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A Life Course Approach to Cognitive
Reserve: A Model for Cognitive Aging

and Development?
Marcus Richards, PhD,1 and Ian J. Deary, PhD, FRCPE2

The concept of reserve in neuroscience maintains that there are aspects of brain structure and function that can buffer
the effects of neuropathology such that the greater the reserve, the more severe the pathology must be to cause functional
impairment. This article provides a concise overview of structural and functional approaches to reserve and shows how
reserve may be conceived as the sum of its lifetime input. In this context, reserve therefore provides an empirical yet
general model of cognitive aging and development.

Ann Neurol 2005;58:617–622

In 1992, Stern and colleagues1 compared regional ce-
rebral blood flow in three groups of patients with Alz-
heimer’s disease (AD); these groups were matched for
clinical disease severity but with different levels of ed-
ucation. They found that those patients with a high
level of education had a more severe parietotemporal
perfusion deficit than those with lower education and
suggested that education, although not preventing the
acquisition of AD, represents a “reserve” that somehow
protects against its clinical expression. This made sense
of long-reported findings that some individuals with
neuropathological features of AD at autopsy had nev-
ertheless remained cognitively spared2; these findings
have been more recently corroborated.3 A year later,
Katzman, who himself had published such findings,4

reviewed evidence for the protective effect of education
against the prevalence, or at least the detection, of AD
in the population,5 and Satz formulated a threshold
theory of “brain reserve capacity” for the expression of
acquired neural injury.6 Thus, the concept of reserve,
although not itself new, gained currency in the neuro-
science of aging, and a recent series of articles, a decade
on, demonstrate the intellectual exchange and empiri-
cal research it has generated.7–12 A concise overview of
the concept is therefore timely. This article reviews the
various approaches to reserve and shows how the con-
cept can be developed from a life course perspective.

The Concept of Reserve in Neuroscience
In essence, the reserve concept maintains that there are
aspects of brain structure and function that can buffer
the effects of neuropathology such that the greater the
reserve, the more severe the pathology must be to cause
functional impairment. Structural, passive reserve, or
“brain reserve capacity,” focuses on the protective po-
tential of anatomical features such as brain size, neural
density, and synaptic connectivity.5 Functional, active,
or “cognitive” reserve emphasizes efficiency of neural
networks and active compensation by alternative or
more extensive networks after challenge.7,12 However,
both approaches imply a graded neural substrate that is
capable, by degree, of protecting against the functional
consequences of neuropathology.

These structural and functional approaches to reserve
have parallels in general medicine. A structural analogy
occurs in nephrology, for example, where small size at
birth is hypothesized to be associated with small kid-
neys with fewer or smaller glomeruli, and thus a low-
filtration surface area. Under these circumstances, dia-
betic patients, for example, may be more prone to
renal failure when exposed to renal insult in later life.13

Examples of active reserve may be seen in physiological
compensation mechanisms, such as coronary artery en-
largement in response to plaque, which delays func-
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tional stenosis until the lesion occupies at least 40% of
the internal elastic lamina area.14

In the context of neuroscience, reserve has been in-
vestigated to some extent at the neural level, but typi-
cally its nature and efficacy have been inferred from
proxies such as intelligence quotient and head size, and
from the arguably more distal measures of education,
occupation, and activity. This approach may apply to a
range of neuropathology, but in practice, the emphasis
has been on dementia, where function is impaired by
definition. Thus, a large body of epidemiological evi-
dence indicates that high ability,15–18 larger head
size,4,19,20 high educational and occupational attain-
ment,5,7 and high levels of physical, social, and intel-
lectual activity21,22 are protective against dementia. In
theory, this is because these factors protect against the
functional consequences of neuropathology, thus delay-
ing or preventing the detection of the disease, rather
than protecting against disease acquisition itself. How-
ever, some of these reserve factors are indeed associated
with the development of neuropathology, particularly
lesions of vascular origin,23,24 which, in turn, may be
associated with AD.25,26

Does Reserve Protect Activities of Daily Living
or Cognition?
But what does it mean to say that reserve protects
against the functional consequences of neuropathology?
In the context of dementia, function is often equated
with activities of daily living (ADLs).27 However, it
would be unwise to place too much emphasis on ADLs
as an index of underlying neuropathological severity
because, in practice, the stage at which ADLs are likely
to be classified as impaired will be at least partly deter-
mined by extrabiological factors such as availability and
use of clinical services, level of social capital, social and
cultural norms, and so forth. Furthermore, education,
occupation, and lifestyle may interact with this social
determination independently of their effects on the
brain. A more tractable, empirical approach would be
to equate function with measured cognitive perfor-
mance, although acknowledging that it is just one of
the phenomena that determine ADLs. In this way, the
concept of reserve may become a viable model of cog-
nitive aging.

The Measurement of Reserve
Some measures of reserve are thought to represent its
neural substrate directly and are easy to conceptualize,
although not necessarily to measure. Easiest to measure
is head circumference, which is positively correlated
with brain size20 and cognitive function.28 Direct volu-
metric measurements of brain size can be derived from
imaging, where whole-brain volume is also correlated
positively with cognitive function.29 Obviously, the
closer the cellular level is approached, such as neuronal

count, synaptic density, or degree of dendritic arboriza-
tion, the more difficult it becomes to measure these
features in living humans. This distance between the
concept of reserve and its biological substrate and its
measurement is one of the more severe limitations of
the theory.

Whereas the structural approach to reserve refers to
the “hardware,” functional approaches place more em-
phasis on the “software,”7 such as efficiency of neural
network utilization and cognitive processing. Although
more complex conceptually, the neural basis of active
reserve is gradually being elucidated by functional im-
aging studies. For example, the level of general cogni-
tive ability is related to changes in neural activity as
subjects move from low cognitive task demand to a
titrated level of demand.30 An important aspect of this
approach is that it applies equally to healthy individu-
als when coping with cognitive challenge and to indi-
viduals with brain damage.12 A related idea is that of
compensation,7 where alternative or more extensive
neural networks are activated when the brain is com-
promised, during normal12 as well as abnormal31 ag-
ing.

Other variables are suggested to represent reserve in-
directly, particularly educational and occupational at-
tainment, but also health and physical, social, and
mental activity. All of these variables are associated
with cognitive ability,32–36 and it is clear that the cen-
tral nervous system (CNS) is sensitive to their temporal
effects. For example, in some studies, educational and
occupational exposures enhance cognitive ability with
respect to its level in childhood.37,38 Taxi drivers show
a topographic hippocampal reorganization, correlated
with length of time in this employment, that favors
visuospatial learning.39 Although ability has ge-
netic,40,41 uterine,42–45 and early postnatal46–48 deter-
minants, these studies bear out Rutter’s37 and
Schaie’s49 observations that cognitive ability is capable
of being augmented across the life course.

These studies are also supported by laboratory evi-
dence of long-term neuroplasticity in mice. Attempts
to explain the beneficial effects of physical or mental
activity on cognitive function in humans have focused
on factors such as increased blood flow or greater syn-
aptic plasticity.50 However, evidence suggests that neu-
rogenesis may be an important mechanism, and that
this can occur over an extended interval. Rats raised for
10 months in an enriched environment (a large cage
equipped with rearrangeable plastic tubes, a running
wheel, nesting material, and toys) showed a fivefold
greater increase in hippocampal neurogenesis than con-
trol rats raised in standard cages.51 They also showed
reduced hippocampal lipofuscin, indicative of de-
creased age-associated degeneration. Furthermore, these
changes were associated with improved learning, ex-
ploratory behavior, and locomotor activity. As Mc-
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Khann50 notes, “There has never been a satisfactory ex-
planation of why more education in youth is associated
with a later onset of AD many decades later. Possibly it
is through some such regenerative mechanism.”

A Life Course Model of Cognitive Reserve
The Figure shows a proposed life course model of
cognitive reserve. At the center is premorbid cognitive
ability, which modifies (path a) the clinical expression
(path b) of disease that is influenced by CNS lesions.
The major proximal input into premorbid cognitive
ability comes from brain size and function, based on
structural neural network complexity (Satz), and
functional processing capacity and efficiency (Stern).
Influencing brain size and function are a range of
more distal factors (path c), beginning with
genes.52–55 These influencing factors then range
through the early social and material environ-
ment,56,57 through the major inputs of education, oc-
cupation, and the socioeconomic environment, to
physical health, health behaviors, and degree of en-
gaged lifestyle activity. Thus, although much of the
neuropathology highlighted in the CNS lesions box is
associated with later life, the model is capable of ap-
plication to earlier phases of the life course. For ex-
ample, it might apply to protection against the cog-
nitive effects of head injury at any age.

It is important to emphasize that influencing fac-
tors not only determine cognitive ability at any given
age, but also are capable of augmenting ability (or
protecting it from decline) over time. That is, taking
prior ability into account, the signature of the accrual
of reserve is the identification of something that adds
variance to later cognitive function. For example, ed-
ucation and occupation are positively associated with
mature ability, even after taking childhood ability
into account38; physical exercise is associated with
slower cognitive decline in midlife after taking ado-
lescent ability into account, as well as educational and
occupational attainment and cardiorespiratory func-
tion.58 Occupation contributes significant variance in
fluid reasoning in old age after childhood ability and
white matter lesions are taken into account.59 As
these latter authors suggest, “Reserve should account
for significant variance in the cognitive outcomes in
old age after adjusting for variance contributed by
childhood mental ability and burden. In other words,
possessing some reserve means that one’s cognitive
score is greater than would be predicted from the per-
son’s childhood ability and the amount of overt, ac-
cumulated burden” (p. 1192).59

Note that there are paths connecting the “influencing
factors” to “brain structures” (see Fig, path c) and to
“CNS lesions” (path d). For example, poor education

Fig. CNS � central nervous system.
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may not only inhibit optimal brain development, but
also may lead to increased risk for cerebrovascular dam-
age, via cardiovascular disease and diabetes,60 exacer-
bated by negative health behaviors such as sedentary life-
style, poor diet, and smoking.23,61,62 As noted earlier,
from the perspective of dementia, brain reserve and neu-
ropathology are regarded as fully independent entities;
there is no suggestion that education protects against the
acquisition of AD neuropathology, rather only against its
clinical expression. If, however, the model is broadened
to address a range of CNS pathologies, particularly ce-
rebrovascular disease, but also injury and toxic or meta-
bolic disruption, it is clear that this independence is not
sustainable.

This, however, raises a difficulty for the concept of
cognitive reserve. Note that CNS lesions by definition
damage brain size and function, as represented by
path e in the Figure. If brain size and function are the
major proximal determinants of peak premorbid cog-
nitive ability, then the model is capable of working in
a negative circular manner. That is, negative influ-
ences on brain size and function, such as low educa-
tional and occupational attainment, are also risk fac-
tors for the development of CNS lesions, which, in
turn, can deplete cognitive reserve and reduce protec-
tion against their clinical expression. However, only
certain cognitive domains, particularly “fluid” skills
requiring effortful information processing, are likely
to be vulnerable to the effects of CNS damage. Verbal
or “crystallized” ability, in contrast, is not only resis-
tant to age-associated decline, but is capable of being
augmented across the adult life course,38,63 and it is
to some extent robust to the effects of frank neuro-
pathology,64 although it does eventually decline with
increasing severity of dementia.65,66 Whether pre-
served crystallized ability in the face of impaired fluid
ability is sufficient to protect against the clinical ex-
pression of neuropathology is a matter for further de-
bate.

Conclusions: A Dynamic Approach to Cognitive
Aging and Development
The concept of reserve has proved to be heuristic in
neuroscience as a potential mechanism to explain why
diseases of the CNS that affect cognition are less likely
to be detected, and less likely to impair daily function,
in some individuals than in others. However, because
disease detection and perceived functional capacity are
partly determined by factors that are independent of
the individual, the most important focus for reserve
theory arguably should be cognitive function itself.
This is not a new idea. Indeed, Stern12 has argued that
an active approach to reserve is equally viable for nor-
mal cognitive function as it is for explaining the clini-
cal manifestations of disease. Our suggestion is to ex-
tend this further by allowing the reserve model to

apply across the life course, to cognitive development
in childhood, as well as to adulthood and later life,
recognizing that cognitive ability is modifiable at all
stages of the life course.

Above all, we hope that this approach shines light
into reserve as an empirical construct, that is, nothing
more, as such, than the sum of its parts. Thus, the
potential obscurity of reserve as a semantic black box is
eased, allowing empirical work to concentrate on the
difficult task of untangling its neural substrate and the
determinants of this substrate.
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