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Large sets with limited tube occupancy

Anthony Carbery

ABSTRACT

We study subsets E of euclidean space with the property that for every tube, the amount of
mass of F contained in that tube is small, and address via the probabilistic method the question
of how large such sets may be. We also study discrete analogues of this question, and relate it
to problems in harmonic analysis concerning the extension operator for the Fourier transform.

1. Introduction

A bounded subset E of R? is a Kakeya-type set (or, more accurately, a Besicovitch-Kakeya—
Furstenberg-type set) if each of a large set of tubes (say one in each direction, or one passing
through each point of a hyperplane) contains a relatively large amount of E. The natural
question for such sets is how small they can be, and this question has received a great deal of
attention over the last forty years.

In this paper we are concerned, in contrast, with ‘anti-Kakeya’-type sets, that is, subsets F
of R? such that, for every tube, the amount of mass of E contained in the tube is small. The
question now is how large such sets may be. In other words, given a bounded subset of RY,
how much mass can one put in it without there being too much mass in any one tube?

This question naturally arises in X-ray tomography, but we are interested in its connections
with harmonic analysis and PDEs.

In the late 1970s Stein (see [17]) proposed that the disc multiplier operator should
be controlled by a maximal function involving averages over eccentric rectangles via an
L2-weighted inequality. Parallel to this, it is natural to ask the same question (and indeed
in some model cases the questions are equivalent; see a forthcoming paper by Carbery and
Wisewell) for the extension operator for the Fourier transform associated to a hypersurface in
R? of nonvanishing Gaussian curvature such as the unit sphere or the base of a paraboloid.
The extension operator for the Fourier transform is the operator

g— g/d;(gc) = Jg(w)e_2”“"“da(w),

where ~ denotes the Fourier transform, and o is the measure associated to a smooth density
supported on the hypersurface. Thus one is led to consider inequalities of the form

|, 190t Puta)ar < € [ lgw)PMuw) doo),
Rd

where the maximal operator M involves averages over highly eccentric tubes or rectangles.

In the mid 1980s, Mizohata and Takeuchi, in connection with estimates for solutions to the
Helmholtz equation, and apparently unaware of the connection with Stein’s proposal, suggested
that the following should hold.

Received 22 August 2008; published online 16 March 2009.
2000 Mathematics Subject Classification 28A78, 42B99, 52C99, 60D05.

Part of this research was undertaken at the University of Athens in spring 2006, where the author was
supported by a Leverhulme Study Abroad Fellowship and the EC project ‘Pythagoras’.



530 ANTHONY CARBERY

CONJECTURE 1 (Mizohata—Takeuchi [16]). We have
|| 19w < csup) [1gP o
Rd T
where the sup is taken over all 1-tubes T'.

Here and in what follows, an r-tube T is an r-neighbourhood of a (doubly infinite) straight
line in RY. Because of the nature of the Fourier analysis (basically the uncertainty principle), it
suffices to consider weights w that are essentially constant on unit scale in this conjecture, so
that for such weights the term sup, w(T") is equivalent to the sup norm of the X-ray transform
of w.

In [2, 7-9] the conjecture was resolved in the affirmative for the case that the weight w is
radial, but it remains open in the general case. In the radial case explicit spectral representations

for the operator g — m/cl\a in terms of spherical harmonics and Bessel functions can be exploited.
The papers [7-9] concerned analogues of Riemann’s localisation theorem for Fourier
transforms in higher dimensions. For f € L?(R%) let

Snf(r) = L<R Fle)ermiae.

If f is identically zero on the unit ball B of R?, then in what senses can we expect pointwise
convergence of Sgf(z) to zero on B? The following results were obtained.

PROPOSITION 1. (i) If E C B supports a positive measure j1 with

w(T)
a1 S c

sup
r-tubes T T’
uniformly in r, then, conditional on Conjecture 1 holding, Sgf(x) — 0 almost everywhere dp.
(ii) Ifd—1/2 < < d, if 0 < Hg(E) < oo, and if E is radial, then
TNE
sup TE0E) <
r-tubes T’ r
uniformly in r (and so Sy f(x) converges to 0 almost everywhere with respect to Hg|g if f =0
on B).
(iii) There is no E C B with 0 < Hy—1(E) < oo such that
1(TNFE
sup % <C
r-tubes T’ r
uniformly in r (and, moreover, if Hq_1(FE) is o-finite, then there is an f € L*(R?), identically
zero on B, such that Sgf(x) diverges on E).

Here and in what follows, H 3 denotes $-dimensional Hausdorff measure.
It is, therefore, an interesting question for d — 1 < § < d — 1/2 as to whether there exist sets
of positive finite S-dimensional Hausdorff measure for which

sup sup
T r-tubesT

More generally, one can ask to determine those pairs (3,7) € [0,d] x [0, d] for which there exists
a set ¥ C B of positive finite §-dimensional Hausdorff measure such that

Hﬂ(E N T)
sup sup —|——= <0
T r-tubesT rv

(1)
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This question thus asks whether there exist ‘large’ sets (in terms of having positive (-
dimensional Hausdorff measure) such that the (§-dimensional) mass in any tube is limited
by (1).

It is not difficult to see that, if either v > d — 1 or 8 < , then (1) implies that Hg(E) = 0;
see Section 4.

THEOREM 1. Ify <d—1 and (> v, then there exists E CB with 0 < Hg(E) < oo such
that (1) holds.

Returning now to Conjecture 1, recall the celebrated Stein—Tomas restriction theorem
(see [18]) asserting that

lgdoll2a+1y/a-1) < Cllgll2-

By the converse to Holder’s inequality, this has an immediate restatement as a weighted
inequality:

| 190t Puta)ds < Ol | | loPdo 2)
Rd' Sd—l

So, when considering Conjecture 1, it only makes sense to test it on weights w that are constant
on unit scale and for which
sup  w(T) < |lwl|(g+1)/2- (3)
1—tubesT
Thus we are looking for weights w whose mass in any tube is much smaller than its LP norm
forp=(d+1)/2.

Finding such weights is easy: if one places approximately N(@=1/2 unit balls points spaced by
approximately N/2 on the sphere of radius N, then, by the curvature of the sphere, no 1-tube
meets more than two of them. (This example came to light in conversations with Jonathan
Bennett, Ana Vargas, and Laura Wisewell. There are also examples of infinite sequences of
points such that no 1-tube meets more than two of them: take a strictly convex plane curve
without asymptotes, place a unit ball centred at x; on this curve, place another centred on
this curve at x5 in the first available place such that it does not meet the 1-tube generated by
the tangent at x1, etc.)

However, this does not necessarily represent the most efficient example exhibiting (3). In
order to consider the problem more quantitatively, it is convenient to introduce a scale N, and
to consider finding weights w, constant on unit scale and supported in a ball or cube of size
N, such that (3) holds. For such weights it is easy to see that, for p > 1, we have

wll, < CapN“™D/P sup w(T), (4)
1-tubes T
and it is natural to ask if the factor N(@=1/P appearing here is sharp. For p=1 and p = oo
this is obvious.
A refinement of this situation is as follows. For 2 < k < d'/2N let A4(N, k) be the maximal

number of 1-separated points that we can choose in Q% := {1,2,..., N}%, so that no more
than k& of them lie in any 1-tube. Then the best constant in (4) will be at least
AL(N, k)1/P
1<k<d/2N k ’

So our problem can now be loosely recast as finding good lower bounds on A%(N, k), especially
for k small. (We shall not care about multiplicative factors of dimensional or other absolute
constants: the aim is to find the behaviour of A%(N, k) for d fixed, N > 1, and k in various
subranges of {2,3,...,d"?N}. With this in mind, it is clear (by changing N to within controlled
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factors) that, in the definition of A%(N, k), we may replace the condition that the points be
I-separated with insisting that they be distinct lattice points in {1,2, ..., N}, without altering
the essential behaviour of A4(N,k).)

The only obvious upper bound for A%(N, k) is O(kN91). The example mentioned above,
where approximately N(¢=1)/2 points on a sphere of radius N are spaced approximately N1/2
apart, shows that A?(N,2) > Cy;N@=1/2 This example can be modified, for example, by
adding more concentric spheres and then packing more points into each sphere, to give concrete
examples showing that A4(N, k) > CykN¢ ! when k > N'/? (where we again arrive at what are
essentially radial examples!) and that A%(N, k) > Cyk?N(@=1/2 when k < N'/2. (See Section 5
for details.) This tells us only that the best constant in (4) will be at least N@=D/pN=1/20" when
1 < p <d, and at least N(4=1/2P when p > d. Nevertheless, we have the following theorem.

THEOREM 2. For 2 < k < N2 there is a collection of at least Cyk N1 N—=D/k Jattice
points (counted according to multiplicities) in {1,2,..., N}¢, so that no 1-tube contains more
than k of them.

Clearly, CykN%1 is best possible for no 1-tube to contain more than k points, and observe
that, when k > log N, the term N—(@=1/F egsentially disappears. When k = 2, we recover the
same numerology as given by the example of approximately N(¢~1)/2 points placed at roughly
equal spacings on a sphere of radius approximately N. Thus we do not resolve the situation
when 2 < k < log N; indeed, for small values of k (k= 2,3,4, for example) it seems quite
difficult to understand A?(N, k). Nevertheless, we believe Theorem 2 to be new, even in the
case d = 2 and k = 3.

COROLLARY 1. There exists a w that is constant on unit cubes and that takes integer
values such that

sup w(T) < Cylog N,
1-tubes T

while

lwll > Calog N N4-1.

Since for w taking nonzero values that are at least one we have ||w||, > Hw||}/p, we obtain

the following corollary.

COROLLARY 2. With w as in Corollary 1, if p > 1 then we have

N=1)/p

[wllp = Cap sup w(T).

(log N)l/p’ 1-tubes T

So the constant in (4) is sharp up to logarithmic factors, and such weights as given by
Corollary 2 should, in principle, be good candidates on which to test Conjecture 1.

When d = 2 and k = 2, what we consider is closely related to a problem of Motzkin [10] that
asks for the maximum, over all configurations of n points in [0, 1]?, of the minimal width of strips
such that there are no more than two points in any strip. In turn, Motzkin’s problem is closely
related to the Heilbronn triangle problem that asks for the maximum over all configurations
of n points in Q? of the minimal area of triangles with vertices in the configuration. The proof
of Theorem 2 is closely related to work of Komlds, Pintz, and Szemerédi [12] on lower bounds
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for Heilbronn’s problem. In fact, there is a logarithmic improvement of the case k = 2 and
d =2 of Theorem 2 implied by the work of those authors, and our argument bears a close
resemblance to a simplified version of that analysis (see [1]). Nontrivial upper bounds that
have been established for the Heilbronn problem (see, for example, [11] and the references
therein) do not translate directly into upper bounds on A%(NV,2) or for Motzkin’s problem (in
particular, do we have A?(N,2) = o(N)?).

The argument for Theorem 2 is probabilistic. Corollary 1 can also be obtained by a simpler
large deviation/Bernoulli trials argument; Michael Christ has also made a similar observation
(M. Christ, personal communication). Since the examples are generated probabilistically rather
than deterministically, their potential as counterexamples to Conjecture 1 is perhaps limited; for
example, it is not hard to show that, if we write g € L2(S¢~!) in its wave packet representation
and then put random +1s on the coefficients, then Conjecture 1 holds for all weights w
almost surely. (In fact, it holds with the smaller constant O(supy w(T(N,N?))/N<~1) with
the sup taken over all finite tubes T'(IV, N2) of d — 1 short sides N and one long side N2. This
unpublished observation is due to Jonathan Bennett and the present author.)

In Section 2 we prove Theorem 2. In Section 3 we give a similar argument to that of Theorem 2
to establish a lower bound for a quantity arising in a generalisation of the Heilbronn problem.
In Section 4 we prove Theorem 1 by building Cantor sets based upon the examples furnished
by Theorem 2 or Corollary 1. Since future work will require concrete examples on which to
test Conjecture 1, we have included the details of such in Section 5, though logically they are
subsumed by Theorem 2.

2. The proof of Theorem 2

In this section all tubes are 1-tubes and unspecified constants may depend on the dimension d.

Proof of Theorem 2. First choose k > 3 points in := {1,2,..., N}? independently and
uniformly at random. Then, for each such point p, we have

P{p is in a given tube T} < CN~(@=1),
Thus,
P{each such p is in a given tube T} < C*N k=1,
Since there are about N2(@=1 different tubes 7', then
P{each such p is in some T} < C¥NG=Rd=1),

Now let M > k > 3 and pick a set of M points in €2 independently and uniformly at random.
Therefore, for each k-element subset {p1,...,pr} of this set,

k 2—k)(d—1
I (X{m,...,p,C all lie in some T}) <C NGB,

There are (Alf) choices o of k distinct points iy, ..., from {1,2,..., M}. Therefore,

M
k 2—k)(d—1
ZE (X{Pi17~--,pik all lie in some T}) <C ( k )N( X )a
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that is,

E (Z X{piy,opsy, all lie in some T})
= E(#k-element subsets all of whose members lie in some T')

< CF <M> N@—k)(d-1)
k

Therefore, there exists a point in the sample space, corresponding to a set S C  of
cardinality M if we allow for possibly repeated membership, such that the number of k-element
subsets (again allowing for possibly repeated membership) of S, all of whose members lie in

some T', is at most
c* <M) N@—k)(d-1)
k

Attach artificial labels to the repeated members of S to make them all distinct. Call the
resulting set S. Then S contains exactly M distinct points, and the number of k-element
subsets of S, all of whose members lie in some T, is at most

ok <M) NC—k)(d=1)
k

Call a k-element subset of S bad if all of its members lie in some tube. Then the number of
bad k-element subsets of S is at most

ok <M) NC-k)(d-1)
k

For each bad subset of S, remove one point of it from S, resulting in a subset S’ C S with
#S, 2 #S _ Ck (M> N(Q*k)(d*l) - M — Ck <M> N(27k)(d71)
k k

such that no k-element subset of S’ lies in any tube, that is, so that no tube contains more
than (k — 1) members of S’.
Given k and N we want to maximise

M— Ok (M> N2-k)(d-1)
k

over M > k. We claim that we can make this as large as M/2 provided that M is no larger
than C"kN(d-D(E=2)/(k=1) " Choosing M to be about this value, we then see that S’ is a set of
cardinality

C' N (=D k=2)/(k=1)

and no tube contains more than & — 1 points of S’.
To see that, for some €’ and M < C’kN@=DE=2)/(:=1) "we have

oL (f)N(Z—k)(d—l) < M2,

is a routine exercise based on Stirling’s formula. Indeed, k! is bounded below by an absolute
constant multiple of k¥t1/2¢=* so that

M\ MM-1)...(M—k+1) ek Mk
k) k| = Okk+1/2‘
Hence
k(M (2—k)(d—1) k b (2—k)(d—1)
C (k)N ’ < Cp(Ce) kk+1/2N ,
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which will be at most M /2 provided that

ER+1/2 N (k=2)(d-1) 1/(k—=1)
= ( QOo(Ce)k )

But for a suitable choice of C’ we have
ER1/2 N (k=2)(d—1)\ Y/ (1)
( ZCO(Ce)k )

and so the proof is complete. [

> C/kN(d—l)(k—%/(k—l)’

REMARK 1. The naive approach here is via a large deviation/Bernoulli trials argu-
ment. Picking M points at random as above, P{some j points are in a given tube} <
cv (151) N—7(d=1)  Therefore,

M
M - .
P{at least k points are in a given tube} < E ( , )C’JNJ(dl).
X J
Jj=k

Therefore,

M
P{at least k points are in some tube} < N2d-1D) Z (M) CI NI,
j=k
Now for large values of k (k> log N) and M ~ kN9! we can bound this by 1/2, and so
we can deduce that there is a set of approximately kN9~! points (again counted according
to multiplicities) with no more than k in any tube. This suffices for Corollary 1. For smaller
values of k the estimate on the probability is useless, but instead we have

P{exactly k points in some 7'}
< E(#k-element subsets all of whose members lie in some 7')
< (A]j> O N (k=2 (d-1)

which suffices for the argument to continue as in the proof of Theorem 2.

The argument for Theorem 2 can be made to apply in the case of 1-neighbourhoods of
m-planes. We illustrate this in the case of hyperplanes. Note that the trivial upper bound on
the number of points in {1,2,... ,N}d such that there are no more than k in any slab of width
1 (that is, a 1-neighbourhood of a hyperplane) is CykN

ProroOSITION 2. For k > d + 1 there is a configuration of at least CdeN*(dfl)/k lattice
points in {1,2,..., N}? with no more than k in any slab of width 1.

This will also follow from the result of the next section.

3. A Heilbronn-type problem in higher dimensions

A higher-dimensional analogue of the Heilbronn problem is also amenable to the method for
proving Theorem 2. (Indeed, as mentioned above, the method originated in the study of the
Heilbronn problem [12].) Barequet [3] considered configurations of n > d 4+ 1 points in Q¢ =
[0,1]% and wanted to maximise (over all possible configurations) the minimal volume A? of a
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simplex with vertices in the configuration. There is the trivial upper bound O(1/n), obtained
by decomposing Q¢ into parallel slabs rather than tubes, but this has been improved by Brass
[6] in odd dimensions, for example, A3 < Cd/nﬁ/ 5. For lower bounds, Barequet considered
{(t,%,...,t%) mod p:0 <t < p— 1}, which has no d + 1 points lying in a hyperplane, and so
any simplex with vertices in the set has volume bounded below. Thus A% > C,;/n?. This was
improved by Lefmann [13] to A2 > Cy(logn)/n? following the argument of Komlds, Pintz,
and Szemerédi [12]. Lefmann and Schmitt [14] had an algorithmic approach giving the same
behaviour at least when d = 3.

We now consider the volume of the convex hull of k points in a configuration of n points
in Q¢, where n > k > d + 2. Again the slab argument gives an upper bound of Cyk/n for the
minimal volume Ag,k of the convex hull of k such points. Below we establish that this upper
bound is sharp for sufficiently large k, but first we need a simple lemma (whose proof we include
for the convenience of the reader).

LEMMA 1. Pick k > d + 1 points independently and uniformly at random in Q% and let K
be their convex hull. Then

P{K| <V} < Chvha,

Proof. We first do a calculation. Let R denote the region of (R?)* consisting of points
(w1,72,...,2) € (R))* that satisfy the following constraints:
e 17 and g are such that |z — x| > |z; — x;| for all choices of pairs z; and z;;
e 13 is such that the area of the triangle with vertices x1, s, and z is maximised when
2= T3;
e 1, is such that the 3-dimensional volume of the simplex with vertices x1, x2, x3, and z is
maximised when z = xy4;
and so on until
e 1,41 is such that the d-dimensional volume of the simplex with vertices x1,xs, 3, ..., xq
and z is maximised when z = x441.
For (x1,...,2%) € R let «; denote the j-dimensional volume of the simplex with vertices
Z1,...,%Tj4+1. Then, for j > 3, the vertex z; lies in the intersection of the two balls with radii
aq centred at x7 and x5, and it also lies in a 2as/ai-neighbourhood of the line containing
x1 and xo. For j > 4, the vertex z; additionally lies in a 3az /ae-neighbourhood of the plane
containing 1, x9, and xs. Similarly for j > 5, etc. Thus, for m > d, the vertex z,, 1 lies in the
intersection of the two balls with radii «y centred at x; and z2, a 2as/a;-neighbourhood of
the line containing z7 and xs, a 3as/ag-neighbourhood of the 2-plane containing x1, zs, and
x3, and so on, up to a dag/ag4—1-neighbourhood of the (d — 1)-plane containing z1,...,z4. In

particular, each x,, with m > d lives in a rectangular box of sides
2. 200 2. doy
X —= X ... X ———

aq dg—1

which has volume
d! 2d_1ad.

(Note that the sequence ma,, /a,,—1 is monotonic nonincreasing.)
For those (71, ...,7) € RN (QY)* for which |K (z1,...,7)| <V, we also have

adgV.

By symmetry, we can cover (R%)¥ by (’;) x (k—2) x...x (k—d) disjoint versions of R with
the special variables that have been singled out permuted around.
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Thus,
P{IK| <V}
:J J X{a1 oz K (21,ezi)|<V}ATL - - - dTg (5)
Q4 Q4
k(k—1)...(k—d
< ( ) ( ) J X{ml,.‘.7zk:|K(w17...,xk)|<V}dx1~-~dxk~
2 RO(Q4)*
With 21,...,z4 fixed, we therefore see that the integral in (5) in each of the variables
Td+1s---,Tk 1S at most
29711 V.
Therefore,
—1)...(k— — .
P(K| < v} < F¥ >2 (k=d) (2-1d1 V) < ehvrd,
as required. [

The case d = 2 of the following theorem is already known (with a different proof); see [5]
and the references therein.

THEOREM 3. Letn >k > d+ 2. Then there is a configuration of n points in Q® such that
the volume of the convex hull of any k of these points is at least Cy(k/n)F=1/(k=d): that is,

Ag,k > Cd(k/n)(k—l)/(k—d)_

Proof. Let M > k and pick a set of M points in Q¢ independently and uniformly at random
in Q. By Lemma 1, for each k-element subset {pi,...,px} of this set,

kyrk—d
E (X{pl ..... pr all lie in some convex body B of volume V}) <CtV :

There are (A]f) choices o of k points i1, ..., from {1,2,..., M}. Therefore,

M
k k—d
ZE (X{ml,...,pik all lie in some B}) <C ( L )V )

that is,

E (Z X{piy,opsy, all lie in some B})
= E(#k-element subsets all of whose members lie in someB)
< Ck <M> yh—d
B k’ .

Therefore, there exists a set S, where #S = M and S C Q?, such that the number of k-element
subsets of S, all of whose members lie in some B, is at most

M
c’“< )vkd.
k

Call a k-element subset of S bad if all of its members lie in some convex body of volume V.
Then the number of bad k-element subsets of S is at most

M
0k< )Vk_d.
k
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For each bad subset of S remove one point of S, resulting in a subset S’ C S with

M M
#Sl > #S_Ok<k>vkd_M_Ok<k)de
such that no k-element subset of S’ lies in any convex body of volume V, that is, so that no
convex body of volume Vcontains more than (k — 1) members of S’.
Given k and V, we want to maximise

M — Ck <M) Vk*d
k

over M > k. As before, we can make this as large as M /2 provided that
M < Ok~ (k=d)/(k=1)
Choosing M to be about this value, we see that S’ is a set of cardinality
n = C'kNk=d/ (1)

and no convex body of volume V contains more than k& — 1 points of S’, provided that
VE=d)/(k=1) > O’k /n, that is, V < C"(k/n)*~1/(k=d) Thus the convex hull of any k points
has volume greater than C”(k/n)k—1)/(k=d), O

4. Proof of Theorem 1

Let T be an r-tube. We refer to r as the width of T and denote it by w(T"). We begin with the
easy assertion made in the introduction.

PROPOSITION 3. Ifeither v >d—1 or if 3 <~ and if E C Q% satisfies
He(ENT) < Cw(T)” (6)
for all tubes T, then Hg(E) = 0.

Proof. Suppose first that v > d — 1 and that E C Q% satisfies Hg(ENT) < Cw(T)? for all
T. Fix a width w. Then we can cover E by O(w~(¢~1) disjoint parallel tubes T' of width w,
each of which satisfies Hg(ENT) < Cw?. Summing, we have Hs(E) < Cw)~ (=1, Now let
w — 0.

Now suppose that 3 < v and that E C Q% satisfies Hg(ENT) < Cw(T)" for all T. We may
assume, by taking a tube of width 1, that Hg(E) < co. Then any projection E’ of E onto a
coordinate hyperplane satisfies Hz(E’) < oo, and, in particular, for v > 3, we have H,(E’) = 0.
Let € > 0. Cover E’ by (d — 1)-dimensional balls B; with diameters r; such that Y, 7] < e. Then
E is covered by tubes T; whose widths are r;. Therefore, Hz(E) < Y, Hg(ENT;) < Cr] < Ce.
Now let € — 0. U

Before proving Theorem 1 we must deal with an annoying technicality that arises because
the weights w of Theorem 2 and Corollary 1 are not necessarily exactly characteristic functions
of sets. The following is a consequence of Theorem 2.

COROLLARY 3. Foreacho > d— 1 and N sufficiently large, thereisan s withd — 1 < s < o
and a set of at least Cy,N*/log N unit cubes in [0, N|¢ with no 1-tube meeting more than
N3=4+1 of them.
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Proof. In Theorem 2 take k= N°~9t1 > 2. Then there is a w with [w > Cy,N° and
Jpw < N7 for all 1-tubes 7.
Let E; = {z : 27 <w(z) < 29t} for 1 <27 < N°~%*1 Then we have
> 2|E;nT| < N°4H
J
for all 1-tubes T', and also

> 2|Ej| = CagN°.
J

Thus there exists a j with
) N°
2 |E; 2 C o7 AT
|51 % log N
and also
21|E; NT| < N7~

for all 1-tubes T'. Thus, for some j, we have

NO'
Ei|>2Cho———
B3] Y log N
and
No—d+1
[E;NT| < 5
for all 1-tubes T'. Letting s be defined by N°/2/ = N* we have
NS
Ei|l>Cp0——
21 % log N
and
|E] ) T| g std“rl
for all 1-tubes T [

In all likelihood it is the case 29 = 1 that actually occurs in the argument; it would be too
optimistic to expect large values to occur.

Theorem 1 now follows from the next result together with the trivial observation that, if (6)
holds for a certain 8 and -, then it also holds for the same 3 and all v/ with 7 < .

PROPOSITION 4. For each € > 0 sufficiently small there exists a 0 < § < € such that, if v <
d—1 and =~ + 9, then there exists a set E C Q% of positive finite 3-dimensional Hausdorff
measure such that Hg(ENT) < Cgy,e,qw(T)" for all tubes T.

Proof. Let o =d—1+¢e¢>d—1 and let Cy, be the constant implied in Corollary 3.
Choose N such that N7~ 4+l]log N = Cg4s and so that N¢>2. We can do this because
v <d—1 and because we can adjust Cy, to be smaller if necessary (depending on €) to
accommodate the condition N€ > 2. Set a = Cy -/ log N, and note that

1 Toa(l/a)
log N
By Corollary 3, there is an s € (d—1,0] such that there is a set of (exactly)

CyoN*/log N unit cubes in [0, N]¢ with no 1-tube meeting more than N*~9F! of them.
Define 6 := s — (d — 1).
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Rescale this set so that it consists of small cubes of side N ! contained inside the unit cube
Q. We now build a self-similar Cantor set whose first stage is this set. Thus the first stage &
consists of aN® cubes of side N~! such that no tube of width N~ meets more than N°~4+1
of these cubes.

For the second stage we put a 1/N-scaled copy of our basic set inside each cube from the
first stage, and so the second stage & consists of a2/ N2 cubes of side N~2 with the property
that any tube of width N~2 meets only at most N*~ 9! cubes of the second stage within each
cube of the first stage. Since the expansion of any N ~2-tube by a factor of N meets only at
most N*~9*! cubes from the first stage, the same holds for any N ~2-tube itself. Thus any
N~2_tube meets at most N2(*=4+1) cubes of the second stage altogether.

We continue in this manner. Thus, at the kth stage we have a family &, of a* N*¥* cubes of
side N=* with the property that any tube of width N~* meets only at most N*~ 91 cubes
of the kth stage within each cube of the (k — 1)th stage, and thus (by induction) at most
NFG=d+1) cubes of &, altogether.

We define

=N Ue

k=1 Q€&
Note that the Minkowski dimension of E' is

I

A standard argument (see [15, p. 63]) gives that the Hausdorff dimension of E is also 3 and that
FE has positive finite §-dimensional Hausdorff measure equal to H, say. Note by self-similarity
that, if Q € &, then Hp(Q) =a *N"*H.

We next show that Hg(ENT) < Cw(T)" for all tubes T. Indeed, we shall show that, if
w(T) = N7F, then we have Hg(ENT) < CN~7%. (The general case follows from this one at
the expense of a power of N.) Since the number of cubes of &, that a given tube of width N "
can meet is at most N~4tDF and the total number of cubes in &, is a* N*%, then

(s—d+1)k y—d+1\ F
Hg(ENT) < N H Nyt _g
Nky ak Nks Nky a

by the choice of N. This concludes the proof. |

Notice that the argument gives no result on the line § = ~; moreover, even if we had the best
possible starting situation of a set of c;kN¢~! points with at most k in any 1-tube for all k > 2,
we would not be able to obtain an example in the case § > v = d — 1 with this argument.

For values of (8,v) far from (d—1,d —1) there are explicit examples establishing the
conclusion of Theorem 1. Thus the unit sphere demonstrates it for 3 =d — 1 and v = d — 3/2.
We already know (see Proposition 1) that all radial sets of dimension 8 > d — 1/2 are examples
when v =d — 1. Similarly, suitable radial Cantor sets furnish examples when d —1 < 3 <
d—1/2 and v > f—1/2. We can improve on this by building Cantor sets based upon the
constructions of Section 5 below to obtain examples for 5 >~ and (3,7) strictly under the
line joining ((d —1)/2,(d —1)/2) to (d—1/2,d —1). We leave the details to the interested
reader.

It would be interesting to know if there are examples of rectifiable sets demonstrating the
conclusion of Theorem 1 when f=d—1and d—-3/2<~vy<d—1.
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5. Concentric spheres

For 1 < k < N'/2 consider a collection Cj, of Cyk?N(4=1/2 points obtained by placing points
roughly equally spaced by approximately N'/2 /k on each of k concentric spheres in R? with
equally-spaced radii in [N/2, N]. (Note that a single such sphere contains approximately
C gk N@=1D/2 points and no 1-tube contains more than O(k) of its points.)

PROPOSITION 5. No 1-tube meets more than O(k) members of Cy.

Proof. A 1-tube T will typically meet points from two types of sphere. The first type
consists of those spheres that contribute multiple points to T’; the second type consists of those
that contribute at most 1 point. The overall contribution of those of the second type is clearly
O(k), and so it suffices to deal with those of the first type.

For a sphere of radius A to contribute multiple points to T it must be that the cap where the
sphere of radius A\ meets T is nonempty and has diameter £, which is at least the spacing of
the points on this sphere, that is, at least N*/?/k. Then the number of points so contributed
from this sphere will be O(¢xk/N'/?) (because the cap will be elliptical with (d — 2) short sides
of length approximately 1). Therefore, the total number of points contributed by the spheres
contributing multiply is

k
NOA=N1/2/k

Suppose that T has distance p from the origin, with p < A to ensure that T actually meets
the annulus of radius X\. If X\ > p+1, then £, is about N'/2/(\ — p)'/2, so that multiple
contributions only occur when A —p < K2If p <A< p+1, then £y is about Nl/z, which
is good. Therefore, (7) is effectively at most

k+k _ _
Nz 2. NPO-pTP=k|1+ 3 (A-pT
A A—p<k? A:A—p<k?
Now the values of A are equally spaced in [N/2, N| with spacing N/k, and so

YDICEPECEID S o

k —
A A—p<k? jiiN/k—p<k? P

ONCoN

jij—pk/N<kS /N

k 1/2 k‘3 1/2 k}2
< = —] ==<L
N N N

Therefore, (7) is dominated by k, as required. O

REMARK 2. A weak point of the argument is the simple estimate for the tubes contributing
at most one point. Clearly, there is scope for choosing rotations of the spheres to make it very
unlikely that a given tube would meet many points on these spheres. This probabilistic approach
leads ultimately to the considerations of Section 2, where in choosing points at random (rather
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than choosing random rotations of the fixed configurations on spheres that we have built here)
leads to a situation where the details are somewhat cleaner.

So, for the set Cj, Conjecture 1 predicts that, for 1 < k < N'/2, we have

S lgdotan)? < Cak | lgPdo. ©
gd—1

o €Ck

while the Stein—Tomas restriction theorem (2) gives

S ladr(ea) < CARATINGDIED [ g,

2o €Ck

clearly, the former is a much stronger inequality for all 1 < k < N'/2. As a first indication
that some of the inequalities (8) may have a chance of being true, we mention a result from
[4] (Corollary 3) that implies that, when d = 2 and we place N2/3 points z, at roughly equal
spacings of approximately N'/3 on a circle of radius N, then we have

S lgdo(ea)? < CalogN | lgfdo.
T St

Thus, when d = 2, we have at least some handle on the extreme cases k = 1 and k = N'/2 of
(8). We hope to return to these matters elsewhere.
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