Abstract—Superconductors enable extremely high field magnets that can be used to develop compact heavy-ion rotating gantries and accelerators. To achieve high fields, a large quantity of superconducting material is required. This results in high costs and difficulties on cooling. An effective design algorithm is necessary to optimize the magnet designs and reduce materials needed. In this paper, we propose a new design method for high temperature superconducting (HTS) magnets with combined function for carbon-ion therapy rotating gantries. The new method applies a layer-by-layer design process, which effectively reduces the total volume of superconducting material required and improves field precision. Firstly, the cross-section of a multilayer magnet was designed to achieve combined fields of dipole and quadrupole. Based on this, three-dimensional magnet coil ends were designed, considering mechanical constraints of the HTS coated conductors. Results show that the new design requires 26.3% less material than the existing design with a highly precise field strength and distribution.

Index Terms—Coated conductor, gantry, magnet design, medical accelerator.

I. INTRODUCTION

Treatment of cancerous tumours using charged particles continues to play an increasing role, however continuous efforts must be made in order to further develop particle radiotherapy, thus enabling this treatment form to become more widely available. The widespread use of carbon ion radiotherapy (CIRT) has been limited due to not only the costs associated with this treatment form, but also the size of the facilities. A rotating gantry is the most suited beam delivery method for CIRT, being able to deliver beams from any direction, whilst the patient is kept in the optimal position for treatment. Although a number of rotating gantries exist for proton therapy, only two rotating gantries currently exist for CIRT. Carbon beams with a kinetic energy of 430 MeV/u require a magnetic rigidity which is approximately three times larger than that required for proton beams, resulting in a large, and heavy structure [1]. Superconducting technology was used in the second carbon-ion rotating gantry, which was installed at the National Institute for Radiological Sciences (NIRS). Low temperature superconducting (LTS) combined function magnets were designed to overcome the problem of weight and size, which resulted in a rotating gantry of similar size as those used in proton therapy. The LTS combined function magnet has a layered structure. With a total of 34 layers, 400 turns/pole for the quadrupole coil and 3426 turns/pole for the dipole coil, the inner 8 layers are wound with a cos(2θ) distribution allowing a pure quadrupole field to be produced, the additional 26 layers wound on top have a cos(θ) distribution to produce a pure dipole field. A maximum field gradient of 9 T/m and a magnetic flux density of 2.88 T were achieved with this design [2]. It is however still highly desirable to further improve the design of the magnets for mass and volume reduction. In order to achieve this objective, the use of high temperature superconductors (HTS) in the design of combined function magnets have been studied and modelled in this paper. Compared to the characteristics of LTS, HTS possesses several advantages including: the generation of higher magnetic fields due to their high critical current densities; easy and efficient cooling through the use of a cryocooler; as well as improved thermal stability [3] - [4].

Another consideration which was taken into account throughout the design process was to design a HTS combined function magnet with an economical amount of HTS tape, due to the costs associated with superconducting tape [5] and losses even carrying DC current [6] - [10]. In this paper, unlike the previous designs, we propose a magnet design in which each individual layer can generate both dipole and quadrupole functions of bending and focusing/defocusing respectively. Instead of designing all layers simultaneously, this new layer-by-layer design uses space effectively. This optimised design enables further reduction of superconducting material compared to other known designs, thus more compact magnets with precise magnetic fields.

II. APPLICABILITY TO HEAVY-ION ACCELERATORS AND ROTATING GANTRIES

Straight superconducting combined function magnets achieving 2.88 T and 9.0 T/m have already been designed for accelerators, but as previously mentioned using a layered approach. The existing approach does not use space effectively like in this design, and therefore ends up costing more due to the volume of superconducting material used. Although gantry magnets tend to be a combination of superconducting curved magnets and straight normal conducting magnets, a combination of straight and curved superconducting combined function magnets could be a potential, particularly seeing how
new designs of the facility as a whole are being proposed, including multi-level facilities [11].

For example, straighter sections of the gantry beam line seen in Fig. 1, such as those represented by BM3 and BM4 designed with a field strength of 2.88 T and 9.0 T/m to be able to transport the carbon beam with energy of 430 MeV/u, [2] could be combined, and make use of the designed straight superconducting combined function magnet, in conjunction with short bending magnets if required.

A ‘flattened’ gantry design as in [12] and [13] utilising straighter sections to reduce the height of the gantry and supporting structures, could use a combination of straight and curved combined function magnets to achieve this.

III. COMBINED FUNCTION MAGNET DESIGN OVERVIEW

A. Design Concept: layer-by-layer design

Unlike the existing design methods for gantry magnets, we applied a layer-by-layer design algorithm to design each layer individually. This greatly reduces both material mass and volume. The HTS combined function magnet is designed using a 5 mm wide and 0.2 mm thick HTS tapes, aiming to achieve a dipole field of 2.88 T and a quadrupole field of 9.0 T/m [14].

Additional design specifications are listed in Table I. In the design of accelerator magnets it is common to take a reference radius that is approximately 2/3 of the magnet aperture, thus the reference radius of this magnet is set at 35 mm. The superconducting magnets BM1-BM6 installed on the rotating gantry at NIRS were also designed with this specification [2].

Due to the magnet being designed with x-axis symmetry, only normal field components exist that require minimising [15]. For each layer, the coils have been divided into a number of block-shaped windings in the azimuthal direction in order to reduce field harmonics of higher order [16]. The higher order harmonics were calculated at the center of the magnet’s cross-section. Each space harmonic must be lower than $10^{-4}$ of the central field to ensure a homogeneous field, due to the requirement for good beam quality [17].

B. Magnetic Field and Multipole Components in the Magnet Cross-Section

It is important to describe the field quality in the magnet aperture in terms of harmonic multipole coefficients, which substantially affect the precision of the magnetic field required. The multipole coefficients are given in cylindrical coordinates as [15]

$$B_\theta(r, \theta) = \sum_{n=1}^{\infty} r_n^\theta (r_0)^{n-1} (B_n(r_0) \cos n\theta - A_n(r_0) \sin(n\theta)), \quad (1)$$

$$B_r(r, \theta) = \sum_{n=1}^{\infty} r_n^r (r_0)^{n-1} (B_n(r_0) \sin n\theta + A_n(r_0) \cos(n\theta)), \quad (2)$$

where $B_n$ and $A_n$ are the normal and skew multipole components of the magnetic field, and $r_0$ is the reference radius.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius of mandrel</td>
<td>50</td>
<td>mm</td>
</tr>
<tr>
<td>Inner radius of iron yoke</td>
<td>120</td>
<td>mm</td>
</tr>
<tr>
<td>Outer radius of iron yoke</td>
<td>270</td>
<td>mm</td>
</tr>
<tr>
<td>Separation between coated conductors</td>
<td>0.1</td>
<td>mm</td>
</tr>
<tr>
<td>Coated conductor thickness</td>
<td>2</td>
<td>µm</td>
</tr>
<tr>
<td>Superconductor layer thickness</td>
<td>2</td>
<td>mm</td>
</tr>
<tr>
<td>Width of coated conductor</td>
<td>2</td>
<td>mm</td>
</tr>
<tr>
<td>Operation current</td>
<td>200</td>
<td>A</td>
</tr>
<tr>
<td>Magnet straight section length</td>
<td>1</td>
<td>m</td>
</tr>
<tr>
<td>Reference radius</td>
<td>35</td>
<td>mm</td>
</tr>
<tr>
<td>Higher harmonics</td>
<td>$&lt;10^{-4}$</td>
<td>-</td>
</tr>
<tr>
<td>Flat-wise bending radius</td>
<td>$&gt;20$</td>
<td>mm</td>
</tr>
<tr>
<td>Edge-wise bending strain</td>
<td>$&lt;0.3$</td>
<td>%</td>
</tr>
</tbody>
</table>

The iron yoke’s influence was considered by the image current method [18], as in [19], [20], [4], and [21]. By using the image current method the iron is represented by an infinite outer boundary by means of image currents. Through summation of the field generated by the image currents and the applied field, the field in the problem domain can be calculated [18]. The current was considered to be a line current at the center of each turn of the coated conductor.
The Biot-Savart law was used to calculate the magnetic field generated by the image currents. The image current’s magnitude and position in the iron yoke is expressed as follows [20]:

\[
\begin{align*}
    r' &= \frac{r_{\text{iron}}^2}{r}, \\
    I' &= I(x(\mu_{\text{iron}} - 1)/\mu_{\text{iron}} + 1),
\end{align*}
\]

where \( r_{\text{iron}} \) and \( r' \) are the distance from the z-axis to the iron yoke’s inner surface, the image current, and to the real current, respectively. The magnitude of the real current in one turn and the image current of it is represented by \( I \) and \( I' \). \( \mu_{\text{iron}} \) is the relative permeability of the iron yoke.

The normal multipole coefficients inside the magnet aperture for a line current can be determined from [22]:

\[
    B_n(r_0) = -\frac{\mu_0 I}{2\pi} r_0^{n-1} \left[ 1 + \frac{\mu_r r_{\text{yoke}}^2}{\mu_r + 1} \left( \frac{r}{r_{\text{yoke}}} \right)^2n \right] \cos(n\theta).
\]

This allows the field quality in the straight section of the magnet to be determined and taken into account the effect of the image currents mentioned for an iron yoke with radius \( R_{\text{yoke}} \).

The iron yokes’ influence is greater on the higher harmonic multipole coefficients than the lower order ones, and so optimization for higher harmonic multipole coefficients is important for accelerator magnet design. The contribution of the yoke on the harmonic multipole coefficients can be determined from [23]:

\[
    \frac{n_{\text{imag}}}{n_{\text{yoke}}} \approx (1 + (\frac{r}{r_{\text{yoke}}})^{2n})^{-1}.
\]

By adding the terms in (5) the harmonic content of a field generated by line-currents carrying current \( I \) at the position \( (r_1, \theta_1) \) can be calculated.

Each multipole coefficient is generated by a surface current on the mandrel of the magnet, which can be calculated. The positions of the conductors are then be determined, and optimised.

To ensure the required field quality is met, higher order normal 2n-pole components that have been normalised by the reference magnetic field - the dipole component \( B_1 \), are controlled to be less than 10\(^{-3}\). The normal 2n-pole components are normalised as in (7) [3]

\[
    b_n = \frac{1}{b_{\text{ref}}} B_n.
\]

C. Three-Dimensional Design

Designing and optimising superconducting magnets is difficult due to the various design constraints of the superconducting coated conductor. The constraints include inter-layer spacing, minimum bending radius, and other mechanical constraints. Due to the mechanical constraints, the coated conductors are hard to bend and wind, thus flat-wise bending, edge-wise bending, and torsion must be considered when designing the coil ends of the magnet.

The curved line on the surface of the magnet mandrel is known as the base curve - the coated conductors are bent along this curve. Bending the coated conductor uniformly along the longitudinal direction in the edge-wise direction is relatively difficult if local kinks are to be avoided. The level of difficulty to wind the coated conductors increase the smaller the diameter of the beam duct. In order to estimate the local bending curvature of the coated conductors, differential geometry is applied [24], [25].

**Fig. 2 Conceptual view of three-dimensional winding [4].**

Fig. 2 shows the winding of the coated conductors on the mandrel, where the Frenet frame with the vectors \( T, n \) and \( b \) are described in generalized Frenet-Serret equations as in (8) [24]

\[
    \frac{dT}{ds} = k_n n - k_g b, \quad \frac{dn}{ds} = -k_n T + \tau b, \quad \frac{db}{ds} = k_g T - \tau n.
\]

From the starting point of bending the distance along the base curve is represented by \( s \). The vector \( n \) is perpendicular to the tape surface, \( T \) corresponds to the tangent of the base curve, and \( b \) is perpendicular to both \( n \) and \( T \). Torsion, normal curvature and geodesic curvature is represented by \( \tau, k_n \) and \( k_g \).

The base curve is first to be considered when designing the coil ends. \( k_g \) is assumed to be zero, thus allowing \( b, n, T \), and \( k_n \) to be calculated from (8). It is important that the ends match the magnet cross section that was previously determined through 2D field calculations. For this to be achieved additional twist is applied around \( T \). The additional twist does however introduce some geodesic curvature. Thus, a triad of new curvatures, \( k_g^*, \tau^*, \) and \( k_n^* \), and a new triad of vectors, \( n^*, T^* \) and \( b^* \) are introduced. The curvature parameters are calculated along every coated conductor at each discretization point. The new curvatures and vectors can be calculated using [24]

\[
    T^* = T, \quad n^* = \cos \theta^*_T n + \sin \theta^*_T b, \quad b^* = \cos \theta^*_b b + \sin \theta^*_b n, \quad \tau^* = \tau + d\theta^*_T/|ds|, \quad k_g^* = \sin \theta^*_T k_n, k_n^* = \cos \theta^*_T k_n.
\]
\[ \varepsilon_g = \left\{ \left( \frac{\omega}{2} \right) - \delta \right\} \div \left\{ \frac{1}{k_g} - \left( \frac{\omega}{2} \right) \right\}, \quad (13) \]

where \( k_g \) is edge-wise bending curvature, \( \omega \) is the width of the tape, and \( \delta \) is the distance between a point on the tape face and the base curve.

The edge-wise bending strain was set to be less than or equal to 0.3%, and the flat-wise bending radius at minimum 20 mm [26], [27].

IV. ELECTROMAGNETIC DESIGN RESULTS AND ANALYSIS

A. Cross-Section Design of Superconducting Combined Function Magnet

The HTS combined function magnet was designed using the design specifications seen in Table I. The mandrel has a radius of 50 mm, and the straight section length is 1 m.

Fig. 4 shows the steps followed to design the HTS combined function magnet, layer by layer. To achieve the required bending and focusing components the magnet was designed with left-right asymmetry. The continuous ideal surface current distribution around the mandrel for the innermost layer is shown in Fig. 3, and was calculated based on the dipole and quadrupole requirement of 2.88 T and 9.0 T/m. The continuous ideal surface current distribution was then converted into discrete current blocks. These blocks, shown as red blocks in Fig. 5, show the location of the arrangement of the coated conductors, from first to last layer.

Trailing edge PWM is applied to determine the positions of the coated conductors in the same way as in [14]. It is a method to check the amount of surface current required and position coated conductors. The PWM applied can chop the current curves into discrete parts. Each part represents the specific amount of current required to generate designed magnetic fields. The number of coated conductors can be calculated based on this current. This method did however result in an uneven number of tapes carrying positive and negative current in each layer; thus, this was considered in the design of the combined function magnet to ensure there were an equal number of tapes on the left- and right-hand side of the magnet.

With the aim of achieving the required field strength and gradient whilst using less turns of coated conductor, through an iterative process, the blocks positions were placed to achieve a high field homogeneity in the reference radius of the magnet. Once the arrangement of the coated conductor blocks had been determined for the first layer, the harmonic multipole components at the magnet center was calculated, as discussed in section II.

For the next layer, a new surface current was calculated based on the harmonic multipoles generated in the previous layer. This process was repeated until the required magnetic field gradient and strength were achieved.
reduce the number of blocks, whilst ensuring accuracy was maintained.

The higher harmonic multipole coefficients normalised to the main dipole component at the center of the magnet is shown in Fig. 6. As discussed in greater detail in section III, harmonic coefficients are often used to determine the field quality in the magnet aperture. Fig. 6 shows that the higher multipole components that have been normalised by the dipole component are sufficiently small - smaller than $10^{-4}$.

For the innermost layer with a radius of 50 mm, the contribution of the iron yoke of radius 120 mm to the $B_1$ component was 17% compared to only 0.01% for $B_5$. Similarly, for the outermost layer with a radius of 85 mm, the contribution of the iron yoke was 50% for the $B_1$ component compared to 3% for $B_5$. This shows the importance of optimising the design of the magnet particularly for higher order harmonics as discussed in section III part B.

The HTS combined function magnet cross-sectional view is shown in Fig. 7. (left) and is compared to the case study’s design shown in Fig. 7. (right) [14]. The two designs although noticeably different, are both designed to be vertically asymmetric, but horizontally symmetric, thus coated conductors carrying negative current on the left may connect to different bundles carrying positive current on the right. The case study HTS combined function magnet was not designed with a layer by layer generation, which can be seen from the identical two inner and identical six outer layers.
The bundles of tapes in a layer are stacked around the mandrel’s cross-section circumference in a face-to-back stacked position. We assumed coated conductor’s thickness and width is 0.2 mm and 5 mm, and the space between stacked tapes set at 0.1 mm; other design specifications are shown in Table I. For each coated conductor it has been assumed that the current flows uniformly across its width. To focus on the layer-by-layer design, similar as previous designs [14], the magnetization current was neglected. The magnetization current is small if charging is done slowly. However, it could be large if currents increase dramatically and special consideration is required. After optimization of the HTS combined function magnet the six layers of coated conductors carrying 200 A each achieved a combined field of 2.93 T and 9.05 T/m, compared to the case study design that achieved 2.88 T and 9.0 T/m with eight layers [14].

B. Coil Ends
The coil ends for the six layers were designed using the theory discussed in section III part C. The optimised cross-section shown in Fig. 7 (left) was used to design the coil ends that are shown in Fig. 8 and Fig. 9.

![Coil end design of the layers ranging from innermost layer (Layer 1), second layer (Layer 2) to last layer (Layer 6).](image1)

![Coil end design of all layers.](image2)

![Edge-wise bending strain for innermost layer (top left), second layer (top right) to last layer (bottom right).](image3)

C. Magnetic Field Generation and Analysis of Results
An in house code developed in MATLAB, used the Biot-Savart law to calculate the generated magnetic fields, and the image-current method was used to consider the iron yoke’s effect - as discussed in greater detail in section III part B. The
magnetic field generated from the designed HTS combined function magnet across the reference radius of 35 mm is shown in Fig. 11. The figure shows that the design target of 2.88 T is achieved.

To validate the magnetic field calculated using the in house MATLAB code, FEMM version 4.2 [28] was used. The influence of the iron yoke’s non-linear effects was considered, using VACOFLUX 50 with a saturation value of 2.3 T [29]. The 2D FEM simulation result is shown in Fig. 12, and shows the magnetic field in the reference radius – represented by the innermost circle in Fig. 12 – corresponds to the magnetic field in Fig. 11. This suggests the iron yoke’s non-linear BH characteristics on the magnetic flux density in the reference radius is restrictive. A small area of the iron yoke is saturated, reaching a value of 2.4 T.

The shape and outline of the HTS combined function magnet is shown in Fig. 15 and Table II, respectively.

Both magnet straight section and coil ends were taken into account when calculating the magnetic field within the reference radius. The magnetic field distribution within the reference radius along the length of the magnet from its center to its coil ends is shown in Fig. 13 and Fig. 14. The colours in Fig. 14 represent the magnitude of the magnetic fields. The designed HTS combined function magnet parameters are shown in Table 2. With a total of 2496 turns using 6472.7 m of coated conductor, the combined function magnet achieved 2.93 T and 9.05 T/m. As seen from Table II, not only did the HTS combined function magnet optimised design achieve the required field strength and gradient, but it did so using a smaller volume of coated conductors compared to the other known design that used 8789.4 m of coated conductor [14].
The normal magnetic field on the coated conductor for an operating current of 200A is shown in Fig. 16. As expected, the magnetic field for the innermost layer is the highest.

V. CONCLUSION

A combined function magnet was designed for a rotating gantry for carbon ion therapy. The required dipole and quadrupole functions were achieved, whilst using less coated conductor material compared to the known case study. Mechanical considerations were considered in this design. Henceforth the aim of achieving a more compact magnet with precise magnetic fields was achieved. The next step is to undertake a more detailed analysis along with experimental measurement. Hall sensors will be used to measure the magnetic fields, and harmonic multipole components down to 0.1 mT (around $10^{-4}$ compared with the dipole component) can be quantified.

VI. REFERENCES


