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Assessment of the ellipsoidal-statistical

Bhatnagar-Gross-Krook model for

force-driven Poiseuille flows

Jianping Meng, Lei Wu, Jason M Reese, Yonghao Zhang

Department of Mechanical & Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK

Abstract

We investigate the accuracy of the ellipsoidal-statistical Bhatnagar-Gross-Krook (ES-

BGK) kinetic model for planar force-driven Poiseuille flows. Our numerical simulations

are conducted using the deterministic discrete velocity method, for Knudsen numbers

(Kn) ranging from 0.05 to 10. While we provide numerically accurate data, our aim is to

assess the accuracy of the ES-BGK model for these flows. By comparing with data from

the direct simulation Monte Carlo (DSMC) method and the Boltzmann equation, the

ES-BGK model is found to be able to predict accurate velocity and temperature profiles

in the slip flow regime (0.01 < Kn  0.1), for both low-speed and high-speed flows. In

the transition flow regime (0.1 < Kn  10), however, the model does not quantitatively

capture the viscous heating e↵ect.

Keywords: kinetic theory, gas dynamics, BGK model, ES-BGK model, S model

1. Introduction

Research into non-equilibrium gas flows has been recently stimulated by the devel-

opment of micro/nano-technologies, and modern material processing techniques [1, 2].

The key characteristic of non-equilibrium gas flows is that the linear constitutive rela-

tions become invalid and the Navier-Stokes-Fourier (NSF) model fails. To qualitatively
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assess the level of non-equilibrium in the local flowfield, a commonly-used criterion is

the Knudsen number (Kn), which is defined as the ratio of the gas mean free path to

an appropriate characteristic length. The NSF equations are usually considered to be

valid in the hydrodynamic flow regime where Kn  0.01. This validity may be extended

to the slip flow regime, where 0.01 < Kn  0.1, if su�ciently accurate slip boundary

conditions are applied. Flows are in the transition regime when 0.1 < Kn  10, and in

the free molecule regime when Kn > 10.

The Boltzmann equation describes the dynamical behavior of a dilute gas. However,

its formulation requires tracking the binary collisions of molecules. For this reason, the

analysis of the Boltzmann equation, either numerically or theoretically, is practically

formidable. To reduce the complexity, a number of simplified collision models have

been proposed to mimic the main features of the original collision term. A simplified

collision model should first satisfy conservation of mass, momentum and energy, and the

Maxwellian distribution has to be achieved in equilibrium. During the collision process,

which relaxes the gas towards equilibrium, the entropy production should always be

positive [2]. In addition, it is desirable to have an adjustable Prandtl number (the ratio

of viscosity to thermal conductivity).

The most common kinetic model may be the Bhatnagar-Gross-Krook (BGK) equa-

tion, developed in 1954 [3], where a simple relaxation term towards the Maxwellian

distribution function replaces the complicated binary collision term. With this approxi-

mation some accurate numerical simulations, even theoretical analysis, is possible. Most

importantly, BGK predictions can be accurate for a range of practical problems. How-

ever one defect of the BGK model is that it does not recover the correct Prandtl number

for monoatomic gases. Therefore, in 1966 Holway proposed the so-called ellipsoidal

statistical Bhatnagar-Gross-Krook model (ES-BGK)[4], which replaced the Maxwellian

equilibrium distribution with an anisotropic Guassian distribution. An additional free

parameter is thereby introduced to obtain an adjustable Prantdl number. Recently, its

H-theorem has also been proved [5, 6], giving the model a sound theoretical basis. In

addition, the model may be extended to describe gas mixtures and gases with polyatomic
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molecules [4, 5]. The ES-BGK model has attracted therefore considerable interests in

recent years [7, 8, 9, 10].

The accuracy of the ES-BGK model has been investigated for a set of flow problems,

e.g., one-dimensional shock structure, re-entry flow around a compression ramp and a

plate, uniform shear flow, wall-bounded Couette flow and Fourier flow, and thermal

creep flow [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Force-driven Poiseuille flow hasn not

however not been investigated. In the near-continuum regime, the ES-BGK model does

have improved accuracy in comparison to the BGK model in terms of capturing thermal

e↵ects [8, 10]. In the transition regime, it can still give better predictions for some

macroscopic quantities [7, 8, 9, 16], e.g., the temperature in Fourier flow, and the velocity

in Couette flow. However, for shock structures, it was found that the ES-BGK model

may not improve on the BGK model for large Mach numbers [11, 12, 13]. For wall-

bounded Couette flows, the ES-BGK may even perform worse than the BGK model

in capturing the temperature profile in the transition regime: the temperature jump at

bounding surfaces tends to be overestimated and the maximum at the centerline is under-

estimated [8]. By comparing the Sonine-polynomial coe�cients for Fourier-Couette flow,

it has been concluded that the molecular velocity distributions produced by the ES-BGK

model are much more similar to those from the Maxwell interactions of the Boltzmann

collision term, even when hard sphere interactions are actually employed [9]. For a

uniform shear flow, the BGK model may give better predictions for the fourth-degree

moments [15]. It is clear that the understanding of the accuracy of the ES-BGK model

is still incomplete and needs further studies.

To shed new light on the ES-BGK model, we investigate planar force-driven Poiseuille

flow using the discrete velocity method. Our aims are twofold: assessing the model

accuracy in comparison with results from the direct simulation Monte Carlo (DSMC)

method [17] and the Boltzmann equation; and providing simulation data of the ES-BGK

model in the slip and transition flow regimes.
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2. The ES-BGK model

The well-known Boltzmann equation provides a complete description of a dilute

monatomic gas at the molecular level. It introduces the concept of a single particle

velocity distribution function f(r, c, t) to describe the number (or portion) of molecules

in the volume dr centered at position r = (x, y, z) with velocities within dc around

velocity c = (c
x

, c
y

, c
z

) at time t. Macroscopic quantities such as the gas density ⇢,

velocity u, and temperature T can then be obtained as the moments of f , i.e.,

⇢[1,u, 3RT ] =

Z
[1, c, C2]fdc,

where C = c�u is the peculiar molecular velocity. Assuming that only binary collisions

occur in a su�ciently dilute gas, the Boltzmann equation is:

@f

@t
+ c · @f

@r
+ g · @f

@c
=


@f

@t

�

coll

,

with 
@f

@t

�

coll

=

Z 1

�1

Z
4⇡

0

(f⇤f⇤
1

� ff
1

)|c� c1|%d⌦dc1,

where the body force g = (g
x

, g
y

, g
z

) is assumed to be independent of the molecular

velocity. In the collision term, the distributions f and f⇤ are evaluated at the pre-

collision and post-collision molecular velocity c and c⇤, respectively. Similarly, f
1

and

f⇤
1

are evaluated for the collision pairs, and % is the di↵erential collision cross section.

Although more complicated multiple collisions are ignored, the collision term is still far

from simple, making analysis of the Boltzmann equation di�cult.

As suggested in [3], the collision term may be approximated as


@f

@t

�
BGK

coll

=
1

⌧
(f

eq

� f),

where the Maxwellian distribution f
eq

is written as

f
eq

= ⇢

✓
1

2⇡RT

◆
3/2

exp


� C2

2RT

�
. (1)
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This simple BGK model makes the theoretical analysis (e.g., asymptotic analysis) and

numerical simulations relatively easy. Despite its simplicity, the NSF equations can

still be obtained from this model using the Chapman-Enskog technique. However, the

model’s main drawback is that the derived Prandtl number can only be unity. To have

di↵erent Prandtl numbers, Holway [4] suggested replacing the Maxwellian distribution

f
eq

function with the following anisotropic Gaussian one, i.e.


@f

@t

�
ES

coll

=
1

⌧
(f

ES

� f),

where

f
ES

= ⇢
1p

det[2⇡�
ij

]
exp


�1

2
��1

ij

C
i

C
j

�
, (2)

and

�
ij

= RT �
ij

+ b
�
ij

⇢
, (3)

where �
ij

is the shear stress. As the matrix ��1

ij

must be positive definite, the parameter

b is restricted to � 1

2

 b  1. Using the Chapman-Enskog technique, the viscosity and

thermal conductivity can be derived as

µ =
1

1� b
p⌧,  =

5

2
pR⌧.

Therefore, the Prandtl number is Pr = 1/(1 � b), which is adjustable via the free

parameter b. The correct Prandtl number of an ideal gas, Pr = 2/3, can be recovered

with b = �1/2. When b = 0 the ES-BGK model reduces to the BGK model.

Besides the ES-BGK model, Shakhov also proposed a so-called S-model to fix the

Prandtl number issue [18, 19]. For the convenience of comparison in Sec. 4, we also list

its form here. Similarly the “collison term” can be written as


@f

@t

�
S

coll

=
1

⌧
(f

S

� f),

where

f
S

= f
eq


1 +

1� Pr

5

2q
i

C
i

pRT

✓
C2

2RT
� 5

2

◆�
, (4)

and q
i

is the heat flux.
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3. Numerical scheme

As with the BGKmodel [20], for a spatially one-dimensional problem we can eliminate

gas molecular speeds c
x

and c
z

in the simulations (assuming that c
y

is perpendicular to

the walls). It is convenient to introduce the following dimensionless variables,

x̂
k

=
x
k

L
, û

k

=
u
kp

RT
0

, t̂ =

p
RT

0

t

L
, ĝ

k

=
Lg

k

RT
0

, ĉ
k

=
c
kp
RT

0

, T̂ =
T

T
0

,

f̂ =
f(RT

0

)3/2

⇢
0

, ⇢̂ =
⇢

⇢
0

, p̂ =
p

p
0

, µ̂ =
µ

µ
0

, q̂
i

=
q
i

p
0

p
RT

0

, P̂
ij

=
P
ij

p
0

.

The governing equation can then be rewritten as

@f̂

@ t̂
+ ĉ

k

@f̂

@x̂
k

+ ĝ
k

@f̂

@ĉ
k

= �Pr
p
0

L

µ
0

p
RT

0

p̂

µ̂
(f̂ � f̂eq) = �Pr

⇢̂T̂ (1�!)

Kn
(f̂ � f̂eq), (5)

where the Knudsen number is defined as

Kn =
µ
0

p
RT

0

p
0

L
.

The relevant macroscopic quantities are
2

6666664

⇢̂

⇢̂û
i

P̂
ij

3⇢̂T̂

3

7777775
=

Z
f̂

2

6666664

1

ĉ
i

Ĉ
i

Ĉ
j

Ĉ
i

Ĉ
i

3

7777775
dĉ. (6)

In thermal flows the viscosity depends on temperature, which can be expressed as µ/µ
0

=

(T/T
0

)!, where ! is related to the molecular interaction model and varies from 0.5 for

hard-sphere molecular interactions to 1 for Maxwell molecules. The hat symbol will be

omitted hereafter for clarity. A rescaled Knudsen number,

K
D

=

r
⇡

2
Kn,

is also used throughout this work for convenient comparison with the DSMC data1.

When we refer to the Knudsen number, it should be understood as the definition of K
D

.

1There are di↵erent non-dimensional systems. For example, the reference velocity can be chosen

as
p
2RT0, which leads to a factor of

p
2 di↵erence from the present non-dimensional velocity. Also,
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To solve a spatially one-dimensional problem such as Couette, or force-driven Poiseuille,

or Fourier flows, we can introduce the following marginal velocity distribution functions,

and the corresponding parts for the anisotropic Gaussian distribution:

2

6666664

'
a

'
b

'
c

'
d

3

7777775
=

Z 1

�1

Z 1

�1

2

6666664

1

c
x

c2
x

c2
z

3

7777775
fdc

x

dc
z

, (7)

2

6666664

'
ae

'
be

'
ce

'
de

3

7777775
=

Z 1

�1

Z 1

�1

2

6666664

1

c
x

c2
x

c2
z

3

7777775
f
ES

dc
x

dc
z

=
⇢e

�
c

2

y

2�

yy

p
2⇡�

yy

2

6666664

1
c

y

�

xy

�

yy

+ u
x

2u

x

c

y

�

xy

�

yy

+
c

2

y

�

2

xy

�

2

yy

+ u2

x

+ �
xx

� �

2

xy

�

yy

�
zz

3

7777775
.

(8)

With these marginal distribution functions, the macroscopic quantities in Eq. (6) become

2

6666666666666664

⇢

⇢u
x

3⇢T

P
xx

P
xy

P
yy

P
zz

3

7777777777777775

=

Z 1

�1

2

6666666666666664

'
a

'
b

'
c

+ '
d

+ c2
y

'
a

'
c

'
b

c
y

� u
x

'
a

c
y

c2
y

'
a

'
d

3

7777777777777775

dc
y

+

2

6666666666666664

0

0

�⇢u2

x

�⇢u2

x

0

0

0

3

7777777777777775

.

Now let

there can be di↵erent formulations for the Knudsen number although one can easily transform between

them if necessary. For example, if the mean free path is calculated as
p
⇡µ

2p
0

p
2RT0, one can identify the

relation with the so-called rarefaction parameter � [21], i.e.
p

2/⇡K
D

= Kn = 1/
p
2�.
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� =

2

6666664

'
a

'
b

'
c

'
d

3

7777775
, �

e

=

2

6666664

'
ae

'
be

'
ce

'
de

3

7777775
, S = g

x

2

6666664

0

'
a

2'
b

0

3

7777775
,

the governing equation for the four distribution functions can be written as

@�

@t
+ c

y

@�

@y
=

Pr

Kn
⇢T (1�!)(�

e

� �) + S. (9)

In particular, if the problem is steady, Eq. (9) can be further reduced to

c
y

@�

@y
=

Pr

Kn
⇢T (1�!)(�

e

� �) + S, (10)

where the time variable is eliminated. In these equations the corresponding di↵eren-

tial force terms have been transformed into non-di↵erential source term S by utilizing

integration by parts. For example,
Z 1

�1

Z 1

�1
c
x

g
x

@f

@c
x

dc
x

dc
z

= g
x

Z 1

�1

Z 1

�1
(
@c

x

f

@c
x

� f)dc
x

dc
z

= g
x

Z
(fc

x

|cx=1
c

x

=�1)dc
z

� '
a

�

= �g
x

'
a

.

As f is assumed to be decaying su�ciently fast, its product with power functions of c

is zero when the components of c approach infinity. The force terms can be obtained

similarly for other marginal distribution functions.

Once the above macroscopic quantities are determined by solving Eq. (9) or (10),

other high order moments like heat flux may be evaluated by introducing additional

marginal distribution functions [20].

As a fully-developed problem is studied here, Eq. (10) needs to be solved numerically.

For this purpose, we need to discretize in a two-dimensional space, i.e. one-dimension

in the physical space y, and one-dimension in the molecular velocity space c
y

. For the

molecular velocity space, Simpson’s rule[22] is chosen for c
y

,and the grid points are

distributed uniformly. For the physical space, nonuniform grid points are employed
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with more points near the boundary. To construct this kind of grid, we first obtain a

distribution of points which become highly dense near middle point of the channel by

using

y
i

= ↵ sinh


sinh�1(

�1

2↵
)
i

N
+ sinh�1(

1

2↵
)(1� i

N
)

�
, i = 0...N, (11)

where N denotes the total number of points and ↵ is the parameter determining the

nonuniformity. Then, the grid system can be made to be denser near the wall by utilizing

the symmetry and translation relations.

Regarding the numerical scheme, we employ a second-order upwind scheme except in

the near-wall region where a first-order upwind scheme is used. Therefore, the evolution

of � can be written as

�
i

=
c
y

�
⌘2
i

�
i�1

� �
i�2

�
+ dy

i

⌘
i

(⌘
i

� 1)(w
i

�
e,i

+ S
i

)

(⌘
i

� 1)(⌘
i

c
y

+ c
y

+ dy
i

⌘
i

w
i

)
, c

y

> 0, i = 2...N (12)

and

�
1

=
c
y

�
0

+ dy
1

S
1

+ dy
1

w
1

�
e,1

c
y

+ dyw
1

, c
y

> 0, (13)

where

w
i

=
Pr⇢

i

T 1�!

i

Kn
, (14)

dy
i

= y
i

� y
i�1

, i = 1...N,

and

⌘
i

=
dy

i

+ dy
i�1

dy
i

, i = 2...N.

For simplicity, the rules for c
y

< 0 are omitted here; they can be easily obtained in a

manner similar to the above.

In simulations, a di↵use kinetic boundary conditions is used, which can be written

as follows:

f(y = ±1

2
,±c

y

< 0) =
⇢
w

(2⇡T
w

)3/2
exp

✓
� C2

w

2T
w

◆
, (15)

with

⇢
w

=

r
2⇡

T
w

Z

±c

y

>0

����cyf(y = ±1

2
,±c

y

> 0)

���� dc. (16)

When using the above four marginal distribution functions, this can be transformed to
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2

6666664

'
aw

'
bw

'
cw

'
dw

3

7777775
=

Z 1

�1

Z 1

�1

2

6666664

1

c
x

c2
x

c2
z

3

7777775
f
eq,w

dc
x

dc
z

=
⇢
w

exp(� c

2

y

2T

w

)p
2⇡T

w

2

6666664

1

u
w

T
w

+ u2

w

T
w

3

7777775
,

where the density ⇢
w

becomes,

⇢
w

=

r
2⇡

T
w

Z

±c

y

>0

����'a

(±1

2
)c

y

���� dcy.

4. Simulation results

We evaluate the ES-BGK model for force-driven Poiseuille flows, where the gas is

confined between two parallel infinite plates located at y = 0 and y = 1 in the nondimen-

sional system. Both plates are at rest and their temperature is maintained at T
w

= 1.

The gas is subject to a uniform external force in the x direction, i.e., the flow direction

is parallel to the plates. Due to the presence of this force, this Poiseuille flow is more

interesting than Couette or Fourier flows, as it presents a bi-modal temperature profile

that the NSF equations fail to predict even qualitatively [20, 23, 24, 25, 26]. To assess

the modeling accuracy of the ES-BGK equation, g = 0.22 and 1 (which are also close to

the values used in previous BGK simulations [20] and DSMC simulations [23]) are chosen

in the following simulations. We focus on fully-developed flows, and the di↵use kinetic

boundary condition is employed for the gas-wall interactions in the previous section.

To achieve satisfactory accuracy, it is important to choose appropriate molecular

velocity and spatial grids. For this purpose, each simulation is run on two discretized

systems with the finer one usually having double molecular velocity and spatial grids.

Only when the di↵erence between the results for these two systems is su�ciently small,

do we consider the coarser grid acceptable. The di↵erence is evaluated based on two

types of errors: the first type, ✏1, is the relative di↵erence in the macroscopic quantities

at the chosen points in the two systems, i.e.

✏1
i

=

�����
Q{

i

�QF
i

QF
i

����� ,
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whereQ denotes the macroscopic quantities to be evaluated. The superscript { represents
values obtained on the coarser grid and F on the finer grid, and i is the point index.

The second error, ✏2, is the di↵erence in the macroscopic quantities in the two systems

relative to the maximum di↵erence in the corresponding macroscopic quantities in the

finer system, i.e.

✏2
i

=

�����
Q{

i

�QF
i

max(QF )�min(QF )

����� .

Specifically, we choose the macroscopic velocity and temperature as the benchmark

quantities. The two errors are evaluated at the six points [0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5]

which include the boundary point. As the present problem setup is symmetrical, these

points e↵ectively cover the full space. If both types of errors for temperature and velocity

in the coarser system are less than 1% in comparison with the finer system, we accept the

coarser system to be su�cient. According to these criteria, we determine an appropriate

discretized system for each set of parameters in the following simulations. The typical

spatial grid point number is 200 with which we obtain a minimal grid size of 0.000461

near the boundary. For the molecular velocity, the typical number of grid points is 10000.

Nevertheless, either grid point number may be increased to achieve satisfactory accuracy.

For instance a finer molecular velocity grid becomes necessary for Knudsen numbers

K
D

� 3, particularly for K
D

= 10. As the temperature variation, i.e., max(T )�min(T ),

can be small for some Knudsen numbers (e.g., K
D

= 0.4 and 0.5), ✏2 becomes sensitive

so that a finer spatial grid (400 points) is also necessary.

To further verify the numerical implementation, two cases with g
x

= 1 are run using

the Maxwell interaction model with Pr = 1, i.e., b is set to be 0 and ! is 1. These

simulation results should be directly comparable with the BGK data reported in [20],

and both are presented in Fig. 1. The agreement confirms the validity of chosen grids

for both molecular velocity and space.

Another issue is the truncation of the molecular velocity space. Although this space

is infinite, appropriate bounds have to be chosen for practical simulations. These may

be estimated by a combination of the maximum of the macroscopic velocity and tem-
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Figure 1: Convergence analysis: the present results (lines) are compared with the BGK data (symbols)

reported by Aoki et al. [20]. Maxwell gas interactions are used in both models, and the results are

comparable by letting b = 0, ! = 1 in the ES-BGK model. Two Knudsen numbers 0.0392 (the upper

lines and symbols) and 1.571 (the lower lines and symbols) are considered. The agreement between the

two set of results confirms the validity of the chosen molecular and spatial grids.

perature, i.e. max(u
x

) + max(a
p
T ) [8]. Here, a is set to be 12, so the bound is chosen

to be [�20, 20]. The validity of this velocity bound is also confirmed by a comparison

between the bounds [�20, 20] and [�30, 30] for the case K
D

= 0.05 which is shown in

Fig.2. The errors for both velocity and temperature e↵ectively approach zero (less than

O(10�11)). As the maximum velocity and temperature for the low Knudsen number

cases are usually larger than those in the considered high Knudsen number cases, this

bound is employed for all simulations.

Figs. 2, 3 and 4 show comparisons between the results of the ES-BGK model and the

DSMC particle technique for K
D

= 0.05, 0.1, 1 and 5, and two body forces g = 0.22,

1. When K
D

= 0.05, the ES-BGK model agrees with the DSMC, but as K
D

increases

to 0.1, the deviation from the DSMC data becomes larger though the agreement is still

satisfactory. Specifically, however, the viscous heating e↵ect is not accurately captured;

although the phenomenon of bi-modal temperature distribution is captured qualitatively,

the bimodality is not as significant as the DSMC prediction. When K
D

increases to 1.0,

the ES-BGK model tends to overestimate the temperature profile for this force-driven

flow, while it underestimates it for Couette flow in the transition flow regime [8].
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Figure 2: Velocity and temperature profiles of force-driven Poiseuille flows for K
D

= 0.05, 0.1 with

g
x

= 1.Hard sphere molecular interactions are considered, i.e. ! = 0.5. The solid lines are the ES-BGK

data with Pr = 2/3 and the symbols are the DSMC data. The BGK data (dashed lines) and the

S-model data (dashed-dotted lines) are also included.

It is informative to compare the ES-BGK model with the BGK model and the S-

model. For lower Knudsen numbers, both the ES-BGK model and the S model predict

more realistic temperature profiles than the BGK model. This should be attributed to

the fact that the Prandtl issue is corrected. However, for larger Knudsen numbers such

as K
D

= 1 (g
x

= 0.22 and g
x

= 1) and 5 (g
x

= 1), the temperature predictions become

unsatisfactory for all three models. For g
x

= 1 velocity predictions also show large errors

in comparison to the DSMC results, although while they appears to be acceptable for

g
x

= 0.22 and K
D

= 1 where the viscous heating e↵ect is less significant.

The ES-BGK model predicts the highest temperature among the three models for
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Figure 3: Velocity and temperature profiles of force-driven Poiseuille flows for K
D

= 1,5 with g
x

= 1.

Hard sphere molecular interactions are considered, i.e. ! = 0.5. The solid lines are the ES-BGK data

with Pr = 2/3 and the symbols are the DSMC data. The BGK data (dashed lines) and the S-model

data (dashed-dotted lines) are also included.

K
D

= 1 and 5 with g
x

= 1. These predictions are even worse than the BGK model, which

is the opposite of the situation at small Knudsen number. Meanwhile, the accuracy of

the S model appears to be at least no worse than the BGK model.

To further investigate this phenomenon, we compare the marginal distribution func-

tions (see Eq. 7) with direct solutions of the full Boltzmann equation using the numerical

method reported in [27], where the molecular velocity distribution function can be ob-

tained accurately. The results for '
a

and '
c

at the left wall boundary and the middle

channel point are shown in Fig. 5 and 6.

It is evident that the ES-BGKmodel can provide more accurate distribution functions
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Figure 4: Velocity and temperature profiles of force-driven Poiseuille flows with g
x

= 0.22. Hard sphere

molecular interactions are considered, i.e. ! = 0.5. The lines are the ES-BGK data with Pr = 2/3 and

the symbols are the DSMC data. The Knudsen numbers are K
D

= 0.05, 0.1 and 1.0 as noted and they

are distinguished by di↵erent plot styles as shown.

when the Knudsen number is smaller than 0.1. However, for Knudsen numbers larger

than 0.1, the ES-BGK equation tends to produce less accurate distribution functions.

When K
D

is 0.5, '
c

is even quantitatively worse than the one predicted by the BGK

model. This is directly responsible for the worse performance of the ES-BGK model on

predicting the temperature-field at larger Knudsen numbers.

As kinetic models are approximations to the Boltzmann equation in which the par-

ticle interactions are simplified, they should not be expected to be particularly accurate

if the details of the collisions play a vital role, as for viscous heating e↵ects. As the

temperature rise greatly influences the gas properties such as the viscosity, the predic-

tions of other macroscopic quantities may then not be su�ciently accurate for high Mach

number flows at larger Knudsen numbers. However, when the body force is relatively

small, the temperature rise may be insignificant, and then reasonable predictions for

other macroscopic quantities could be given by the ES-BGK model as the gas properties

will not change too much. For instance, the velocity profiles in Fig. 4 are in satisfactory

agreement with those of the DSMC simulations. This echoes the previous findings of

satisfactory predictions of velocity profiles for the Couette flow when the Mach num-
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ber is not very large [8, 9]. In particular, when viscous heating is negligible, even the

temperature field may be predicted accurately, e.g., Fourier flows [7, 9].

More simulation data for the force-driven flow are presented in Figs. 7 and 8. In the

near-continuum regime, the temperature profiles are parabola-like and open downward.

They become bimodal for intermediate Knudsen numbers, and then return to a parabola-

like shape again but open upward for larger Knudsen numbers. The density and velocity

profiles maintain a parabola-like shape. By contrast, the shear stress has a nearly linear-

like profile except in the high Mach number cases.

The mass and heat flow rates,

M =

Z
1/2

�1/2

⇢u
x

dy, H =

Z
1/2

�1/2

✓Z
1

2
C

x

C2fdc

◆
dy,

respectively, predicted by the ES-BGK model are shown in Fig. 9 and in Table. 1. The

BGK data from [20] for Maxwell interactions are also presented in Fig. 9 for comparison.

For the mass flow rate, the so-called Knudsen minimum is clearly seen around K
D

= 1.

As some work due to the applied force is dissipated by viscous heating, di↵erent predic-

tions of the temperature rise may a↵ect those of mass flow rate. A higher temperature

means more work has been converted to internal energy rather than kinetic energy via

viscous heating. Therefore, in comparison to the ES-BGK model, the BGK model tends

to underestimate the mass flow rate in the continuum regimes as it overestimates the

viscous e↵ect (see the curves for g
x

= 1). For larger Knudsen numbers, it appears that

the mass flow rate is only slightly influenced by the molecular interaction detail and

the Prandtl number in the simulated range. Although the heat flow rates appear to be

strongly influenced by them for larger Knudsen numbers. The heat flow rate may also

become negative for some Knudsen numbers, which shows the complex characteristics

of force-driven flows.

To further investigate the accuracy of the ES-BGK model, we completed more simu-

lations for the full Boltzmann equation for g
x

= 0.22. As has been shown, the ES-BGK

model can give satisfactory predictions of mass flow rate for Knudsen numbers up to 2.

For larger Knudsen numbers, compared with the solutions of the full Boltzmann equa-
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Table 1: Non-dimensional mass flow (M) and heat flow (H) rates predicted by the ES-BGK model .

M H
K

D

g
x

= 0.22 g
x

= 1 g
x

= 0.22 g
x

= 1

0.05 6.047⇥ 10�1 2.042⇥ 100 �6.225⇥ 10�3 6.864⇥ 10�2

0.1 4.000⇥ 10�1 1.501⇥ 100 �1.408⇥ 10�2 1.892⇥ 10�2

0.2 3.002⇥ 10�1 1.192⇥ 100 �2.402⇥ 10�2 �2.647⇥ 10�2

0.3 2.706⇥ 10�1 1.092⇥ 100 �3.073⇥ 10�2 �3.958⇥ 10�2

0.4 2.583⇥ 10�1 1.049⇥ 100 �3.574⇥ 10�2 �3.496⇥ 10�2

0.5 2.526⇥ 10�1 1.028⇥ 100 �3.966⇥ 10�2 �1.697⇥ 10�2

0.6 2.500⇥ 10�1 1.018⇥ 100 �4.279⇥ 10�2 1.217⇥ 10�2

0.7 2.491⇥ 10�1 1.013⇥ 100 �4.530⇥ 10�2 5.152⇥ 10�2

0.8 2.491⇥ 10�1 1.012⇥ 100 �4.730⇥ 10�2 1.002⇥ 10�1

0.9 2.497⇥ 10�1 1.013⇥ 100 �4.886⇥ 10�2 1.576⇥ 10�1

1.0 2.507⇥ 10�1 1.015⇥ 100 �5.005⇥ 10�2 2.231⇥ 10�1

1.1 2.520⇥ 10�1 1.018⇥ 100 �5.089⇥ 10�2 2.965⇥ 10�1

1.2 2.533⇥ 10�1 1.021⇥ 100 �5.141⇥ 10�2 3.773⇥ 10�1

1.5 2.579⇥ 10�1 1.034⇥ 100 �5.133⇥ 10�2 6.609⇥ 10�1

3.0 2.798⇥ 10�1 1.095⇥ 100 �2.151⇥ 10�2 2.820⇥ 100

5.0 3.016⇥ 10�1 1.158⇥ 100 7.863⇥ 10�2 7.061⇥ 100

10.0 3.359⇥ 10�1 1.259⇥ 100 5.704⇥ 10�1 2.178⇥ 101

tion, the error becomes larger. The trend accords the predictions for velocity, where

the error becomes larger for larger Knudsen numbers (cf. Fig. 4). While the heat flow

rates are very small in the simulated Knudsen number range, the absolute errors are not

significant.
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5. Concluding remarks

We have investigated the ES-BGKmodel in predicting a force-driven Poiseuille flow.It

was shown that the ES-BGK model does improve predictions of the temperature field, in

comparison with the BGK model, in the slip flow regime. However, the improvement is

not significant for flows in the transition regime. At high Knudsen numbers, its prediction

of the temperature field is even worse than that from the BGK model (in comparison

with the benchmark DSMC data). Its accuracy is also worse than the S-model as shown

by numerical comparisons. Alongside with the previous investigation of Couette flow [8],

it may now be concluded that the ES-BGK model does not always accurately capture

the viscous heating e↵ect in wall-bounded flows in the transition flow regime. It appears

that this inaccuracy can also influence predictions of the mass flow rate.

As kinetic models attempt to use simple relaxation terms to capture the e↵ect the

molecular collisions, it may be no surprise to observe that they actually fail to predict the

viscous heating e↵ect at larger Knudsen numbers where the detail of molecular collisions

becomes important. However, if the viscous heating is negligible the ES-BGK model may

be able to perform well. In fact, the ES-BGK model still predicts reasonable velocity

profiles even if the viscous heating is significant(e.g. the case of g
x

= 1). With its sound

theoretical foundation (the H theorem), the ES-BGK model could be useful for flows in

which thermal conduction plays a major role, which may also give more confidence on

numerical stability.

We have also provided profiles of macroscopic quantities and mass/heat flow rates

from the ES-BGK model for force-driven Poiseuille flows over a range of Knudsen num-

bers (density, velocity, temperature and shear stress for Knudsen numbers (K
D

) between

0.1 and 1.5, mass and heat flow rates for 0.05 < K
D

 10). The model can capture the

bimodal temperature distribution phenomenon that occurs at intermediate Knudsen

numbers. The Knudsen minimum is also clearly identified. As some work due to the ap-

plied force is dissipated by viscous heating, the mass flow rate does not increase linearly

as the body force increases. The heat flow paralleling to the wall surfaces varies in a

complicated way as the Knudsen number and body force increase. In some cases it may
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flow in a direction opposite to the body force, the BGK model shows similar behavior.

When the Knudsen number and the body force magnitude become su�ciently large, the

heat flow rate tends to increase quickly with the Knudsen number.
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Figure 5: Comparisons of BGK and ES-BGK marginal distribution functions '
a

and '
c

at the left wall

boundary (y = �0.5) with those of the Boltzmann equation (BE) for g
x

= 1.
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Figure 6: Comparisons of BGK and ES-BGK marginal distribution functions '
a

and '
c

at the middle

point (y = 0) with those of the Boltzmann equation (BE) for g
x

= 1.
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Figure 7: Simulation results of the ES-BGK model applied to force-driven Poiseuille flow at various

Knudsen numbers (labelled) and for g
x

= 0.22.
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Figure 8: Simulation results of the ES-BGK model applied to force-driven Poiseuille flow at for various

Knudsen numbers (labelled) and for g
x

= 1.
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Figure 9: Mass and heat flow rates predicted by the ES-BGK model (the solid lines with circles and

upper triangles), the Boltzmann equation (the squares) and the BGK model (the dashed lines with

hexagons and left triangles). The body force magnitudes are presented in the legend. The BGK data

are from Table II of Aoki et al. [20], with the Knudsen numbers converted to K
D

accordingly. The mass

and heat flow rates are further normalized by the corresponding body force magnitude.
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