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Abstract 

The correlated anion order in the oxynitride perovskite NdVO2N, where disordered zig-zag VN chains 

segregate into planes within a pseudo-cubic lattice, is similar to that in materials such as SrTaO2N containing 

d
0
 transition metal cations. However, NdVO2N has 3d

1
 V

4+
 cations and the 3d-electrons are itinerant, showing 

that the anion chain order in oxynitride perovskites is robust to electron-doping. 

 

Main text 

The d
n
 electron configurations of transition metal cations have a profound influence on the properties of their 

solid compounds. d
0
 phases are typically wide-bandgap insulators, and off-centre (locally acentric) cation 

displacements resulting from second order Jahn–Teller (SOJT) effects can give rise to ferroelectricity. In 

contrast, materials with n > 0 electrons often show magnetic and conducting phenomena, and centric first 

order Jahn–Teller (FOJT) distortions for degenerate d
n
 configurations. An unusual correlated anion order 

driven by d
0
 effects was recently discovered in oxynitride perovskites of high valent transition metals.

1
 These 

AMO2N or AMON2 materials are insulators with notable optical, photocatalytic, and dielectric properties.
2,3

 

Although a full long-range anion order is not observed in these materials, the recent neutron and electron 

diffraction analysis of SrMO2N (M = Nb, Ta)
1
 showed that well-defined cis-MO4N2 octahedra are present, 

resulting in disordered zig-zag MN chains that segregate into two-dimensional perovskite layers. Covalent 

SOJT type d
0
 effects favour the local cis-MN2O4 configurations, as nitride is more strongly bonded to the M 

cations than oxide. Unusual sub-extensive configurational entropies that vary with particle size and tend to 

zero per atom in macroscopic samples are predicted for these correlated anion orders.
4
 

Non-stoichiometry can introduce electron carriers into oxynitride perovskites, giving rise to notable electronic 

transport properties such as thermoelectricity in SrMoO2−xN1+x
5
 and colossal magnetoresistances (CMR) in 

EuNbO2+xN1−x
6
 and EuWO1+xN2−x.

7,8
 To discover whether the above anion order is stable to electron doping, 

we have explored stoichiometric d
1
 materials, and we describe here the synthesis, magnetic properties and 

structure of a new oxynitride NdVO2N containing 3d
1
 V

4+
. Oxynitride perovskites were previously reported in 

the related LaVO3−xNx system, but the reported samples had a maximum N content of x = 0.9.
9
 

NdVO2N was prepared by treating NdVO4 precursors under NH3 at a flow rate of 600 cm
3
 min

−1
 at 700 °C for 

80 hours with one intermediate regrinding. The colour of the new compound is black. Combustion analysis for 

the sample used for neutron diffraction gave a nitrogen content of 1.02 moles per formula unit. The X-ray 

diffraction pattern was indexed in an orthorhombic perovskite supercell of dimensions a = 5.4596(7), b = 

5.5002(6) and c = 7.7264(1) Å with space group Pbnm (see ESI†). 

The magnetic susceptibility of NdVO2N measured in a 1 T field shows paramagnetic behavior down to 2 K 

(Fig. 1), with no evidence of a spin ordering transition. The inverse susceptibility has a significant curvature, 
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indicating that both Curie–Weiss and temperature-independent paramagnetic contributions are present, and 

was fitted as χ
−1

 = [C/(T − θ) + χ0]
−1

. 

 

 

Figure 1. Magnetic susceptibility (closed points) and inverse susceptibility (open points) for NdVO2N. The fit 

of the function described in the text to the inverse susceptibility is shown as a broken line. 

 

The Curie–Weiss parameters (C = 1.37 emu K mol
−1

, corresponding to a paramagnetic moment of 3.32 μB, 

and θ = −17 K) describe localised 4f
3
Nd

3+
 moments (ideal value 3.62 μB) with weak antiferromagnetic 

interactions. The large χ0 = 0.0015 emu mol
−1

 term reveals Pauli paramagnetism from correlated itinerant V
4+

 

3d
1
 electron spins. 

Powder neutron diffraction data for a 350 mg NdVO2N sample (Fig. 2) were recorded at room temperature on 

a high-resolution diffractometer HRPD at the ISIS spallation source, Rutherford Appleton Laboratory, UK. 

Neutron profile refinements of the structural models and texture analysis were performed with the General 

Structure Analysis System (GSAS) software.
10

 

The observed neutron diffraction peaks of NdVO2N were consistent with an orthorhombic √2 × √2 × 2 

superstructure of a cubic perovskite cell having space group Pbnm. This GdFeO3-type superstructure is 

common in perovskites and results from two ordered tilts of the transition metal coordination octahedra. 

Distinct axial (Y1) anion sites, close to the c-axis, and equatorial (Y2) sites, near the ab-plane, are present in a 

1 : 2 ratio. Refinement of their O/N occupancies subject to the overall composition gave values of 

0.55(2)/0.45 and 0.73(1)/0.27, respectively. These occupancies are very close to those observed in SrMO2N 

(M = Nb, Ta)
1
 and evidence the same formation of cis-nitride chains as follows. 
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Figure 2. Fit of the monoclinic P1121/m model for NdVO2N to powder neutron diffraction data from the 90° 

detector bank of instrument HRPD. Reflection markers from bottom to top are for NdVO2N, a small amount 

of V(O,N) impurity phase, and scattering from the V sample holder. 

 

Disordered –M–N– chains with a 90° turn at M exist within perovskite layers in SrMO2N and lead to 

statistical 0.5 O/0.5 N populations at the two anion sites in the layers and full 1.0 O occupancy at the third site 

between layers. The c-axis of the tilted Pbnm superstructure lies in the anion-chain layers so that the axial Y1 

O/N population is 0.5/0.5, and the equatorial Y2 population is averaged over in-chain-layer 0.5/0.5 and out-of-

chain-layer 1.0/0 sites, giving 0.75/0.25 occupancy. The proximity of the refined anion site populations in 

NdVO2N to these ideal values demonstrates that cis-VN chains are formed in the latter d
1
 material. 

A corollary of the anion-chain model is that the true space group symmetry of NdVO2N is lower than Pbnm 

because the equatorial Y2 sites are averaged over two anion positions with inequivalent (0.5/0.5 and 1.0/0) 

O/N occupancies. Breaking the equivalence of these sites lowers symmetry to monoclinic P1121/m (a non-

standard setting of P21/m) with cell angle γ ≠ 90°. 

We attempted to refine the P1121/m model but the monoclinic lattice distortion was found to be very small (γ 

= 90.07°), so it was not possible to refine the full structure. However, by constraining the atomic coordinates 

to have Pbnm pseudosymmetry, a refinement of split Y2-site occupancies converged, giving the results shown 

in Table 1. The refined Y2a and Y2b O/N occupancies of 0.90/0.10 and 0.50/0.50 are in excellent agreement 

with the prediction. Hence, the neutron analysis evidences a very small monoclinic distortion of the pseudo-

Pbnm perovskite superstructure of NdVO2N driven by the anion-chain order. 
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Table 1. Atomic coordinates, anion site occupancies, and V–O/N bond distances for NdVO2N refined in 

P1121/m with Pbnm constraints 

Site x y z O/N 

Nda 0.0051(7) 0.0340(4) 0.25  

Ndb 0.4949 0.5340 0.25  

Va 0.5 0.0 0.0  

Vb 0.0 0.5 0.0  

Y1a 0.9348(6) 0.4864(4) 0.25 0.60(2)/0.40 

Y1b 0.5652 0.9864 0.25 0.60(2)/0.40 

Y2a 0.2838(4) 0.2890(4) 0.0382(3) 0.90(3)/0.10 

Y2b 0.2162 0.7890 0.4618 0.50/0.50 

 

Bond Distance (Å) Bond Distance (Å) 

Va–Y1b (×2) 1.968(1) Vb–Y1a (×2) 1.968(1) 

Va–Y2a (×2) 2.004(2) Vb–Y2a (×2) 1.961(2) 

Va–Y2b (×2) 1.959(2) Vb–Y2b (×2) 2.002(2) 

 

Estimated standard deviations in parentheses are shown once for each independent variable. Pairs of sites 

ending ‘a’ and ‘b’ are equivalent in the parent Pbnm structure and their coordinates were constrained 

accordingly. O/N occupation factors at the anion sites Y were refined subject to the ideal stoichiometry, and 

with equal occupancies at the Y1a and Y1b sites. Refined isotropic U-factors were 0.0009(3) Å
2
 for metal 

atoms and 0.0067(3) Å
2
 for anions. Refined cell parameters were a = 5.4645(3) Å, b = 5.5030(3) Å, c = 

7.7352(4) Å, γ = 90.072(9)°. 

 

Independent evidence for the lowering of symmetry was obtained from electron diffraction patterns of 

individual NdVO2N crystallites of the powder. Many grains were twinned, but patterns from 〈110〉p zone 

axes of the cubic perovskite subcell were successfully obtained by tilting around the c*-axis of single-domain 

crystallites (Fig. 3). These show additional weak reflections that result from loss of the glide planes, as 

symmetry is lowered from Pbnm toP1121/m,
11

 consistent with the neutron results. Double diffraction 

reflections along [001]* were also observed in these patterns. 

The crystal structure of NdVO2N is shown in Fig. 4. The octahedra are highly tilted with V–Y–V bond angles 

in the range 156–159°. The V–Y bond distances are slightly unequal, but similar differences are found in the 

Pbnm superstructures of NdMO3 perovskites with non-degenerate ground statecations such as M = Cr
3+

 and 

Fe
3+

, so they are most probably a consequence of the tilting distortions and do not necessarily evidence a 

FOJT effect from V
4+

. A similar distribution of bond distances has been observed for metallic CaVO3, which 

has Pbnm symmetry. The local order of O/N atoms into cis-VN chains within the crystallographically 

averaged V(O0.5N0.5)2 planes following the previously reported rules is shown on the right side in Fig. 4. 
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Randomized left/right turns of the chains at the V sites lead to the statistical averaging of the anion site 

populations within these layers. 

 

 

Figure 3. Electron diffraction pattern from a 〈110〉p cubic subcell zone axis, equivalent to the [100] axis for 

the √2 × √2 × 2 superstructure of a single-domain NdVO2N crystallite. The presence of weak 0kl; k = 2n + 1 

reflections (diagonal arrows) shows that b-glide plane symmetry is broken, consistent with the descent from 

Pbnm to P1121/m due to the anion order. Double diffraction reflections 00l; l = 2n + 1 are indicated by circles. 

 

 

Figure 4. The tilted perovskite superstructure of NdVO2N with Nd/V/O/O0.5N0.5/N sites shown as 

grey/green/pink/lilac/blue spheres. The left view shows the average P1121/m model with distinct O and 

O0.5N0.5sites, and local ordering of O/N atoms at the latter sites to give cis-VN chains is shown at the right 

with chains in one layer highlighted. 
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The discovery of anion order characteristic of planes of cis-nitride chains in NdVO2N containing 3d
1
 V

4+
 is 

significant as this order has previously only been established in insulating materials based on d
0
 ions. The 

chains in NdVO2N result from corner-sharing of cis-VO4N2 octahedra, which are stabilised by strong SOJT 

type covalent interactions in cis-VN2 units. cis-MX2 groups formed by covalent bonding of d
0
 cations to two 

oxo or imido ligands X are very common in the coordination chemistry of high valent transition metals such 

as V
5+

 or Mo
6+

. d
1
 analogues are rarer and are not known for V

4+
, but reported examples of cis-

dioxomolybdenum(V) complexes
12

 complement our observation that the cis-VN2 geometry is preferred in 

NdVO2N. 

However, an important difference between cis-MX2 units in molecular and extended solids is the possibility of 

itinerant electron behaviour in the latter case. AVO3 perovskites and other V
4+

 oxides can show metallic and 

insulating properties. Perovskites of A = Ca, Sr, Cd and Mn are metallic without off-center V displacements, 

although a possible FOJT distortion was reported in MnVO3.
13

 However, a pronounced SOJT off-center 

distortion to form a short V–O vanadyl bond was observed in insulating PbVO3
14

 driven by cooperative 

displacements of lone pair Pb
2+

 cations. NdVO2N appears to have features from both types of V
4+

 perovskite – 

the observed anion order implies that SOJT type covalent V–N interactions are significant, but the observed 

Pauli paramagnetism shows that the system is metallic, like most AVO3 and electron-doped oxynitride 

perovskites. The cis-VO4N2 geometry is evidently robust to dopings into π*-bands formed from V:t2g and 

O:2pπ orbitals of at least 1/6 electrons per V–O/N bond. It will be interesting to explore whether the anion 

order persists at higher electron concentrations, and in insulating d
1
 analogues, if these can be synthesised. 

Spin and orbital states of localised d-electrons could be coupled to the O/N and octahedral tilt orders in the 

latter case, enabling novel electronic and magnetic properties to emerge. 

In conclusion, this study has demonstrated that the structure of NdVO2N contains layers of spontaneously 

segregated cis-nitride chains, like those in SrTaO2N and other d
0
 oxynitride perovskites. The underlying 

formation of cis-VO4N2 octahedra is thus stable in the presence of the d
1
 cation V

4+
. The 3d-electrons are 

itinerant in this material, so a future challenge is to design and explore the properties of perovskite oxynitrides 

in which spin and orbital states of localised d-electrons may be coupled to the O/N and octahedral tilt orders. 
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