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Absract 

Many researchers see the need for reject inference to come from a sample selection 

problem whereby a missing variable results in omitted variable bias.  Specifically, the 

success in being accepted for a loan is related to subsequent repayment performance.  

Accordingly, the residuals of the previous scoring model by which the person is 

accepted may be correlated with those of a new model that predicts his repayment 

performance.  Unless the correlation between the residuals of the new and old model 

are reflected in the new model its parameters will be biased.  Alternatively, 

practitioners often see the problem as one of missing data where the relationship in 

the new model is biased because the behaviour of the omitted cases differs from that 

of those who make up the sample for a new model.  To attempt to correct for this, 

differential weights are applied to the new cases.  The aim of this paper is to see if the 

use of both a Heckman style sample selection model and the use of sampling weights, 

together, will improve predictive performance compared with either technique used 

alone.  This paper will use a sample of applicants in which virtually every applicant 

was accepted.  This allows us to compare the actual performance of each model with 

the performance of models which are based only on accepted cases 
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Reject Inference, Augmentation, and Sample Selection 

1.  Introduction 

Those who build and apply credit scoring models are often concerned about the fact 

that these models are typically designed and calibrated on the basis only of those 

applicants who were previously considered adequately creditworthy to have been 

granted credit.  The ability of such models to distinguish good prospects from bad 

requires the accidental inclusion of delinquent credit payers in the data base.  Such 

delinquent applicants are unlikely to have characteristics that differ radically from 

good applicants, yet the ability to discern those difference is the critical feature of a 

good model.  Reject inference is a term that distinguishes attempts to correct models 

in view of the characteristics of rejected applicants. 

Augmentation and sample selection offer potentially complementary corrections for 

model deficiencies that arise from the omission of rejected applicants from data bases 

used to build credit scoring models.  Both implicitly acknowledge model deficiency 

arising from the unavailability of the repayment behaviour of rejected applicants.  

Sample selection correction may be thought of as correction for variables denied the 

model on account of rejected cases.  For example, if all unemployed applicants were 

rejected, unemployment would be unavailable as a variable for modelling with 

accepted applicants.  Augmentation may be thought of as correcting for other aspects 

of model misspecification arising out of missing cases, particularly those having to do 

with the a model’s functional form.  For example, a linear function of some variable 

may quite adequately describe repayment prospects over the range of that variable 

observed among accepted applicants, but a hint of curvature among the less reliable 

applicants may seem inadequate for reliable modelling.  This paper considers whether 

both corrections may be used simultaneously and entertains the possibility that each 

correction may be enhanced in the presence of the other. 

Banasik et al (2003) considered the efficacy of sample selection correction using a 

bivariate probit model on the basis of a rare sample where virtually all applicants were 

accepted.  Applicants were nevertheless distinguished as to whether they would 

normally be accepted, so that the performance of models based on all applicants could 

be compared with those based only on accepted applicants.  This provides a basis for 

discerning the scope for reject inference techniques.  That paper reported distinct but 

modest scope for reject inference, and that the bivariate probit model achieved only a 

slight amount of it.  Subsequent experiments using the same sample with 

augmentation are reported in Crook and Banasik (2004) and Banasik and Crook 

(2005).  These suggested that augmentation actually undermined predictive 

performance of credit scoring models.  In the discussion that follows these results are 

revisited in experiments slightly revised to enhance comparability and are compared 

with results arising from joint deployment of the two techniques.  After explaining 

both techniques, the character of the data and its adaptation for its present application 

will be discussed.  Then the results of the techniques used in isolation and then 

together will be reported. 

 

2.  Sample Selection 

A useful classification of missing data mechanisms was proposed by Little and Rubin 

(1987). Let Di=1 if a borrower i defaults and Di=0 if he/she repays on schedule. Let 

Ai=1 indicate that case i was accepted in the past and Ai=0 if that case was not 
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accepted. Let Dobs denote the values of D for cases where the repayment performance 

is observed, that is for cases where Ai=1, and let Dmis denote values of D for cases 

where repayment performance is missing, that is for cases where Ai=0. Little and 

Rubin classify missing mechanisms into three categories, two of which are relevant in 

this context (Hand and Henley 1993). These are as follows. 

 

Missing at Random 

 

This occurs if  

 

),|(),,|( φφ obsmissobs DAPDDAP =         (1) 

 

where φ is the vector of parameters of the missing data mechanism. This can be 

written: 

 

)|(),|(
22

XAPXDAP =         (2) 

where X2 is a set of variables that will be used to model P(A). The probability that an 

applicant is rejected (and his repayment performance is missing), given values of X2, 

does not depend on his repayment performance. Since we are interested in P(D|X1) we 

note that equations (1) and (2) are equivalent to  

 

)|()1,|(
11

XDPAXDP == .       (3) 

 

where X1 is a set of variables that will be used to model P(D).The parameters we 

estimate from a posterior probability model (for example logistic regression) using the 

accepted cases only are unbiased estimates of the parameters of the population model 

for all cases, not merely for the accepts, assuming the same model applies to all cases. 

However, since the parameter estimates are based only on a subsample their estimated 

values may be inefficient. 

 

Missing Not at Random 

 

This occurs if  

 

),,|(),,|( φφ missobsmissobs DDAPDDAP =        (4) 

 

This can be written 

 

),|(),|(
22

XDAPXDAP =        (5) 

 

The probability that an application is rejected, given values of X2, depends on his 

repayment performance. Equations (4) and (5) do not allow us to deduce equation (3). 

To see this write: 

 

)|0().0,|()|1().1,|()|(
11111

XAPAXDPXAPAXDPXDP ==+===
 (6) 

Since in MNAR  
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)0,|()1,|(
11

=≠= AXDPAXDP ,       (7) 

 

)1,|()|(
11

=≠ AXDPXDP        (8) 

 

To parameterise P(D|X1) we must model the process which generates the missing data 

as well. If we do not, the estimated parameters of P(D|X1) are biased. An example of 

such a procedure is Heckman’s ML model (Heckman 1976) which, if D were 

continuous and the residuals normally distributed, would yield consistent estimates. A 

more appropriate model is that of Meng and Schmidt (1985) where P(D|X1) is 

modelled rather the E(D|X1), again assuming normally distributed residuals. The 

Meng and Schmidt model is the bivariate probit model with sample selection (BVP). 

 

To proceed further it is efficient to set up the scoring problem as follows: 

 

(10)                                                                                                       ),(

(9)                                                                                                        ),(
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where 
*

i
d is a continuous random variable describing the degree of default such that 

when 0* ≥
i

d  Di =1 and when 0* <
i

d  Di =0. 
*

i
a  is a continuous random variable such 

that when 0* ≥
i

a , Ai=1 and Di is observed, and when 0* <
i

a , Ai=0 and Di is 

unobserved. We wish to parameterise P(Di). 

 

Now consider various cases. 

 

Case 1 

 

Model 10 fits the data to be used to parameterise the new model perfectly. For 

example, in the past, the bank followed a scoring rule precisely for every applicant. 

Here 0
2

=
i

ε  and so 0
2,1

=
ii εερ  for all cases. Is this MAR? This depends on whether, 

given X1, P(Di) in the population depends on whether the case is observed. Here we 

can consider two subcases. 

 

 Case 1a 

 

Suppose there are variables in X2,which are excluded from X1 but which affect 

P(Di). Then equation (7) holds and we have MNAR. If P(Di), given X1, does 

not differ between the observed and missing cases, we have MAR. In the 

credit scoring context variables which are correlated with P(Ai) and which 

may be in the X2 set, but not in the X1 set, include the possession of a CCJ. An 

applicant with a CCJ may be rejected so the possession of a CCJ does not 

appear in X1 for the purpose of estimation. Notice that in this case the Meng 

and Schmidt Heckman-type model (BVP) will not make the estimated 

parameters more consistent than a single equation model because the source of 

the inconsistency that the BVP model corrects for occurs only when 

0
2,1

≠
ii εερ . 
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Case 1b 

 

Here there is no variable in X2 which is omitted from X1 and which causes 

P(Di), given X1, to differ between the observed and missing cases. We have 

MAR, not MNAR. 

 

Case 2 

 

Now suppose equation (10) does not perfectly fit the data to be used to parameterise 

the new model. This may occur because variables additional to those in X2 were used 

to predict P(Ai). In the credit scoring context such variables include those used to 

override the values of Ai predicted by the original scoring model. Again consider 

subcases. 

 

Case 2a 

 

Suppose these additional variables are (a) not included in X1 and (b) affect 

P(Di). Then equation (7) holds and we have MNAR. Also, given (a) and (b) 

and that these variables are not in X2, but do affect P(Ai), 2,1 ii εερ  may not 

equal zero. In this case the BVP approach may yield consistent parameters for 

equation (9) which will not be given by a single equation model. 

 

Case 2b 

 

Suppose the additional variables referred to in Case 2a are (a) included in X1 

and (b) affect P(Di). Then equation (3) holds instead of equation (7) and we 

have MAR, not MNAR. Further, 0
2,1

=
ii εερ  and the BVP model does not 

yield more consistent estimates that a single equation posterior probability 

model. 

 

Case 2c 

 

In this case the additional variables are (a) included in X1 and (b) do not affect 

P(Di). Again equation (3) holds instead of equation (7) we have MAR not 

MNAR. 

 

In short, the BVP technique will increase the efficiency of the estimated parameters 

over that achieved in a single model posterior probability model only in case 2a.  

 

It is worth noting, that apart from augmentation, to be described in the next section, 

the literature contains experiments to assess the performance of a small number of 

other algorithms to estimate application scoring models in the presence of rejected 

cases. One example is the EM algorithm (Feelders 2000). However the EM algorithm, 

like other imputation techniques such as MCMC, have typically assumed the missing 

mechanism is MAR rather than MNAR. In addition, the application of these 

techniques has been either on simulated data which may miss the data structures 

typical of credit application data or on data which does not allow a meaningful 

benchmark all-applicant model to be estimated.  
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3.  Augmentation 

Augmentation is a well-used technique that involves weighting accepted applicants in 

such a way as to synthesize a sample that fully represents rejected applicants.  Its use 

involves tacit admission of model inadequacy whereby no single parameter set 

governs all applicants.  Figure 1 illustrates this intuitively by revisiting some basic 

principles of linear regression analysis, assuming the prevalence of a linear 

relationship.  Part (a) suggests that extreme values in the range of an explanatory 

variable minimize the standard errors of the estimated parameters, but often this 

sample range is not a discretionary matter.  Should it be restricted as in part (b) and as 

is potentially the case for characteristics observed among accepted credit applicants, 

then one must be satisfied with the line estimated by those points as the best available.  

To weight sample observations to reflect better the mean of the explanatory variable 

within the general population as in part (c) is effectively to cluster observations and 

thereby to sacrifice efficiency.  There was no bias to reduce in the first place and none 

after the weighting, but more error in the model parameters estimates probably 

attends such weighting.  Obviously, one would not indulge in this weighting were 

linearity to be believed. 
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(a) Estimation with extreme X spread (b) Estimation with restricted X range 

.00

.10

.20

.30

.40

.50

.60

.70

.80

P(Good|X)

X
 

(c) Estimation with weighting to reflect character of missing observations 

Figure 1: Illustration of estimation scenarios for a linear relationship. 

Figure 2 illustrates a non-linear situation modelled linearly.  Part (a) makes clear that 

available data do not support the discernment of curvature.  Part (b) illustrates the 
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effect of estimating with weights, presuming the presence of curvature.  That might 

seem sensible in the credit scoring context, since the ranking of marginal applicants 

deserves special attention.  This special concentration on marginal applicants depends 

on the benefits of exploiting curvature exceeding the loss of efficiency that comes 

from effectively clustering attention on a narrow range of observations. 
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(a) Slope estimated over observed range (b) slope simulates inclusion of lower X range 

Figure 2: Illustration of weighting to characterize different X ranges. 

The derivation of weighting used in the variant of augmentation deployed here was 

explained in Crook and Banasik (2004). In brief, it requires first the estimation of an 

Accept-Reject (AR) model that predicts the probability that any applicant will be 

among those accepted in a population. The inverse of the estimated probability equals 

the number of cases each accepted case in the sample represents and can be regarded 

as a sampling weight in the estimation of the GB model. Those accepts which have  

relatively low probabilities of acceptance will have relatively high weights, and since 

their probabilities are relatively low they may be expected to have characteristics 

more similar to those cases that were originally rejected than to cases which have a 

high probability of acceptance.  Accordingly, a Good-Bad (GB) model may be 

estimated weighting each accepted case by the inverse of its probability arising out of 

the AR model.  That should provide the GB model with much of the character it 

would have were the repayment behaviour of rejected applicants to be known and 

included. 

Notice that since augmentation is not correcting for the possible validity of equation 

(7) it is not correcting for a missing mechanism which is MNAR. Instead it assumes 

the mechanism is MAR.  

A couple of caveats deserve particular note in the present context of considering both 

sample selection and augmentation together.  First, as explained above bias from 

omitted variables will occur (MNAR) unless the variable set of the GB model 

encompasses that of the AR model.  However, in the analysis that follows both the 

AR and GB models are estimated with some variables denied the other.  This permits 

comparable results for augmentation and sample selection, since the exclusive resort 

of the AR model to certain explanatory variables in sample selection is a vital feature 

of sample selection.
i
  Secondly, augmentation is not feasible in Case 1 above, where 

the AR process can be modelled perfectly.  Even were the probit or logistic regression 

equation to be estimable, it would generate unit probabilities for all accepted cases 
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and hence undefined weights.  This ability of perfect knowledge about the AR process 

to scuttle reject inference is a paradoxical feature augmentation shares with sample 

selection.  As a practical matter the AR process generally depends on exclusive resort 

to some variables, or there are overrides (a particular instance of a missing variable) 

in its model’s application. 

 

3.  Banded Data Methodology 

The sample available for the present analysis had virtually no rejected applicants as 

well as an indication of which applicants would normally be rejected.  The credit 

supplier would occasionally absorb the cost of accepting poor applicants so as to have 

a data base that would have no need for reject inference.  Table 1 demonstrates the 

large proportion of very poor applicants accepted on such occasions.  Unfortunately, 

this data set indicated no scope for reject inference.  Models built only upon those 

applicants who would normally be accepted predicted repayment behaviour of all 

applicants every bit as well as models built on all applicants.  This probably reflected 

the normal acceptance threshold which would see two-thirds of applicants accepted of 

whom nearly 30% were “bad” in the sense used for development of the GB models 

analysed here.  Such applicants were defined as those who had accounts transferred 

for debt recovery within 12 months of credit first being taken.  Evidently models built 

on such accepted applicants already incorporated insights about the nature of very bad 

applicants as to make reject inference redundant.  The influence of the acceptance 

threshold in determining the scope for useful application of reject inference thus 

became a central concern. 

The credit provider supplied only the raw data, including good-bad status, and its 

normal accept-reject decision for each applicant.  Except that most relevant variables 

were provided, little useful was indicated about the nature of the normal acceptance 

process, so that shifting the acceptance threshold required fabrication of an acceptance 

process.  More elaborate detail about this fabrication process appears in Banasik et al 

(2003).  For the present purposes suffice it to say that AR and GB variables sets 

described in Table 1 were determined from a process of stepwise logistic regressions 

using relevant dependent variables.  Normally, an AR model reflects an older GB 

model that determined the cases available for the new GB model.  In fabricating an 

AR process nationality appeared as a metaphor for time.  The GB behaviour of the 

2540 Scottish applicants’ was modelled using the variables selected for the AR 

model.  Using the AR variable set and parameters calibrated on Scottish applicants, 

the remaining 9668 English and Welsh (hereafter English) applicants then received 

AR scores by which they were ranked and banded into five acceptance thresholds.  

All subsequent modelling would be restricted to English applicants. 

English applicants were ranked into five bands of nearly equal size from each of 

which stratified random sampling determined that training and holdout samples would 

have virtually the same good-bad rate.  The upper part of Table 2 demonstrates the 

range of repayment behaviour available in the data with repayment performance in the 

top band nearly double that in the bottom one.  All subsequent analysis uses the data 

as described in the lower part of Table 2 where each band includes cases in the band 

above it.  Each of these cumulated bands then appears a distinct potential grouping of 

accepted applicants.  The all-inclusive Band 5 provides the basis for benchmark 
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models against which less inclusive “accepted” applicant samples models – with and 

without reject inference – may be judged. 
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Table 1:  Variables included in the Accept-Reject and Good-Bad models 

  Good-Bad Accept-Reject Coarse Minimum  

 Variable description model model categories frequency  

 Time at present address  � 8 281 

 B1  � 4 242 

 Weeks since last county court judgement (CCJ)  � 6 244 

 B2  � 5 324 

 B3 � � 6 453 

 Television area code � � 5 26 

 B4 � � 6 496 

 Age of applicant (years)  � � 6 201 

 Accommodation type � � 5 180 

 Number of children under 16 � � 6 130 

 P1 � � 3 377 

 Has telephone � � 3 1883 

 P2 � � 6 611 

 B5 � � 4 239 

 B6 � � 5 320 

 P3 � � 4 516 

 B7 �  6 1108 

 B8 �  6 407 

 B9 �  6 1443 

 Type of bank/building society accounts �  6 188 

 Occupation code �  6 129 

 P4 �  6 1108 

 Current electoral roll category �  5 458 

 Years on electoral roll at current address �  6 458 

 B10 �  6 403 

 P5 �  3 379 

 B11 �  6 324 

 B12 �  4 1163 

 B13 �  4 1291 

 Number of searches in last 6 months �  4 406 

Bn = bureau variable n;  Pn = proprietary variable n; � denotes variable is included 

The course classification used in this analysis was not a feature of the provided data, 

but reflected preliminary analysis of GB performance over variable intervals, taking 

account of natural breaks among all applicants and among applicants designated as 

normally acceptable by the data provider
ii
.  Notice that the weights of evidence 

processing implies a constraint that prevents even a nearly perfect fit.  Logistic 

regression provides correct classification for the four top bands of only 84% to 95% 

of cases.  This seems an ideal simulation of arbitrary overrides.   

Table 2:  Sample accounting 

Cases not cumulated into English acceptance threshold bands to show good rate variety: 

  All sample case  Good  Training sample cases  Hold-out sample cases 

  Good  Bad  Total  rate  Good  Bad  Total  Good  Bad  Total 

Band 1  1725  209  1934  89.2%  1150  139  1289  575  70  645 

Band 2  1558  375  1933  80.6%  1039  250  1289  519  125  644 

Band 3  1267  667  1934  65.5%  844  445  1289  423  222  645 

Band 4  1021  912  1933  52.8%  681  608  1289  340  304  644 

Band 5  868  1066  1934  44.9%  579  711  1290  289  355  644 
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English  6439  3229  9668  66.6%  4293  2153  6446  2146  1076  3222 

Scottish  1543  997  2540  60.7%             

Total  7982  4226  12208  65.4%             

Cases cumulated into English acceptance threshold bands for analysis: 

  English sample cases  Good  Training sample cases  Hold-out sample cases 

  Good  Bad  Total  rate  Good  Bad  Total  Good  Bad  Total 

Band 1  1725  209  1934  89.2%  1150  139  1289  575  70  645 

Band 2  3283  584  3867  84.9%  2189  389  2578  1094  195  1289 

Band 3  4550  1251  5801  78.4%  3033  834  3867  1517  417  1934 

Band 4  5571  2163  7734  72.0%  3714  1442  5156  1857  721  2578 

Band 5  6439  3229  9668  66.6%  4293  2153  6446  2146  1076  3222 

3.  Model assessment 

Classification performance depends on two features of the modelling process: its 

ability to rank cases and its ability to indicate or at least use an appropriate cut-off 

point.  Overall ranking of applicants in terms of likely repayment performance is 

interesting, but more critical is the ranking among marginal applicants with repayment 

prospects that will attract deliberation.  Ranking among very good applicants certain 

to receive credit and among very poor applicants certain to be rejected matters little. 

The nature of analysis that follows may be illustrated by interpretation of Table 3 in 

which the application of a model’s parameters estimated by each band’s training 

sample appears.  The third column represents classification success where the cut-off 

has been selected to equate actual and predicted numbers of goods in each band’s 

training sample.  The fourth column standardizes the results by using instead the 

band’s hold-out sample to equate these numbers.  This slightly illicit resort to the 

hold-out sample to obtain a parameter estimate affects results very little.  The sixth 

column indicates the usefulness of each band’s training sample ranking and cut-off 

applied to all applicants, including those of all lower bands.  Finally, column seven 

shows how performance of each band’s model might be improved in all-applicant 

prediction were the cut-off that equalizes actual and predicted good performance 

among the all-applicant hold-out sample to be known.  Such would be approximately 

the case were one to somehow know what proportion of the whole applicant 

population is bad. 

From the standpoint of reject inference two types of comparison are pertinent.  First, 

for each band comparison of the column six result to that columns Band 5 result 

indicates the scope for improvement by reject inference, since it is the difference that 

results from availability of repayment performance by all rejected applicants.  

Secondly, comparison between each band’s column six and seven results indicates the 

benefit to be had by simple awareness of the appropriate cut-off.  If this cut-off is 

known simple modelling with accepted cases can provide this result.  Column six 

demonstrates considerable scope for reject inference in each of the top four columns 

where the absence of information on rejected applicants can undermine performance.  

Column seven suggests that the bulk of this improvement could be had simply from 

awareness of the cut-off implied by knowledge of the repayment behaviour by 

rejected applicants.  For example, the Band 1 scope for benefit from reject inference is 

3.48% (i.e. 73.68 – 70.20) of which 2.36% (i.e. 73.49 – 72.56) could be obtained by 

knowledge of the appropriate cut-off point.  To that extent one need know only the 
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likely repayment proportion of all applicants and not the particular relationships 

between attributes of unacceptable applicants and repayment performance. 

Table 3:  Classification using simple logistic regression 

  Own band hold-out prediction  All-applicant hold-out prediction 

    Own band  Own band   Own band  All band 

Predicting  Number  training  hold-out  Number  training  hold-out 

Model:  of cases  cut-off  cut-off  of cases  cut-off  cut-off 

Band 1  645  89.30%  89.77%  3222  70.20%  72.56% 

Band 2  1289  83.40%  83.86%  3222  70.58%  72.75% 

Band 3  1934  79.21%  79.42%  3222  71.97%  73.49% 

Band 4  2578  75.37%  75.56%  3222  72.47%  73.81% 

Band 5  3222  73.68%  73.49%  3222  73.68%  73.49% 

4.  Reject Inference Results 

Joint application of augmentation and the bivariate probit model requires a specified 

weighting for all cases, accepted and rejected alike.  For accepted applicants the 

weights used for simple augmentation were scaled to have an average value of 1.0, the 

weight assigned to all rejected cases. Thus if the first 0…n cases are accepts and the 

following (n+1) …k cases are rejects: 

 

�
=

−−− ∈=
n

i

iii ipnpw
0

111 accepts  if     

rejects  if    1 ∈= iwi  

 In this way the relative weighting among accepted cases was maintained without 

affecting the relative weighting between accepted and rejected cases.  Permitting the 

inverse of the probability of acceptance to be the weighting applied to rejected cases 

would have implied monumentally disproportionate attention to be given to the least 

acceptable cases among the rejects.  Since use of the weighted bivariate probit implies 

estimation of both an AR and a GB model, in principle the new AR model should be 

used to revise the weightings in a process that could iterate toward convergence.  Had 

there been more classification success at the end of the initial iteration, this might 

have been attempted.  However, the process of re-weighting is mainly to focus 

attention toward more risky accepted cases, and the approximate replication of the 

character of all applicants is only an incidental byproduct. 

Table 4 records for each modelling approach the area under the ROC curve which 

indicates the overall ranking performance achieved without reference to any arbitrary 

cut-off point.  Logistic regression is the benchmark against which augmentation may 

be assessed and the comparably performing simple probit model is the benchmark for 

simple bivariate probit and for weighted bivariate probit. 

Consistent with the results reported in Crook and Banasik (2004) augmentation by 

itself provides ROC curve results quite inferior to those achieved without it.  All 

results considered here deal with estimation using weights of evidence calibrated to 

the particular training-sample band, and this may seem somewhat constraining.  

However, the aforementioned study also considered an alternative resort to binary 



15 

variables and produced similar results.  For simple bivariate probit resort to binary 

variables was impeded by collinearity problems.  The results of this technique roughly 

confirm those reported in Banasik et al (2003) except that now the slight performance 

improvement is slighter to the point of imperceptibility.  Table 5 indicates that this 

reflects a virtually complete absence of correlation between the AR and GB model 

errors even more so than previously. 

Table 4:  Overall ranking performance by area under ROC 

  Own band training sample  Own band holdout   All-applicant holdout 

  Number  Area under  Number  Area under  Number  Area under 
  of cases  ROC  of cases  ROC  of cases  ROC 

Simple logistic regression 

Band 1  1289  .8884  645  .8654  3222  .7821 
Band 2  2578  .8373  1289  .8249  3222  .7932 

Band 3  3867  .8141  1934  .8175  3222  .8009 

Band 4  5156  .8003  2578  .8108  3222  .8039 

Band 5  6446  .7934  3222  .8049  3222  .8049 

Weighted logistic regression 

Band 1  1289  .8468  645  .8446  3222  .7362 
Band 2  2578  .7733  1289  .7647  3222  .7083 

Band 3  3867  .7812  1934  .7911  3222  .7808 

Band 4  5156  .7977  2578  .8097  3222  .8027 

Band 5  6446  .7934  3222  .8049  3222  .8049 

Simple probit 

Band 1  1289  .8893  645  .8693  3222  .7842 
Band 2  2578  .8377  1289  .8252  3222  .7936 

Band 3  3867  .8142  1934  .8176  3222  .8008 

Band 4  5156  .8003  2578  .8107  3222  .8039 

Band 5  6446  .7934  3222  .8048  3222  .8048 

Bivariate probit 

Band 1  1289  .8892  645  .8674  3222  .7844 

Band 2  2578  .8375  1289  .8256  3222  .7935 
Band 3  3867  .8141  1934  .8178  3222  .8010 

Band 4  5156  .8003  2578  .8108  3222  .8039 

Band 5  6446  .7934  3222  .8048  3222  .8048 

Weighted bivariate probit 

Band 1  1289  .7695  645  .7324  3222  .7502 

Band 2  2578  .7706  1289  .7599  3222  .7001 
Band 3  3867  .7831  1934  .7936  3222  .7830 

Band 4  5156  .7978  2578  .8093  3222  .8025 

Band 5  6446  .7934  3222  .8048  3222  .8048 

 

Table 5:  Error correlation arising from bivariate probit estimation 

  Simple bivariate probit  Weighted bivariate probit 

  ρ Significance  ρ Significance 

Band 1  –.0321 .840  –.9908 .014 

Band 2  –.0636 .645  .0355 .449 

Band 3  –.1000 .303  –.0888 .722 

Band 4  –.0101 .918  .1916 .348 

The weighted bivariate probit results represent considerable deterioration compared to 

a situation of no reject inference at all.  The most that can be said for them is that 
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bivariate probit seems to have redeemed to some small extent the overall ranking 

results that would have occurred under simple augmentation. 

Table 6 also confirms earlier results.  In terms of classification results augmentation 

produces generally inferior results and in particular tends to undermine, for the upper 

two Bands, an ability to make good use of the Band 5 cut-off.  The exception to this 

pattern is Band 4 where the training sample cut-off produces slightly better results and 

the Band 5 cut-off produces slightly worse results.  For the simple unweighted 

bivariate probit the results are very slightly worse, reflecting apparently inefficient 

resort to AR errors.  Again Band 4 is the exception and again only insofar as the 

Band’s own cut-off is used (as it normally would be). 

Table 6:  Performance by Correct Classification 

  Own Band hold-out prediction  All-applicant Hold-out Prediction 

    Own band  Own band   Own band  All band 

  Number  training  hold-out  Number  training  hold-out 

  of cases  cut-off  cut-off  of cases  cut-off  cut-off 

Simple logistic regression 

Band 1  645  89.30%  89.77%  3222  70.20%  72.56% 

Band 2  1289  83.40%  83.86%  3222  70.58%  72.75% 

Band 3  1934  79.21%  79.42%  3222  71.97%  73.49% 

Band 4  2578  75.37%  75.56%  3222  72.47%  73.81% 

Band 5  2578  73.68%  73.49%  3222  73.68%  73.49% 

Weighted logistic regression 

Band 1  645  87.75%  87.60%  3222  69.24%  68.84% 

Band 2  1289  81.54%  81.23%  3222  68.34%  67.47% 

Band 3  1934  79.16%  79.42%  3222  71.94%  72.44% 

Band 4  2578  75.64%  75.72%  3222  72.84%  73.49% 

Band 5  2578  73.68%  73.49%  3222  73.68%  73.49% 

Simple probit 

Band 1  645  89.30%  89.77%  3222  70.11%  72.75% 

Band 2  1289  83.32%  84.02%  3222  70.79%  72.69% 

Band 3  1934  79.16%  79.63%  3222  71.88%  73.56% 

Band 4  2578  75.41%  75.41%  3222  72.50%  73.74% 

Band 5  2578  73.77%  73.81%  3222  73.77%  73.81% 

Bivariate probit 

Band 1  645  89.30%  89.77%  3222  69.77%  72.69% 

Band 2  1289  83.32%  84.02%  3222  70.36%  72.56% 

Band 3  1934  79.06%  79.63%  3222  71.88%  73.56% 

Band 4  2578  75.45%  75.41%  3222  72.53%  73.74% 

Band 5  2578  73.77%  73.81%  3222  73.77%  73.81% 

Weighted bivariate probit 

Band 1  645  84.50%  84.50%  3222  56.80%  70.64% 

Band 2  1289  81.54%  81.69%  3222  68.03%  66.91% 

Band 3  1934  79.21%  79.32%  3222  71.88%  72.50% 

Band 4  2578  75.33%  75.56%  3222  72.66%  73.43% 

Band 5  3222  73.77%  73.81%  3222  73.77%  73.81% 

The classification performance for weighted bivariate probit seems very poor for the 

top two bands and again Band 4 provides the only exception to a finding of generally 

inferior performance compared to no reject inference at all.  Taking Tables 4 and 6 

together makes apparent what explicit crosstabulation of actual and predicted 
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performance would convey.  Overall ranking is somewhat undermined, and the 

indicated cut-off point serves very badly for Bands 1 and 2.  Moreover, ranking in the 

critical region where decisions are made is also undermined by resort to this technique 

as indicated by comparison between the results from the simple probit with own-band 

cut-offs with a weighted bivariate probit with Band 5 cut-offs.  Even with that 

advantage this reject inference technique performs only marginally better in Band 1 

(i.e. 70.64 vs. 70.11) and rather worse in Band 2. 

4.  The trouble with augmentation 

Table 7 illustrates application of the weighting principles suggested by Table 1.  The 

training sample cases are ordered by acceptance probability determined by the AR 

model in such a way that each interval has about 129 “equivalent” probabilities.  The 

top 1289 training cases are distinguished because these are the ones that are predicted 

to be accepted.  In this way the top ten intervals include 167 rejected cases predicted 

to be accepted and the intervals below this include 167 accepted cases predicted to be 

rejected.  The acceptance proportions in each interval bear a good likeness to each 

interval’s typical acceptance probabilities given the relatively small number of cases 

in each. 

Table 7:  Re-weighting illustration using Band 1 

 P(Accept) range   Total  Training Proportion  Represented 

Interval within interval Good Bad Accepts Rejects Cases Accepted Weights by accepts 

1 .99997 – 1.0000 126 3 129 0 129 1.0000 1.00 129 

2 .99587 – .99997 109 20 129 0 129 1.0000 1.00 129 

3 .98302 – .99587 113 16 129 0 129 1.0000 1.00 129 

4 .96095 – .98302 113 13 126 3 129 .97674 1.02 129 

5 .93144 – .96095 116 10 126 3 129 .97674 1.02 129 

6 .88551 – .93144 101 19 120 8 128 .93750 1.07 128 

7 .82116 – .88551 100 15 115 14 129 .89147 1.12 129 

8 .72150 – .82116 83 10 93 36 129 .72093 1.39 129 

9 .60282 – .72150 73 11 84 45 129 .65116 1.54 129 

10 .48605 – .60282 66 5 71 58 129 .55039 1.82 129 

Subtotal      1122 167 1289   1289 

11 .35984 – .48605 48 3 51 78 129 .87044 2.53 129 

12 .24927 – .35984 34 2 36 93 129 .39535 3.58 129 

13 .16051 – .24927 20 3 23 106 129 .27907 5.61 129 

14 .10240 – .16051 17 3 20 109 129 .17829 6.45 129 

15 .00000 – .10240 31 6 37 4604 4641 .15504  4641 

Total      1289 5157 6446   6446 

A couple features are very evident from Table 7.  First, while 1122 correctly classified 

accepted cases have the responsibility of representing all 1289 accepted cases, a large 

burden is put upon the 167 accepted cases wrongly predicted as rejected cases.  They 

must represent all 5157 rejected cases.  Indeed it is conceivable in principle that an 

accepted applicant could have an extremely small estimated probability of acceptance 

and thereby grab enormous attention in a weighted logistic regression.  Secondly, the 

repayment behaviour in all but the top 129 band does not diminish radically as the 

acceptance cut-off point is approached.  Indeed even below this point the good/bad 

ratio does not appear remarkably different. Accordingly, increased focus on 

“unacceptable” accepted cases does not provide much enhanced insight into the 

character of applicants with very bad repayment propensities. 
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Augmentation will provide benefit particularly when there are a large number of 

accepted applicants judged by an AR model to be worthy of rejection when as well as 

these cases having distinctly poor repayment performance.  That should tend not to 

happen when the rejection rate is large – which is when reject inference seems most 

needed.  This feature perhaps explains why Band 4 had some instances of benefit and 

only small benefit at that from reject inference. 

4.  Conclusion 

The two forms of reject inference considered here appear to provide negligible benefit 

whether applied in isolation or together.  The nature of such negative findings is that 

they cannot be presented as significantly insignificant, but they arise from carefully 

designed experiments devised with rare data particularly suited for them.  Apparent 

scope for reject inference in terms of the loss of accuracy that arises from modelling 

with a data set comprising only the more creditworthy applicants is clearly evident.  

In a population in which 66.6% of applicants (see Table 2) are likely to repay, a 

model that correctly classifies 70.2% represents a small improvement over simply 

accepting everyone, and the 3.48% scope for improvement possible in Band 1 

represents a substantial improvement over that.  The challenge is to achieve a 

substantial part of that scope. 

An important feature of the two reject inference techniques considered here is that 

they are both mechanical and do not depend at all on modellers’ judgement about 

suitable parameters.  While there is nothing wrong with techniques that do depend on 

such judgement, appraisal of their accuracy may not easily be able to distinguish 

between the improvement latent in the technique as opposed to that contingent on 

good judgement.  Even in the experiments reported in this paper it might be possible 

to manipulate the experiments to affect the results, for example by altering the 

variable selection for GB and AR models, but such arbitrary judgements have been 

devised with a view to the reliability of the experiment not the success of the model.  

The two types of judgement are distinct.  Accordingly, the findings pertaining to the 

techniques considered here are more definitive than might be the case for others. 

The findings reported above reflect the features of one data set corresponding to one 

context.  Reject inference may very well be applied with good effect to various other 

contexts.  Unfortunately, an ability to assess the benefit will usually be absent, since 

the opportunity of rejecting applicants can rarely be known.  The data set employed 

here has effectively provided data on the repayment behaviour latent in all rejected 

applicants. 

In principle it seems that the feature required of success for the two types of reject 

inference considered here, both separately and together, is a lot of information in the 

acceptance decision that pertains to the “goodness” of applicants yet is denied to the 

variable set of the GB model.  That should tend to make focus at the lower range of 

acceptable applicants worthwhile and should foster correlation between the errors of 

the GB and AR models.  These are both observable features without knowledge the 

latent repayment behaviour of rejected applicants, and so should be a good indication 

of the prospects of benefit from applying reject inference.  Unfortunately, without the 

knowledge of this latent behaviour, the extent of benefit will be defy discernment. 
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��In this the present analysis differs from that presented in Crook and Banasik (2004) 

and in Banasik and Crook (2005) where the GB model variable set was used for the 

AR model in spite of awareness that the AR process depended on exclusive resort to 

some additional variables.  In any case, an attempt to avoid bias altogether seems a 

vain endeavour, since augmentation is only ever reasonably used when the GB model 

is presumed to suffer from misspecification bias hidden by the absence of rejected 

applicants. 
�

���In Banasik et al (2003) this classification was used alternatively to define binary 

variables and weights of evidence, and both approaches gave very similar results for 

models without reject inferenc In this respect the following analysis of the sample 

selection procedure differs from the earlier one.e.  However, on account of 

collinearity problems, only the weights of evidence were used for reject inference.  A 

critical feature of the banding approach was that English applicants were scored using 

the less restrictive binary variable approach.  In that earlier paper two variables were 

removed from both the AR and GB set in the mistaken presumption that this would be 

necessary to avoid a nearly perfect fit for the AR model, since the AR scores were 

simply fitted values using the AR variable set.  �


