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[1] We analyse time series of daily seismic event rate for
the Kilauea, Hawaii, volcano between 1959 and 2000.
Individual eruptions are not always preceded by an increase
in event rate, and many increases in event rate do not lead to
eruption. However, a mean field accelerating behaviour
does emerge 10–15 days before eruption in data stacked in
phase with the eruption time. In phase space the pre-
eruptive dynamics is well defined by Voight’s [1988]
equation, but so is that of the seismicity in the period
between eruptions. We conclude that the underlying
dynamics of the ’background’ seismicity is similar to that
of magma eruption. We use Bayesian methods to compare
different time-to-failure models that have been suggested
for precursors. Only a short-term forecast can be achieved,
using a linear fit to inverse rate. INDEX TERMS: 7223

Seismology: Seismic hazard assessment and prediction; 7280

Seismology: Volcano seismology (8419); 7299 Seismology:

General or miscellaneous; 8419 Volcanology: Eruption

monitoring (7280). Citation: Chastin, S. F. M., and I. G. Main,

Statistical analysis of daily seismic event rate as a precursor to

volcanic eruptions, Geophys. Res. Lett., 30(13), 1671,

doi:10.1029/2003GL016900, 2003.

1. Introduction

[2] Precursory signals are often observed - in real time or
in retrospect - to occur before individual volcanic eruptions.
Earthquake swarms and ground deformation are amongst
the most frequently cited precursors [Scarpa and Tilling,
1996], but no formal universal quantitative rules have so far
been developed to forecast eruptions. In practice predictions
are commonly based on a empirical assessments of patterns
in a variety of precursory signals, and the expertise of
observatory staff.
[3] Klein [1984] first proposed a quantitative heuristic

method for estimating eruption probability. He introduced a
statistical test based on the comparison of the distribution of
the precursory signal amplitude before an eruption with those
during the repose time. More recently Voight [1988] sug-
gested a forecasting model based on dynamics of material
failure to describe accelerating earthquake event rate and
ground deformation. The rationale is that the growth of
magmatic pathways is driven by rock failure in the volcanic
edifice under sustained, near-constant fluid pressure in the
magma chamber. Therefore the rate of magma ascent is
limited by the rate of fracture growth, recorded as seismicity.
[4] Here we test Voight’s hypothesis using daily earth-

quake event rates and eruption times from Kilauea, Hawaii.

We first seek the pre-eruptive dynamics in earthquake
frequency time series and then test for detectability of any
precursory signal against a null hypothesis of a random
process. We use Bayesian techniques to compare different
time to failure models and formally assess their forecasting
power and confidence levels.

2. Data

[5] Kilauea is an active hotspot-type shield volcano, with
generally effusive. Its activity is very well documented and
there have been a comparatively large number of eruptions
in recent times. This makes it a good candidate for statistical
analysis. Earthquakes (know as Volcano Tectonic events)
occurring within an 8.7 � 14.6 km area around the Kilauea
caldera, as described by Klein [1984], with no restriction on
depth, are counted daily. We do not introduce further apriori
classification of events and we view the seismicity as a time
series of acoustic emissions resulting from the general
behaviour of the volcanic edifice. The daily seismic event
rates and eruption times are plotted in Figure 1, covering the
period from 10th January 1959 to 27th August 2000.
[6] There were 35 eruptions in this area between 1959

and 2000, defined as the first day on which magma reached
the surface of the volcano Klein [1984]. The HVO defines
55 different episodes during the long 1983 eruption [Wolfe,
1988]. These features are shown in Figure 1.

3. Pre-Eruptive Seismicity

[7] It is common knowledge among volcano seismologist
that volcanic earthquake occur in swarms not necessarily
correlated with eruptions. Benoit and McNutt [1996] de-
scribed the log-normal distribution of swarm duration and
showed an increase in the mean duration for swarms that
lead to eruption. McNutt [in Scarpa and Tilling, 1996] gave
a cinematic description of the evolution of the seismicity
before eruptions. There are numerous detailed case studies
of individual swarms, but outside of the work by Voight
[1988], Cornelius and Voight [1994] and Kilburn and
Voight [1998], little attention has been directed toward the
generic temporal dynamics of these swarms.

3.1. Individual Sequences and Correlations

[8] Examining Figure 1 we see that some individual
eruptions are preceded by accelerating seismicity, but many
are not. Many clear phases of accelerating seismicity do not
terminate in eruptions during the repose time. The back-
ground seismicity in non-eruptive periods has a mean level
of 5 events per day. Only 19 out of the 35 eruptions have an
increased seismicity, on the day of eruption, above this
background level. Event rates sometimes far exceed the
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eruption day rate within a 100-day window prior to erup-
tion. This is true in all cases where the eruption rate is below
50 events per days. There is no systematic critical threshold
value of event rate, before eruption. Moreover we have
found no correlation between the terminal event rate before
eruption and the size of eruption, measured as the volume of
lava erupted, or inter-eruption time or eruption duration.
Thus a simple threshold value cannot be used reliably as a
precursor for this data set.

3.2. Mean Field Behaviour

[9] Due to the presence of significant ‘‘background
noise’’, individual sequences are not suitable for deriving
a generic dynamic behaviour of pre-eruptive seismicity. To
increase the signal to noise ratio, we extract a mean field
behaviour by superposing the sequences in a stack with the
eruption date as common final point. In other words we
add together many independent realisation of the same
phenomena. This is a technique used routinely in statistical
physics and introduced as the superimposed epoch analysis
by Grasso in Collombet et al. [2002].
[10] The stacked sequence, displayed in Figure 2a, shows

a clear increase in seismic rate dN/dt 10–15 days prior to
the eruption date, apparently following a power law accel-
eration according to Voight’s prediction for quasi-static
loading

dN

dt
/ te � tð Þ�n ð1Þ

where te is the eruption date and n is a positive scaling
exponent. The derivation of (1) assumes that, in the last few
days before eruption, the relationship between eruptive
mechanism and seismicity is identical for each individual
case, and that the load is approximately constant. The filling
rate of the magma chamber at Kilauea is slow [Swanson,
1972], and the mean inter-eruptive time (�241 days) is
large compared to the 10–15 days period we consider.
Therefore, it is a reasonable assumption.
[11] The stacked sequence is not dominated by a single

large pre-eruptive series, but there is a possibility that the
power law increase occurred by chance. To test this for-
mally we generated sets of surrogate data [Theiler et al.,
1992], which are independent random events with the same
statistical distribution and Fourier amplitude spectra as the
original pre-eruptive sequences, but with random phases.

The time correlation is therefore deliberately destroyed and
surrogate data are series of independently random events.
The surrogate stack, in Figure 2c does not show the
precursory power law increase of the seismic rate, proving
that the pre-eruptive dynamics is a robust generic process.

4. Pre-Eruptive Dynamics and Detectability

[12] Power law acceleration of the seismic event rate has
been observed before eruption in individual cases by Voight
[1988], Cornelius and Voight [1994], and Kilburn and
Voight [1998]. It can be described by the general empirical
equation

d2N

dt2
� A

dN

dt

� ��a

¼ 0 ð2Þ

relating the event rate dN/dt to the acceleration d2N/dt2. The
constant a is a positive power law exponent, and A is a
constant, which depends on initial conditions including the
background level.
[13] We obtained estimates of a and A from simple linear

regression, by taking the log of this expression, for the
stacked pre-eruptive sequence. The estimation was per-
formed for pre-eruptive window ranging from 100 days to
4 days. We compared these estimates to those obtained for:
the surrogate data stack (Figure 2c), a stack of sequences
during non-eruptive repose (Figure 2d), a stack of
35 sequences preceding episodes of the 1983 eruption
(Figure 2b) to ascertain whether these parameters are
significantly different in pre-eruptive period, and hence if
the pre-eruptive dynamics is detectable in this data set.
[14] For 100-day pre-eruptive windows, estimates in all

four cases belong to the same generic set defined by the
likelihood surface of estimate in parameter spaces (Figure 3).
When we consider windows �12 days prior to eruption
these results change (Figure 3). The pre-eruptive sequence
is a subset of the inter-eruptive dynamics, but is clearly
distinguishable from the surrogate stack in terms of its
variability within the parameter space. This indicates that
the pre-eruptive dynamics in not solely a random process
and that the stacking is robust. However the power law
exponent characterising the event rate acceleration does not
change with the onset of volcanic eruption. We note that the
exponent for the 1983 episodes stack is lower and parame-

Figure 1. Time series of daily seismic event rate at
Kilauea 10th January 1959 untill 27th August 2000.
Eruptions are marked by upward arrows the eruption period
as grey area. Eruptive episodes within the 1983 eruption are
marked as slanted downward arrows.

Figure 2. Log-log plot of seismic rate stacked sequences
versus (te � t). (a) Pre-eruptive stack, (b) Pre-episode stack,
(c) Surrogate pre-eruptive stack, (d) Repose non-eruptive
stack.
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ters distinguishable from the pre-eruptive set. This implies
that lava breaks after the first eruption tend to have less
marked non-linearity in their dynamics.

5. Time to Failure Models

[15] Time to failure analysis routinely used with acoustic
emission in material science has been applied in different
forms to earthquake [Bufe and Varnes, 1993; Sornette and
Sammis, 1995] Voight [1988] and eruption forecasting.
[16] We use the standard Newton-Raphson method to fit

the following time to failure models to the pre-eruptive
mean sequence:
[17] - Exponential rate growth [Lockner, 1991]

dN

dt
¼ Bþ AExp te � tð Þ½ � ð3Þ

[18] - Power law model equation (1) [Voight, 1988].
[19] - Inverse rate model [Voight, 1988].

dN

dt

� ��1

¼ at þ b ð4Þ

[20] This is a linear version of (1), near te = �b/a
[21] - Log-periodic model [Sornette and Sammis, 1995]

dN

dt
¼ A te � tð Þ�n

�
1þ C: cos 2p

log te � tð Þ
log lð Þ

� �
þ y

� ��
ð5Þ

[22] - A random distribution with constant mean m and
standard deviation s as null hypothesis

dN

dt
¼ @ m;sð Þ ð6Þ

[23] We repeated the procedure for pre-eruptive windows
ranging from 100 days to the minimum number of data
needed to retain 1 degree of freedom in the regression.
Figure 4 shows the best fit to the various models in a 100
days window prior to the eruption time.

5.1. Model Ranking

[24] To get a reliable estimate of the eruption date we
must choose a forecasting model with the smallest number
of free parameters but which retains an accurate description
of the dynamics. Consequently we rank the competing

models using a Bayesian Information Criterion (BIC) [Leo-
nard and Hsu, 1999]. BIC is a standard goodness-of-fit
measure that introduces a penalty for the number of free
parameters involved. Hence, it gives a measure of the level
of useful information obtained from a model.
[25] Table 1 summarises the results. For a 100-days

window, BIC is highest overall for the random distribution
(6), so the null hypothesis cannot be rejected. The random
sequence is objectively the most appropriate model for these
data, but provides no forecast for te. As the size of the
window is reduced to 10–15 days the linear model (4)
begins to outperform the null hypothesis (6), and all the
other models. This implies there is real predictive power in
the linear model for the stacked data sequence a week or
two prior to the eruption.

5.2. Forecast Confidence

[26] Decision-makers need to know the confidence level
that can be attributed to forecasts. To complete our com-
parison we calculate Bayesian Inference level for the time to
failure models. We computed the posteriori density for each
model using Bayes theorem [Leonard and Hsu, 1999]. The
only prior information we have is that te is larger or equal to
the last day in the time series (day 100). We keep the prior
assessment as uninformative as possible, by assigning a
uniform distribution to te between bounds te 2 [100, tmax].
To avoid problems with the tail we have chosen to restrict
tmax to 300, that is te + 200 days (close to the mean inter
eruption period). From the posteriory probability density
function, the most likely time of eruption can be confined to
a window set by the 95% Bayesian interval in te.
[27] The results are also summarised in Table 1. The

linear model, equation (4), gives the narrowest uncertainty
on te for the 15-day window [between 100–105 days at the
95% confidence level]. All the other models return Bayesian
intervals at this confidence level that are much larger than
the 15-day timescale of the pre-eruptive sequence.

6. Discussion

[28] Kilauea and the Hawaii volcanic system are remote
from any plate tectonic boundary. The seismicity must be
driven by other phenomena: rather than plate boundary
stresses.

Figure 3. Likelihood contour and best estimates (as points)
of the dynamics parameters: a the scaling exponent and
log(A) background rate, for pre eruptive stack (black),
surrogate data (red), repose stack (blue), pre-episode (green).

Figure 4. Fit of Time to Failure Model a) inverse rate
linear model dashed line represent the 95% confidence
interval b) power law in black, exponential in green, log
periodic in red, random distribution with constant mean in
blue (with standard deviation in blue dashed line).
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[29] In the seismicity time series analysed here only
�15% of observed individual sequences of accelerating
earthquake counts correspond to reported lava reaching
the surface. Eruptions are direct and clear indication of
magmatic dike intrusion. It is tempting to associate the
remaining 85% with intrusions not reaching the surface.
This would be consistent with geological observations.
According to Gudmundsson [2002], over 90% of basaltic
intrusions in the form of dikes are arrested before reaching
the surface. If indeed these accelerating swarms are the
seismic response to injection of magma in the volcanic rock
edifice, small and large intrusions will result in power law
(scale invariant) accelerations of the seismic event rate, with
an identical exponent. Consequently we cannot discriminate
between the seismic signature of intrusions and eruptions.
[30] On the other hand it is difficult to find a generic and

consistent behaviour for seismicity associated with dike
propagation [Rubin et al., 1998] even when the presence
of an intrusion is confirmed by lava breaking the surface. It
is not proven that intrusion plays an active part in generating
seismic events and fractures. On the contrary, there are
indications that intrusions are passive [Cervelli et al., 2002],
and propagate following fracture networks opening in the
rock mass under other driving forces and the interaction
between crack populations. In this respect it is not surpris-
ing that the pre-eruptive seismicity dynamics cannot be
distinguished from the background seismicity.
[31] The lack of firm evidences that dike intrusions

actively alter the seismicity and propagate generating VT
events, should change the way eruption mechanism is
perceived. The idea that swarms are due to the impeding
eruption forcing its way through the volcanic edifice seems
unlikely. The reversed causality relation is more probable.
Effusive eruptions should be viewed as passive events
resulting from the opening of a percolation path to the
surface under more or less static load, as hypothesised by
Voight [1988].
[32] The linear method applied to inverse rate proposed

by Voight [1988] and further developed by Kilburn and
Voight [1998] succesfully ‘hindcasts’ the eruption date with
a significant level of confidence when applied to the stacked
pre-eruptive sequence. However in prospective mode we
expect this confidence level to drop dramatically. Forecasts
of eruption dates strongly depend on the choice of initial
conditions and the width of temporal window. Moreover the
model seems more generic of the seismicity on volcano
hence it is likely to forecast eruptions for all accelerating
avalanches. We therefore can expect a false alarm ratio of

the order of 90%, if seismic event rate data is used on its
own as a forecasting tool.

7. Conclusion

[33] Acceleration of earthquake rates is not observed
systematically before all individual eruptions in the Kilauea
catalogue. However a robust power law increase emerges 10
to 15 days prior to the eruption date. However its charac-
teristic parameters are statistically indistinguishable from
those of the background generic physical process. Neither a
critical threshold level for the event rate, nor any change in
the scaling exponent can be used as a reliable indicator of
pre-eruptive periods. Seismic event rate data only provide a
short-term forecasting capability using a linear model of the
inverse rate. As a final caveat, these results are obtained for
an effusive volcano and might not apply to explosive
volcanoes. This will be the subject of further work.
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Table 1. BIC Scores for a 100 and 15 Days Pre-Eruptive Window,

95% Confidence Interval on te, Bayesian Confidence Level in a 15

Days Window, and Number of Free Parameters for Time to Failure

Models

Statistics

BIC
100 days
window

BIC
15 days
window

95 %
Interval

of
confidence

Bayesian
Inference
Level (%)

Number of
free

parameters

Models
Linear (4) 653 178 100–105 �95 3
Exponential (3) 1065 169 100–184 44 4
Power Law (1) 1029 151 100–147 78 4
Log Periodic (5) 1020 146 100–185 54 8
Random (6) 1114 160 NA NA 2
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