Pnext(Z, t0, T1, T2, S0)[s] =

∫ t0+T2

t0+T1

qs,S0
(t) · e−Λ(t0,t)[s]dt, (5)

where Λ(t0, t)[s] =

∫ t

t0

−qs,s(τ)dτ is the cumulative exit rate of state s from time

t0 to time t, and qs,S0
(t) =

∑
s′∈S0,s′ 6=s qs,s′(t) is the rate of jumping from s to

a state s′ ∈ S0, s′ 6= s, at time t.

Equation 5 can be explained as follows: first of all, remember that for an
exponential distribution, the probability density of the first jump happening
at time t, given that we are in state s at time t0, is Λ(t0, t)[s]e

−Λ(t0,t)[s]. For
a time homogeneous CTMC, it holds that Λ(t0, t)[s] = λs(t − t0), where λs
is the exit rate from state s, hence the density takes the more common form.
Furthermore, if we jump at time t, then the probability of landing in a state of
S0 is qs,S0(t)/Λ(t0, t)[s]. Multiplying this for the probability density above, we
obtain the probability density of jumping in a state of S0 at time t, which is the
argument of the integral (5). Then we only need to integrate it from time t0 +T1

to time t0 + T2 to compute the desired quantity.

In order to practically compute Pnext(Z, t0, T1, T2, S0)[s] for a given t0, we
can either numerically compute the integral, or transform it into a differential
equation, and integrate the so-obtained ODE with standard numerical methods.
This second method is preferrable, as it can be extended to compute the next
probability as a function of the initial time, see Section 6. More specifically, we
can introduce two variables, P (giving the desired probability) and L (giving the
cumulative rate Λ), initialise P (t0 +T1) = 0 and L(t0 +T1) = Λ(t0, t0 +T1), and

17

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

pr
ob

ab
ili

ty

● ●
●

●

●

●

●

●

●

●
● ● ● ● ● ●●

stat mc N=100 (10000 runs)
stat mc N=1000 (10000 runs)
fluid mc

Fig. 4. Path probability of X[0,T]ainfected, as a function of T , starting in state s at
time 0. The fluid approximation (continuous line) is compared with the statistical
estimate (computed using statistical model checking out of an ensemble of 10000 runs)
for population levels of N = 100 and N = 1000. Binomial confidence intervals are
reported in the plot (they are quite narrow) and parameters of the model are as in
Figure 2.

then integrate the following two ODEs from time t0 + T1 to time t0 + T2:
d

dt
P (t) = qs,S0(t) · e−L(t)

d

dt
L(t) = −qs,s(t)

(6)

Running example. We consider the path formula ψ = X[T1,T2]ainfected, which
expresses the fact that a node of the network will change state between time
t0 + T1 and t0 + T2, and it will become (or remain) infected. In Figure 4, we
show the probability of the path formula for the fluid limit model of a single
node in the network, initially in the susceptible state s, for t0 = 0 and T1 = 0,
as a function of T2 = T .

5.2 Reachability Probabilities

We now turn to the computation of reachability probabilities of an individual
agent. Essentially, we want to compute the probability of the set of traces reach-
ing some goal state G ⊆ S within T units of time, given that we are in state
s ∈ S at time t0, and avoiding unsafe states U ⊆ S, which will be denoted by
Preach(Z, t0, T,G,U)[s], where Z(t) is a ICTMC on S, with rate matrix Q(t) and
initial state Z(0) = Z0 ∈ S.

The computation of reachability probabilities is the key operation needed
to compute probabilities of until formulae. In fact, the probability of the path

18

formula ϕ1U
[0,T]ϕ2 is the probability of reaching a goal set G = {s | s |= ϕ2},

avoiding unsafe states U = {s | s |= ¬ϕ1}. Here we are assuming the satisfaction
of ϕ1 and ϕ2 does not depend on time. We will solve this reachability problem
in a standard way, by reducing it to the computation of transient probabilities
in a modified ICTMC [5], similarly to [18].

Let Π(t1, t2) be the probability matrix of Z(t), in which entry πs1,s2(t1, t2)
gives the probability of being in state s2 at time t2, given that Z was in state
s1 at time t1. The Kolmogorov forward and backward equations [42] describe the
time evolution of Π(t1, t2) as a function of t2 and t1, respectively. More precisely,
the forward equation is

∂Π(t1, t2)

∂t2
= Π(t1, t2)Q(t2),

while the backward equation is

∂Π(t1, t2)

∂t1
= −Q(t1)Π(t1, t2).

The probability Preach(Z, t0, T,G,U), for a given initial time t0, can be solved
integrating the forward Kolmogorov equation (with initial value given by the
identity matrix) in the ICTMC Z ′(t) in which all unsafe states and goal states are
made absorbing [5]. The infinitesimal generator matrix Q′(t) of Z ′(t) is obtained
from Q(t) by setting q′s1,s2(t) = 0, for each s1 ∈ G ∪ U .
In particular, Preach(Z, t0, T,G,U) = Π ′(t0, t0 + T)eG, where eG is an n × 1
vector equal to 1 if s ∈ G and 0 otherwise, and Π ′ is the probability matrix
of the modified ICTMC Z ′.4 We emphasise that, in order for the initial value
problem defined by the Kolmogorov forward equation to be well posed, the
infinitesimal generator matrix Q(t) has to be sufficiently regular (e.g. bounded
and integrable).

Running example. Consider again the running example, and the path formula
ψ1 = F [0,T]ainfected, expressing the fact that a node will be infected within T
units of time, starting from time t0. The path probability of ψ1 can be recast
into the computation of a reachability probability, with goal set G = {d, i} and
unsafe set U = ∅. Applying the method discussed above, we just need to compute
the transient probability for the ICTMC with rate matrix

Q′(x) =

−kext − kinfxi − klow kext + kinfxi 0 klow

0 0 0 0
0 0 0 0

kloss 0 0 − kloss

in which states d and i are made absorbing. The result, starting from t0 = 0 and
as a function of T , is shown in Figure 5(a).

4 Clearly, alternative ways of computing the transient probability, like uniformization
for ICTMC [3], could also be used. However, we stick to the ODE formulation in
order to deal with dependency on the initial time t0.

19

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

pr
ob

ab
ili

ty

● ●
●

●

●

●

●

●

●

●
● ● ● ● ● ●●

stat mc N=100 (10000 runs)
stat mc N=1000 (10000 runs)
fluid mc

(a) F [0,T]ainfected

0 5 10 15 20

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

time

pr
ob

ab
ili

ty

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ●

●

stat mc N=100 (10000 runs)
stat mc N=1000 (10000 runs)
fluid mc

(b) ¬ainfectedU
[0,T]apatched

Fig. 5. Path probability of the formulas F [0,T]ainfected and ¬ainfectedU
[0,T]apatched, as

a function of T , starting in state s at time 0. The fluid approximation (continuous line)
is compared with the statistical estimate (computed using statistical model checking
out of an ensemble of 10000 runs) for population levels of N = 100 and N = 1000.
Binomial confidence intervals are reported in the plot, and parameters of the model
are as in Figure 2.

In Figure 5(b), instead, we show the result of computing the probability of the
path formula ψ3 = anot infectedU

[0,T]apatched, for t0 = 0, as a function of T . Here,
we just need to compute the reachability probability for the goal set G = {p}
and unsafe set U = S \ {s, p} = {d, i}.

20

6 Time Dependent Path Probabilities

In this section we will present a method to compute next state and reachability
probabilities as a function of the time t0 at which the property is evaluated. As
we have already discussed, this is the crucial step to check nested CSL formulae.
In fact, the satisfaction of a CSL formula depends on the time at which the
formula is evaluated. This is particularly the case for a quantified path formula
like ϕ = P≤p(ψ), where ψ can be an until or a next formula. In this case, the
probability of the path formula ψ from state s ∈ S, P (t0, ψ)[s], depends on the
initial time t0 at which we start evaluating such a formula. Hence, P (t0, ψ)[s] is
a function of t0, and when we evaluate the inequality P (t0, ψ)[s] ≤ p, needed to
establish the truth of ϕ, we may find that the inequality holds for some t0 and
is falsified for other t0 (see again the figure in Section 5).

Hence, we need a way to compute the probability of a path formula as a
function of time. The starting point for this will be the formulation of next state
and reachability probabilities as solutions of a differential equation. In fact, we
will derive other differential equations whose solution will return the probability
of path formulae as a function of the initial time.

Before presenting the derivation of the ODE more formally, let us comment
on the choice of using ODE-based methods to compute transient probabilities,
rather than more standard unifomisation-based algorithms. The first and more
fundamental reason is precisely connected with the dependency of path prob-
abilities on the initial time: uniformisation algorithms do not generalise easily
to such scenarios. Moreover, the size of the state space of a single individual
is usually very small, even when the collective system has a huge state space.
Hence, numerical solvers for ODEs will work fine and will be efficient. Addition-
ally, the fluid limit for an individual agent depends on the solution of the fluid
ODE, so in any case we need to resort to ODE solvers. Coupling all the ODEs
together allows us to exploit adaptive solvers [17] in order to control and reduce
the global error.

Time-dependent next probabilities We will start by showing how to com-
pute the next-state probability Pnext(Z, t0, T1, T2, S0)[s] as a function of t0:
P̄s(t0) = Pnext(Z, t0, T1, T2, S0)[s]. Computing the integral (5) for any t0 is ob-
viously not feasible. However, we can exploit the differential formulation of the
problem, and define a set of ODEs with the initial time t0 as an independent
variable. First, we can compute the derivative of P̄s(t0) with respect to t0 and
obtain

d

dt0
P̄s(t0) = qs,S0

(t0 + T2) · e−Λ(t0,t0+T2) − qs,S0
(t0 + T1) · e−Λ(t0,t0+T1)

+

∫ t0+T2

t0+T1

∂

∂t0
qs,S0(t) · e−Λ(t0,t)dt

= qs,S0
(t0 + T2) · e−Λ(t0,t0+T2) − qs,S0

(t0 + T1) · e−Λ(t0,t0+T1)

− qs,s(t0)P̄s(t0)

21

Consequently, we can compute the next-state probability as a function of t0 by
solving the following set of ODEs:

d

dt
P̄s(t) = qs,S0

(t+ T2) · e−L2(t) − qs,S0
(t+ T1) · e−L1(t) − qs,s(t)P̄s(t)

d

dt
L1(t) = qs,s(t)− qs,s(t+ T1)

d

dt
L2(t) = qs,s(t)− qs,s(t+ T2)

(7)

where L1(t) = Λ(t, t+ T1) and L2(t) = Λ(t, t+ T2).
Initial conditions are Ps(t0) = Pnext(Z, t0, T1, T2, S0)[s], L1(t0) = Λ(t0, t0 + T1),
and L2(t0) = Λ(t0, t0 + T2), and are computed solving the equations (6).

Running example. We consider again the next path formula ψ = X[0,T]ainfected,
fix T = 7.5, and compute its path probability P̄s(t0), from the susceptible state
s, as a function of t0. In order to do this, we need to first solve the ODEs (6) for
t0 = 0 and T = 7.5, in order to obtain the initial conditions of the ODEs (7).
Then, we need to solve the following ODE system:

d

dt
P̄s(t) = (kext + kinfxi(t+ T))e−L2(t) − (kext + kinfxi(t)) + . . .

+ (kext + kinfxi(t) + klow)P̄s(t)

d

dt
L2(t) = kinf (xi(t+ T)− xi(t))

L1(t) = 0

Its solution is shown in Figure 6, together with the truth of the formula
P≤0.8(X[0,T2]ainfected) in state s, for t0 ∈ [0, 10]. As we can see, the formula
is initially true and then, at time t = 2.26, it changes truth status and becomes
false.

Time-dependent reachability We now turn to the problem of computing
P (t) = Preach(Z, t, T,G, U) as a function of t ∈ [t0, t1]. Recall that in Section
5.2 we reduced the computation of P (t), for a fixed initial time t, to the solution
of the Kolmogorov forward equation of the modified ICTMC, in which goal and
unsafe sets are made absorbing. Stated otherwise, we used the forward equation
to compute Π(t, t′), from t′ = t to t′ = t + T . To compute the reachability
probability as a function of the initial time t ∈ [t0, t1], for T fixed, we need to
compute Π(t, t + T) for t ∈ [t0, t1]. We can do this using the chain rule and
combining the forward and the backward Kolmogorov equation to obtain the
following ODE for Π(t, t+ T):

dΠ(t, t+ T)

dt
=
∂Π(t, t+ T)

∂t
+
∂Π(t, t+ T)

∂(t+ T)

d(t+ T)

dt

= −Q(t)Π(t, t+ T) +Π(t, t+ T)Q(t+ T).

(8)

22

0 2 4 6 8 10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

time

pr
ob
ab
ili
ty

false

true

T~2.26

Prob(p,t0 |=X[0,10] infected)

Fig. 6. Fluid estimate of the path probability of the formula X[0,T2]ainfected, for T2 =
7.5, as a function of the initial time t at which the formula is evaluated. We assume
we start in state s at time t. The red dotted line represents the time-dependent truth
value of the formula P≤0.8(X[0,7.5]ainfected) in state s. Parameters of the model are as
in Figure 2.

Here the initial condition is Π(t0, t0 +T), and it can be computed by solving the
Kolmogorov forward equation. Using a numerical ODE solver, we can integrate
this equation and obtain Π(t, t+T) for t ∈ [t0, t1]. This gives the basic algorithm
to compute probabilities Ps(ψ, t) of until path formulae like ψ = ϕ1U

[0,T]ϕ2 from
a state s: we just need to compute the reachability probability πs,s′(t, t+T) and
add it over states s′ ∈ G.5 Once the until probability is computed, we can
check if state s satisfies P./p(ψ) at time t by comparing the value Ps(t) with the
threshold p. Doing this for all times t ∈ [t0, t1] requires us to find all zeros of the
function Ps(t)− p. This can be done during the integration of the ODEs, using
event detection routines, provided the number of zeros is finite and the function
Ps(t)− p always changes sign around a zero. This does not hold in all cases, and
further restrictions on the rate functions and the thresholds p have to be made,
see [12, 13] and Section 8 below for more details.

Running example. Consider the formula ψ4 = G[0,T2]¬ainfected, fix T2 to 10,
and evaluate it as a function of the initial time. In order to apply the reach-
ability algorithm above, we need to turn the always operator into an until.
This is done in the standard way, as G[0,T2]¬ainfected ≡ ¬F [0,T2]ainfected ≡
¬(trueU[0,T2]ainfected). Hence, we need to compute the reachability probability
for the goal set G = {i, d} and the unsafe set U = ∅, and then compute 1 minus
this probability. The result for the patched state p is shown in Figure 7, for the
initial time varying between 0 and 150.
If we now consider the state formula P≥0.97(ψ4) and focus again on the patched

5 More general until formulae ϕ1U
[T1,T2]ϕ2, for T1 > 0, can be dealt by a minor

modification of the approach, see [12, 13] for further details.

23

0 50 100 150

0.
95

0.
96

0.
97

0.
98

time

pr
ob

ab
ili

ty

false

true

T~81.8

Prob(p,t0 |= G[0,10] not_infected
p,t0 |= P>0.97(G[0,10] not_infected)

Fig. 7. Fluid estimate of the path probability of the formula G[0,T2]¬ainfected, for
T2 = 10, as a function of the initial time t at which the formula is evaluated, starting
from the patched state p at time t (continuous black line). Then the path probability
is compared with the threshold p = 0.97, and the truth value of the CSL state formula
P≥0.97(G[0,10]¬ainfected) is computed, as a function of the time t at which it is evalu-
ated. The time-dependent truth is depicted in the red dotted line. Parameters of the
model are as in Figure 2.

state p, then we see in Figure 7 that the formula is false from time 0 to time
T ≈ 81.8 and then becomes true.

7 Nested CSL Formulae

Computing the truth of nested CSL formulae for time-homogeneous CTMC is
the same as for non-nested formulae. For an until or next temporal operator, we
first solve the model checking problem for its subformulae, hence establish if a
state satisfies or falsifies them, and then we use this information in the standard
algorithms (e.g. the reachability algorithm based on transient analysis for the un-
til case). Unfortunately, this simple recipe does not work for time-inhomogeneous
CTMC. The problem is that a state satisfies a subformula containing a tempo-
ral operator depending on the time at which the formula is evaluated. This fact
introduces an extra dimension of complexity into the algorithms.

To give a flavour of the problems involved, let us discuss the nested path for-
mula ψ = F [0,T](P≥p(ϕ1U

[0,T1]ϕ2)), where ϕ1 and ϕ2 are boolean combinations
of atomic propositions, so that their truth in a state does not depend on the
time at which we evaluate them. Clearly, using the procedure put forward in the
previous section, we can compute, for each state s ∈ S, the probability Ps(t) of
the path formula ϕ1U

[0,Ta]ϕ2, as a function of the time at which we evaluate
it. Therefore, we can compute the time-dependent truth function T(ϕ, s, t) of
the state formula ϕ = P≥p(ϕ1U

[0,Ta]ϕ2) by finding the zeros of Ps(t) − p, for

24

each state s ∈ S. Specifically, we obtain that T(ϕ, s, t) = true if and only if
s, t |= ϕ, and false otherwise. In general, this function will keep jumping be-
tween 0 (false) and 1 (true), and we can represent it by identifying and storing
in a list all time instants Td at which a change in the truth of s, t |= ϕ happens.

Fix now a state s̄, and assume that at time Td the function T(ϕ, s̄, t) has a
discontinuity, and that ϕ was false in s̄ before time Td and it is true afterwards.
Now, focus the attention on the path formula ψ = F [0,T](ϕ). To compute its path
probability, we need to compute the probability of reaching a state satisfying ϕ
within T time units. This is done by making ϕ-states absorbing, and computing
the transient probability in the so-modified Markov chain. If Td < T , then s̄ is
not a goal state from time 0 to time Td, and becomes a goal state at time Td, as
shown in the figure below.

t0
false

true

Td

T(ϕ, s̄, t)

The first consequence of this fact is that the modified Markov chain in which
goal states are made absorbing has a structure that changes in time, according
to the truth of formula ϕ. In particular, s̄ is not absorbing from time 0 to Td,
and becomes absorbing at time Td.

Now fix a non-goal state s′ (remaining non-goal for the whole time inter-
val [0, T]) and focus on the reachability probability starting from this state. In
particular, there can be a non-null probability to go from s′ to s̄ in Td units of
time, starting at time 0. This means that the probability of the set of trajecto-
ries starting at s′ at time 0 and being in s̄ at time Td, without passing from a
goal state, has non-null probability. Pick one such trajectory, which clearly does
not contribute to the reachability probability from s′. At time Td, however, the
structure of the modified CTMC changes, and this trajectory suddenly satisfies
the reachability condition. In particular, this holds at time Td for all the tra-
jectories that are in s̄. Hence, at time Td the probability πs′,s̄(0, Td) has to be
added to the reachability probability Ps′(T

−
d), as computed before s̄ becomes a

goal state.
Stated otherwise, a change in the truth status of the formula ϕ not only

forces us to change the topology of the modified CTMC, by altering the set of
absorbing states, but it may also induce a discontinuity in the path probability.

Computing reachability probabilities for time-varying sets. We will
quickly sketch now an algorithmic procedure to compute reachability proba-
bilities when the goal and unsafe sets vary with time. This will provide the key
procedure to compute path probabilities for nested until formulae of the form
ϕ1U

[0,T]ϕ2, for general CSL formulae ϕ1 and ϕ2. For more general until formulae
ϕ1U

[Ta,Tb]ϕ2, and for next path formulae, we refer the reader to [12, 13].

25

We first discuss the case in which the unsafe set U is always empty, corre-
sponding to eventually path formulae. To compute the reachability probability,
we need to take the double nature of states into account: a state s can be either
goal or non-goal, and its status can vary with time. To better describe this sce-
nario, we will double the state space, creating for each state s ∈ S a shadow copy
s̄, which represents the goal version of s. Shadow states s̄ are always absorbing.
Each transition in the CTMC entering an s state, instead, is directed towards
s if and only if s is non-goal. Otherwise, it is rerouted towards s̄.6 This routing
has to be changed whenever we hit a discontinuity in the time-dependent truth
function. The situation is depicted below.

time

0 t

T1 T2 Tk Tk+1
· · ·

Let T1, . . . , Tk, Tk+1, . . . be the times in which any state of S changes status
(from goal to non-goal, or vice versa). Note that these time instants are fixed,
and we can assume them to be known. To compute the reachability probability
within time [0, T], we start in T0 = 0 by constructing the modified CTMC
according to the goal set G(0) at time 0. In between T0 and T1, the structure
of the modified CTMC does not change, hence we can integrate the forward
Kolmogorov equations, until the time t hits the first discontinuity time T1. At
this time, we need to perform some operations, according to whether the state
s changes status to become a goal state or a non-goal state.

Goal to non-goal: in this case, we only need to reroute the transition matrix
of the CTMC: all transitions entering s̄, the shadow version of s, must now
point to s. This is obtained by modifying the Q-matrix accordingly, deleting
entries in the column s̄ and adding entries in the column s.

Non-goal to goal: In this case, we need to reroute transitions which enter s to
now point at s̄ entering s, and also add the probability πs′,s(0, t) to πs′,s̄(0, t),
afterwards set πs′,s(0, t) to zero.

Once these bookkeeping operations have been performed, and the new probabil-
ity matrix Π(0, T+

1) has been computed if needed, we can restart the integration
of the forward Kolmogorov equations, with initial conditions given precisely by
Π(0, T+

1). We can then iterate this procedure, until the final time T is reached.

Running example. We consider the running example, and compute the proba-
bility of the nested path formula ψ = F [0,T](apatched∧P≥p(G[0,Ta]¬ainfected)), for
Ta = 10. The time dependent truth of the inner temporal formula
ϕ = P≥p(G

[0,Ta]¬ainfected) has already been computed in the previous section
(see Figure 7). Furthermore, the formula apatched∧P≥p(G[0,T1]¬ainfected) is false

6 Alternatively, we can add a new goal state s∗, as done in [32], and redirect all
transitions entering any goal state to s∗.

26

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

pr
ob

ab
ili

ty

T~81.8

Prob(p,t0 |= F[0,T] (patched AND P>0.97(G[0,10] not_infected))

Fig. 8. Fluid estimate of the path probability of the formula F [0,T](apatched ∧
P≥0.97(G[0,10]¬ainfected)), as a function of T , starting from state p at time 0 (con-
tinuous black line). We can see that the probability is discontinuous, and there is
a jump at time T = 81.8, corresponding to the time at which the truth value of
P≥0.97(G[0,10]¬ainfected) changes for state p, see Figure 7. Parameters of the model are
as in Figure 2.

for any state different from p, and equal to T(ϕ, p, t) for the patched state p.
Hence, the state p will be non-goal until time Td = 81.8, and then it will become
a goal state.
Thus, when computing the probability of the path formula ψ, we have that no
state is goal until time Td, and after Td p will be the only goal state. If we look
at the path probability of ψ as a function of T (Figure 8), we observe that this
probability is zero for T < Td, and then suddenly jumps at time Td to πx,p(0, Td),
for x ∈ S, and keeps on increasing afterwards.

The algorithm to compute the path probability for a general reachability
problem, with both unsafe and goal states, is similar to the one sketched above.
In general, for an unsafe state s we disable all outgoing transitions, making it
absorbing. The only difference resides in the bookkeeping operations that need
to be performed when a state s changes its unsafe status.

Unsafe to safe: in this case, we just need to re-enable all the outgoing transi-
tions from s.

Safe to unsafe: In this case, we disable all outgoing transitions from s, but we
also discard the probability πs′,s(0, t), setting it to zero. This is because all
trajectories started from s′ at time 0 and being in s when it becomes unsafe
become trajectories that can no longer reach a goal state avoiding unsafe
ones, because they suddenly find themselves in an unsafe state.

27

A minor caveat when we have both unsafe and goal sets is to decide how a state
that is both goal and unsafe behaves. In this case, by the definition of the until
semantics, its goal nature will prevail.

Reachability probabilities as a function of time Up to now, we sketched
an algorithm to compute the reachability probability starting from time zero up
to time T , call it Υ (0, T). In order to extend the method to compute Υ (t, t+T),
as a function of the initial time t, we will follow a similar approach to that of
Section 6, finding an expression for Υ (t, t+T) and applying a generalised version
of the forward and backward Kolmogorov equations to it, in order to obtain an
ODE for Υ .

In this tutorial, we will just present this expression for Υ , which is obtained by
combining Chapman Kolmogorov equations [42] with suitable matrices encoding
the bookkeeping operations. Further details on the algorithm can be found in
[12, 13].

The first step is the definition of a matrix ζ encoding the bookkeeping op-
erations. Let G(t) and U(t) be the time-varying goal and unsafe sets, and let
T1, . . . , truek, . . . be the time instants at which one state changes status. Define
the set of safe states W (t) = S \ (G(t)∪U(t)). We define the following matrices
for each discontinuity time Ti:

– ζW (Ti) is the n×n matrix, |S| = n, equal to 1 only on the diagonal elements
corresponding to states sj belonging to both W (T−i) and W (T+

i) (i.e. states
that are safe and not goals both before and after Ti), and equal to 0 elsewhere;

– ζG(Ti) is the n×n matrix equal to 1 in the diagonal elements corresponding
to states sj belonging to W (T−i)∩G(T+

i) (safe and non-goal states becoming
goal), and zero elsewhere;

– ζ(Ti) is the 2n× 2n matrix defined by:

ζ(Ti) =

(
ζW (Ti) ζG(Ti)

0 I

)
.

Now, assume in [t1, t2] no discontinuity occurs, so that the Q-matrix of the
modified CTMC does not change structure in [t1, t2], and let Π̃(t1, t2) be the
probability matrix computed by solving the forward Kolmogorov equations, with
Π̃(t1, t1) = I. Then, recalling that the Chapman Kolmogorov equations state
that Π̃(t1, t3) = Π̃(t1, t2)Π̃(t2, t3), we can compute Υ as follows [12, 13]:

Υ (t, t+ T) = Π̃(t, T1)ζ(T1)Π̃(T1, T2)ζ(T2) · · · ζ(TkI)Π̃(TkI , t+ T), (9)

where T1, . . . , TkI are all the discontinuity points between t and t+T . From this
equation, observing it depends on t only in the first and last factor and using the
backward and forward Kolmogorov equations, we can derive an ODE similar to
equation (8), with Π replaced by Υ :

dΥ (t, t+ T)

dt
= −Q̃(t)Υ (t, t+ T) + Υ (t, t+ T)Q̃(t+ T), (10)

28

where Q̃(t) is the modified Q-matrix according to the goal and unsafe sets at
time t. See [12, 13] for further details, and for a sketch of the algorithms that
can be used to integrate the so-obtained equation.

Steady state properties In this tutorial, like in [12, 13], we have considered
only time bounded operators. This limitation is a consequence of the very nature
of Theorem 2, which holds only for a finite time horizon. However, there are
situations in which we can extend the validity of the theorem to the whole time
domain, but this extension depends on properties of the phase space of the
fluid ODE [10, 14]. In those cases, we can prove convergence of the steady state
behaviour of Z(N) to that of z, hence we can incorporate also operators dealing
with steady state properties.

Checking these properties is relatively simple: we need to compute the unique
fixed point x∗ of the fluid ODE, which will be also the steady state measure of the
limit fluid agent z(t), assuming it is irreducible. When at steady state, the rates
of z(t) do not depend on time anymore, hence it becomes a time-homogeneous
CTMC. Therefore, to model check a formula like S./(ϕ), we just need to model
check ϕ against this time-homogeneous CTMC, with standard algorithms, and
then compute the satisfaction of the steady state operator as in the standard
model checking for CTMC [5] (see also [32]).

Running example. As an example, consider the steady state property
S≥0.75(P≤0.1(F [0,10]ainfected)). The fluid ODE for our example has a unique,
globally attracting, fixed point x∗ = (0.0209, 0.0767, 0.0383, 0.8641). Substi-
tuting this into the time-dependent Q matrix of the fluid agent z we obtain
a time-homogeneous CTMC, for which the probability of F [0,10]ainfected) is
(0.8526, 1, 1, 0.0276) and so the formula P≤0.1(F [0,10]ainfected) is true in state
p and false in states s, d, i. By using ergodicity of z and the fact that x∗ is
also the limit steady state measure of an individual agent, hence the steady
state measure of z, we can compute the steady state probability of satisfying
P≤0.1(F [0,10]ainfected) as 0∗0.0209+0∗0.0767+0∗0.0383+1∗0.8641 = 0.8641,
which makes the steady state property true in all states.

8 Decidability and Convergence

In this section we will briefly discuss some theoretical features of the approximate
model checking algorithm presented.

We will consider two main issues related to decidability and accuracy. Firstly,
we will discuss the decidability of the algorithm to model check CSL specifica-
tions against ICTMC models. The fluid approximation of single agent properties
is based on this as we have shown, and it is important to assess that this al-
gorithm will yield an answer. Secondly, we must also consider the relationship
between the truth of a CSL formula with a single agent derived through consid-
eration of the fluid limit (i.e. representing the rest of the population only through
the mean field) and the truth of the CSL formula for the single agent in a finite

29

Checked property Fluid MC Stat MC (N = 100) Stat MC (N = 1000)

Kolmogorov Equations ∼ 0.1 sec ∼ 64 sec ∼ 101 sec

X[0,T]ainfected ∼ 0.06 sec ∼ 6 sec ∼ 24 sec

¬ainfectedU
[0,T]apatched ∼ 0.05 sec ∼ 5 sec ∼ 20 sec

Table 1. Comparison of running times of the Fluid Model Checking algorithm of some
properties discussed in the paper, with the running time for their statistical estimate
(statistical model checking), for different population levels, computed from 10000 runs.

population model (i.e. with all agents represented explicitly). The approach is
only useful if this relationship is close to identity.

Efficiency and Decidability. Two desirable features of any model checking
algorithm are decidability and computational efficiency. Efficiency, in particular,
was the practical motivation of this work. Indeed, as can be seen in Table 1,
already for the simple running example, the gain in computational time is re-
markable: the fluid model checking approach is between 500 and 1000 times
faster than statistical model checking for a population of 1000 nodes, with a
negligible loss in accuracy. Furthermore, its complexity is independent of the
population size, so that it can scale to very large systems.

The issue about decidability, instead, is more delicate, and depends heavily
on the rate functions of the collective model and on the solution of the fluid
ODE. In particular, the problem is with the nesting of CSL formulae. In order
to model check a next or an until formula, containing nested temporal operators,
we need to be able to perform a certain set of operations, specifically:

1. compute the set of zeros of P (ψ, s, t)− p as a function of the time at which
the formula ϕ = P./p(ψ) is evaluated;

2. check whether P (ψ, s, t) < p, P (ψ, s, t) = p, or P (ψ, s, t) > p (to compute
the truth function T(ϕ, s, t) for ϕ = P./p(ψ));

3. store in memory the truth function T(ϕ, s, t);

In order to deal with point 3 above, we need to guarantee that the number of
zeros of the function P (ψ, s, t)− p is finite in any finite time interval [0, T]. This
is not true in general, but can be enforced by imposing additional regularity as-
sumptions on the rate functions of the population model. Specifically, in [12, 13]
we restricted the rate functions of the collective model to be (piecewise) real an-
alytic functions [33]. This class of functions has nice closure properties (they are
closed for arithmetic operations, integration, differentiation, and so on), which
guarantees that all probability functions Ps(t) will remain (piecewise) analytic.
Furthermore, they are reasonably general, including most of the functions used
in practice (for instance, polynomials, exponentials, and so on). Finally, they
enjoy the property that either they are identically zero, or have only a finite
number of zeros in any finite time interval. This settles point 3.

30

Points 1 and 2 above, instead, are much more delicate. First of all, finding
all zeros of an analytic function is not an easy task, and in general may not
be decidable. In particular, finding simple zeros (those around which a function
change sign) is decidable (using interval methods [2, 41]), but we may not be
able to find non-simple zeros, i.e. those in which the derivative is null, like local
maxima or minima, see figure below.

p

Ps(t)

t

Also the decidability of point 2 above, called the zero test problem, is un-
known for analytic functions (in fact, its decidability is not known even for
functions constructed using polynomials and the exponential, see [44]).

The way out this problem is to characterise precisely all the situations in
which something bad can happen, and show that this are sufficiently rare. More
precisely, we fixed a formula structure and the model parameters, and looked at
what happens in terms of the thresholds p of the probability operators P./p. If
we have a formula with k temporal operators, then we have k such thresholds,
which can take values in the hypercube [0, 1]k. We then looked at the subset R
of points of [0, 1]k for which we can guarantee that the algorithm terminates,
and characterised it from a topological viewpoint. It turns out [12, 13] that R
is an open subset of Lebesgue measure one of [0, 1]k. This means that almost
any formula will be decidable, and furthermore that decidability is robust with
respect to small perturbations of the probability thresholds. In [12, 13] this is
termed quasi-decidability, and the CSL formulae which have thresholds proba-
bilities that belong to the set R are called robust.

Convergence. We also investigated the limit behaviour of path probabilities
and truth values of CSL formulae, evaluated for an individual agent Z(N)(t) in
a finite population model, in the limit of N → ∞. We proved that, in almost
all cases, they converge to path probabilities and truth values computed for the
limit individual agent z(t). Convergence, however, does not hold always; it can
fail exactly in those situations in which the limit model checking problem is not
decidable. Given a CSL formula ϕ = ϕ(p), with probability threshold arranged
in a vector p, we characterised the subset of [0, 1]k of threshold for which con-
vergence surely holds, obtaining that it coincides with the set R of thresholds
making ϕ robust. More precisely, we have proved the following theorem [12, 13]:

Theorem 3. Let X (N) be a sequence of CTMC models and let Z(N)(t) and z(t)
be defined from X (N) as in Section 4.2. Assume that Z(N)(t), z(t) have piecewise
analytic infinitesimal generator matrices.

31

Let ϕ(p1, . . . , pk) be a robust CSL formula. Then, there exists an N0 such that,
for N ≥ N0 and each s ∈ S

s, 0 �Z(N) ϕ⇔ s, 0 �z ϕ.

This theorem states that, for a given robust CSL formula ϕ, we can find an index
N0 such that, for populations larger than N0, ϕ will hold in the limit model if
and only if it holds in a model with population N . This shows that the method
presented here is consistent with respect to asymptotic approximation. Unfor-
tunately, characterising such N0 is extremely difficult, see also the discussion in
[12, 13] about erorr bounds.

9 Related Work

As this is a very new direction of research there is, as yet, only a small amount
of related work. Model checking (time homogeneous) Continuous Time Markov
Chains (CTMC) against Continuous Stochastic Logics (CSL) specifications has a
long tradition in computer science [5, 4, 45]. At the core of our approach to study
time-bounded properties there are similarities to that developed in [5], because
we consider a transient analysis of a Markov chain whose structure has been
modified to reflect the formula under consideration. But the technical details of
the transient analysis, and even the structural modification, differ to reflect the
time-inhomogeneous nature of the process we are studying.

To the best of the authors’ knowledge, there has been no previous proposal
of an algorithm to model check CSL formulae on a ICTMC. Nevertheless model
checking of ICTMCs has been considered with respect to other logics. Specifi-
cally, previous work includes model checking of HML and LTL logics on ICTMC.

In [30], Katoen and Mereacre propose a model checking algorithm for Hennessy-
Milner Logic on ICTMC. Their work is based on the assumption of piecewise
constant rates (with a finite number of pieces) within the ICTMC. The model
checking algorithm is based on the computation of integrals and the solution of
algebraic equations with exponentials (for which a bound on the number of zeros
can be found).

LTL model checking for ICTMC, instead, has been proposed by Chen et al.
in [18]. The approach works for time-unbounded formulae by constructing the
product of the CTMC with a generalized Büchi automaton constructed from the
LTL formula, and then reducing the model checking problem to computation of
reachability of bottom strongly connected components in this larger (pseudo)-
CTMC. The authors also propose an algorithm for solving time bounded reach-
ability similar to the one considered in this paper (for time-constant sets).

Our work is underpinned by the notion of fast simulation, which has previ-
ously been applied in a number of different contexts [22]. One recent case is a
study of policies to balance the load between servers in large-scale clusters of
heterogeneous processors [24]. These ideas also underlie the work of Hayden et
al. in [25]. Here the authors extend the consideration of transient characteristics
as captured by the fluid approximation, to approximation of first passage times,

32

in the context of models generated from the stochastic process algebra PEPA.
Their approach for passage times of individual components is closely related
to the fast simulation result and the work presented in this paper. The main
difference is that they consider just path properties, described by deterministic
automata (formally treated in [26]), which they solve by integrating ODEs.

10 Conclusions

In this tutorial we presented a new method to approximately model check prop-
erties of individual agents in a large population, exploiting mean field theory.
This theory predicts that in the limit of an infinite population individual agents
will decouple, evolving as independent CTMC connected only through the mean
state of the system, described by the fluid ODE. This independence frees us
from the necessity of representing the whole state space of the population, and
instead we need only represent the state space of the individual agent. However,
since the behaviour of this agent depends on the mean state of the system, its
transition rates are not constants, but instead vary with time. Thus, in order to
check properties for this limit model, we need to deal with a time-inhomogeneous
CTMC. In this chapter we have presented a method to model check CSL formu-
lae against ICTMC, whose complexity stems from the time dependency of truth
values of temporal sub-formulae.

Our objective here has been to introduce the main ideas in an informal
manner, explaining them by means of a simple example of a peer-to-peer network
epidemic, in order to give the reader an intuition of how the approach works.
The reader interested in the formal details is invited to study the fuller account
given in the recent CONCUR paper [12] or its extended version [13].

The development of a fluid approximation for model checking, albeit only
currently for time-bounded properties of individual agents opens the possibil-
ity of carrying out model checking on a wide range of population models that
were previously extremely computationally costly or even beyond the scope of
existing tools. Moreover there is a lot of potential of expanding the reach of
model checking still further. Currently, we are extending the approach in several
directions, including:

– moving beyond CSL to consider more complex path properties, for instance
those expressed by Deterministic Timed Automata [19] (DTA), obtaining a
logic for individual properties similar to asCSL [6] and CSL-TA [23];

– the lifting of individual specifications to the collective level, similarly to [32].
In this paper, the authors consider atomic collective properties stating that
the expected fraction of agents satisfying a local CSL property meets a given
bound ./ p. Instead of the expectation, we are considering approximations
of the probability that the fraction of agents satisfying a local CSL property
meets a given bound ./ p, using higher order fluid approximations, like the
functional central limit [35] or linear noise approximation [50].

33

References

1. GNU Octave.
2. G. Alefeld and G. Mayer. Interval analysis: theory and applications. Journal of

Computational and Applied Mathematics, 121:421–464, 2000.
3. A. Andreychenko, P. Crouzen, and V. Wolf. On-the-fly uniformization of time-

inhomogeneous infinite Markov population models. In Proceedings Ninth Workshop
on Quantitative Aspects of Programming Languages, QAPL 2011, volume 57 of
EPTCS, page 1, 2011.

4. A. Aziz, V. Singhal, F. Balarin, R. Brayton, and A. Sangiovanni-Vincentelli. Ver-
ifying continuous time Markov chains. In Proceedings of CAV96, 1996.

5. C. Baier, B. Haverkort, H. Hermanns, and J.P. Katoen. Model checking continuous-
time Markov chains by transient analysis. In Proceedings of Computer Aided Veri-
fication, volume 1855 of Lecture Notes in Computer Science, pages 358–372. 2000.

6. Christel Baier, Lucia Cloth, Boudewijn R. Haverkort, Matthias Kuntz, and Markus
Siegle. Model checking Markov chains with actions and state labels. IEEE Trans.
Software Eng., 33(4):209–224, 2007.

7. R. Bakhshi, L. Cloth, W. Fokkink, and B.R. Haverkort. Mean-field analysis for the
evaluation of gossip protocols. In Proceedings of the Sixth International Conference
on the Quantitative Evaluation of Systems, QEST 2009, pages 247–256. IEEE
Computer Society, 2009.

8. R. Bakhshi, L. Cloth, W. Fokkink, and B.R. Haverkort. Mean-field framework for
performance evaluation of push-pull gossip protocols. Perform. Eval., 68(2):157–
179, 2011.

9. M. Benäım and J. Le Boudec. A class of mean field interaction models for computer
and communication systems. Performance Evaluation, 2008.

10. M. Benäım and J.Y. Le Boudec. On mean field convergence and stationary regime.
CoRR, abs/1111.5710, 2011.

11. Ludec Berec. Techniques of spatially explicit individual-based models: construc-
tion, simulation, and mean-field analysis. Ecological Modelling, 150(1–2):55–81,
2002.

12. L. Bortolussi and J. Hillston. Fluid model checking. In Proceedings of CONCUR
2012, 2012.

13. L. Bortolussi and J. Hillston. Fluid model checking. CoRR, 1203.0920, 2012.
14. L. Bortolussi, J. Hillston, D. Latella, and M. Massink. Continuous approximation

of collective systems behaviour: a tutorial. Performance Evaluation, 2013.
15. Luca Bortolussi. On the approximation of stochastic concurrent constraint pro-

gramming by master equation. volume 220, pages 163–180, 2008.
16. Luca Bortolussi and Alberto Policriti. Dynamical systems and stochastic program-

ming: To ordinary differential equations and back. In Corrado Priami, Ralph-Johan
Back, and Ion Petre, editors, Transactions on Computational Systems Biology XI,
volume 5750 of Lecture Notes in Computer Science, pages 216–267. Springer Berlin
/ Heidelberg, 2009. 10.1007/978-3-642-04186-0 11.

17. R.L. Burden and J. D. Faires. Numerical analysis. Thomson Brooks/Cole, 2005.
18. T. Chen, T. Han, J.P. Katoen, and A. Mereacre. LTL model checking of time-

inhomogeneous Markov chains. In Proceedings of the 7th International Symposium
on Automated Technology for Verification and Analysis, ATVA 2009, volume 5799
of Lecture Notes in Computer Science, pages 104–119. Springer, 2009.

19. T. Chen, T. Han, J.P. Katoen, and A. Mereacre. Model checking of continuous-
time Markov chains against timed automata specifications. Logical Methods in
Computer Science, 7(1), 2011.

34

20. E. Clarke, A. Peled, and A. Grunberg. Model Checking. MIT press, 1999.
21. R.W.R. Darling. Fluid limits of pure jump Markov processes: A practical guide.

arXiv. org , 2002.
22. R.W.R. Darling and J.R. Norris. Differential equation approximations for Markov

chains. Probability Surveys, 5, 2008.
23. Susanna Donatelli, Serge Haddad, and Jeremy Sproston. Model checking timed

and stochastic properties with CSLTA. IEEE Trans. Software Eng., 35(2):224–240,
2009.

24. N. Gast and B. Gaujal. A mean field model of work stealing in large-scale systems.
In Proceedings of ACM SIGMETRICS 2010, pages 13–24, 2010.

25. R.A. Hayden, A. Stefanek, and J.T. Bradley. Fluid computation of passage-time
distributions in large Markov models. Theor. Comput. Sci., 413(1):106–141, 2012.

26. Richard A. Hayden, Jeremy T. Bradley, and Allan Clark. Performance specification
and evaluation with unified stochastic probes and fluid analysis. IEEE Trans.
Software Eng., 39(1):97–118, 2013.

27. J. Hillston. Fluid flow approximation of PEPA models. In Proceedings of the Second
International Conference on the Quantitative Evaluation of SysTems, QEST 2005,
pages 33 – 42, sept. 2005.

28. A. Jensen. Markov chains as an aid in the study of Markov processes. Skandinavisk
Aktuarietidskriff, 36, 1953.

29. S. K. Jha, E. M. Clarke, C. J. Langmead, A. Legay, A. Platzer, and P. Zuliani. A
Bayesian approach to model checking biological systems. In Proceedings of the 7th
International Conference on Computational Methods in Systems Biology, CMSB
2009, volume 5688 of Lecture Notes in Computer Science, pages 218–234, 2009.

30. J.-P. Katoen and A. Mereacre. Model checking hml on piecewise-constant inho-
mogeneous Markov chains. In Proceedings of the 6th International Conference on
Formal Modeling and Analysis of Timed Systems, FORMATS 2008, volume 5215
of Lecture Notes in Computer Science, pages 203–217. Springer, 2008.

31. A. Kolesnichenko, A. Remke, P.T. de Boer, and B.R. Haverkort. Comparison of
the mean-field approach and simulation in a peer-to-peer botnet case study. In
Proceedings of 8th European Performance Engineering Workshop, EPEW 2011,
volume 6977 of LNCS, pages 133–147. Springer, 2011.

32. Anna Kolesnichenko, Anne Remke, Pieter-Tjerk Boer de, and Boudewijn R.
Haverkort. A logic for model-checking of mean-field models. In Proceedings of the
43rd International Conference on Dependable Systems and Networks, DSN 2013,
2013.

33. S. Krantz and P.R. Harold. A Primer of Real Analytic Functions (Second ed.).
Birkhäuser, 2002.

34. T. G. Kurtz. Solutions of ordinary differential equations as limits of pure jump
Markov processes. Journal of Applied Probability, 7:49–58, 1970.

35. T.G. Kurtz. Approximation of population processes. SIAM, 1981.
36. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model check-

ing with PRISM: A hybrid approach. International Journal on Software Tools for
Technology Transfer, 6(2):128–142, September 2004.

37. Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification
of probabilistic real-time systems. In CAV, pages 585–591, 2011.

38. Jean-Yves Le Boudec. Performance Evaluation of Computer and Communication
Systems. EPFL Press, Lausanne, Switzerland, 2010.

39. M. Massink, D. Latella, A. Bracciali, M. Harrison, and J. Hillston. Scalable context-
dependent analysis of emergency egress models. Formal Aspects of Computing,
pages 1–36, in print.

35

40. MATLAB. v. 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts, 2010.
41. A. Neumaier. Interval Methods for Systems of Equations. University Press, Cam-

bridge, 1990.
42. J. R. Norris. Markov Chains. Cambridge University Press, 1997.
43. H. Qian and E.L. Elson. Single-molecule enzymology: stochastic michaelis?menten

kinetics. Biophysical Chemistry, 101:565–576, 2002.
44. D. Richardson. Zero tests for constants in simple scientific computation. Mathe-

matics in Computer Science, 1(1):21–37, 2007.
45. J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Techniques

for Analyzing Concurrent and Probabilistic Systems, volume 23 of CRM Monograph
Series. American Mathematical Society, 2004.

46. D.T.J. Sumpter. From Bee to Society: An Agent-based Investigation of Honey Bee
Colonies. PhD thesis, University of Manchester, 2000.

47. Z. Szallasi, J. Stelling, and V. Periwal, editors. System Modeling in Cellular Biol-
ogy, From Concepts to Nuts and Bolts. MIT Press, 2012.

48. Mirco Tribastone, Jie Ding, Stephen Gilmore, and Jane Hillston. Fluid rewards
for a stochastic process algebra. IEEE Trans. Software Eng., 38(4):861–874, 2012.

49. Mirco Tribastone, Stephen Gilmore, and Jane Hillston. Scalable differential anal-
ysis of process algebra models. IEEE Trans. Software Eng., 38(1):205–219, 2012.

50. N. G. Van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier, 1992.
51. A. P. A. van Moorsel and K. Wolter. Numerical solution of non-homogeneous

Markov processes through uniformization. In Proceedings of the 12th European
Simulation Multiconference - Simulation- Past, Present and Future, ESM 1998,
pages 710–717. SCS Europe, 1998.

36

A Integrating the combined backward-forward
Kolmogorov equation

In this appendix we will look more closely at the problem of numerically in-
tegrating the combined backward-forward Kolmogorov equation (8), needed to
compute the time-dependent reachability probability for until formulae, see Sec-
tion 6. Integrating this equation is necessary to check nested formulae. A result
of this integration, for the running example, has been shown in Figure 7. We
recall that the equation is

dΠ(t, t+ T)

dt
= −Q(t)Π(t, t+ T) +Π(t, t+ T)Q(t+ T),

which has to be solved from time t0 to time t1, with initial conditions Π(t +
0, t0 + T) computed using the forward equation.

In principle, this could be done by using one of the many ODE solvers avail-
able, e.g. those of MatlabTM [40] or Octave [1]. Practically, using one of those
solvers, we have observed that in most of the cases, we obtain a plot like the one
shown in Figure 9, in which the numerical error explodes. This is an indicator
that equation (8) is, in general, very stiff [17], hence a stiff integration method
has to be used. Unfortunately, this blow up phenomenon persisted even using
the most accurate stiff integrators of MatlabTM or Octave, even with very high
accuracy. We only obtained a reduction in the blow up speed.

In order to compute the trajectory in Figure 7, therefore, we need a different
strategy. We present the idea in the following, showing how to compute the
time-dependent reachability probability with time horizon T , without resorting
to equation (8). The idea is to exploit the Chapman-Kolmogorov (CK) semigroup
equations [42], Π(t, t′) = Π(t, t′′)Π(t′′, t′), t′′ ∈ [t, t′], in order to integrate the
backward and the forward equations separately. The advantage of this is that
the forward and the backward equations alone are, in general, quite stable.

For simplicity, we assume in the following that t0 = 0 and t1 = k ·T . The first
operation is to split the time interval [0, kT] into smaller time intervals, each of
length T , as shown in the figure below:

time

T0 = 0 T1 = 1 · T T2 = 2 · T Tk = k · T· · ·

Call Tj the time instant j · T , fix j ≥ 1, and pick t ∈ [Tj−1, Tj]. Applying the
CK to times t, Tj , t+ T , we get

Π(t, t+ T) = Π(t, Tj)Π(Tj , t+ T).

As Tj is a constant, in order to compute Π(t, t+T) for t ∈ [Tj−1, Tj], we can in-
tegrate separately the backward equation for Π(t, Tj), t ∈ [Tj−1, Tj], with initial
value Π(Tj−1, Tj), and the forward equation for Π(Tj , t

′), t′ ∈ [Tj , Tj+1], with

37

0 5 10 15 20 25 30 35 40
time

0
5.000
10.000
15.000
20.000
25.000
30.000
35.000
40.000
45.000
50.000
55.000
60.000
65.000
70.000
75.000
80.000
85.000
90.000
95.000
100.000

va
lu
es

Fig. 9. Integration with a ODE numerical solver of the equation (8) for the formula
G[0,T2]¬ainfected, for T2 = 10. Due to the high degree of stiffness of the equation and
numerical instabilities, the error blows up.

initial value the identity matrix. These two equations can be solved simultane-
ously. Then, we can take the product of the so obtained matrices to compute
Π(t, t+ T).

The full algorithm is a simple loop over j, observing that the initial conditions
needed to integrate the backward equation are the last point computed by the
forward equation in the previous iteration.

Practically, if we want just to visualize the result, we need to compute the
product of Π(t, Tj) and Π(Tj , t+T) only at the sampled points of the function,
generally a fixed grid of stepsize h. If, instead, we want to solve the equation
P (t)− p = 0, in order to obtain the truth value, we need to take the product of
the two matrices every time the root finding function (usually embedded in the
ODE solver) needs to know the value of the function P (t)− p.

38

