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Determining the scale of anthropogenic impacts is critical in order to understand ecosystem effects of human activities, within the context of
changes caused by natural environmental variability. We applied spatial eigenfunction analysis to disentangle effects of anthropogenic drivers
from environmental factors on species assembly in the Faroe-Shetland Channel (FSC), in the northeast Atlantic. We found that the species as-
sembly considered here was structured at both small and large spatial scales. Specifically, substrate types, distance to oil wells and pipelines,
the presence of objects and demersal fishing (both static and mobile) appeared significant in explaining large spatial scale species assembly
structures. Conversely, temperature and variance in temperature shaped the species community across smaller spatial scales. Mobile scaven-
ger species were found in areas impacted by demersal fishing. Oil and gas structures seemed to provide a habitat for a range of species includ-
ing the commercially important fishes Molva sp. and Sebastes sp. These results demonstrate how the benthic ecosystem in the FSC has been
shaped by multiple human activities, at both small and large spatial scales. Only by sampling datasets covering several sites, like in this study,
can the effects of anthropogenic activities be separated from natural environmental controls.

Keywords: anthropogenic impacts, deep-sea sponge grounds, Faroe-Shetland Channel, fisheries, megafauna, oil and gas, spatial scale, species
assembly

Introduction
Ecological communities and processes such as recruitment or dis-

persal vary over temporal and spatial scales (Wiens, 1989).

Understanding appropriate scales for observing ecological pro-

cesses, as well as determining the origin of spatial variation (bio-

logical, environmental, or anthropogenic), is very important to

determine how ecosystems and communities function (Borcard

et al., 2018). Changing sampling scale when analysing the same

ecological assemblage can lead to drastically different findings

(Nogués-Bravo et al., 2008) and spatial analysis has been increas-

ingly used in ecology in recent decades (Dale and Fortin, 2014).

This is particularly important with recent fast temporal changes

observed in ecosystems as a consequence of human activities and

global climatic change (Halpern et al., 2008).
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Determining spatial structure in complex ecological commu-

nity datasets is challenging but a range of methods have been de-

veloped. Distance-based Moran’s eigenvectors mapping or

dbMEM is one method that can be applied to determine spatial

structures in the composition of ecological communities

(Borcard and Legendre, 2002). It creates new variables or eigen-

functions that correspond to the spatial scales perceivable in the

community composition (Borcard et al., 2004). Initially called

Principal Coordinates of Neighbour Matrices (PCNM), dbMEM

provides eigenfunctions calculated solely on geographical coordi-

nates and pairwise distances between sampling points (Borcard

and Legendre, 2002). After extraction of positive eigenfunctions

maximizing Moran’s index of spatial autocorrelation (Moran’s I),

dbMEM can help distinguish between spatial changes owing to

community processes and spatial changes resulting from varia-

tions in environmental factors (Dray et al., 2006). dbMEM analy-

sis is a powerful tool for ecologists trying to understand the

importance of spatial scales and can be combined with ordination

analysis (Dray et al., 2006) such as Principal Component Analysis

(PCA) and Redundancy Analysis (RDA) (Henry et al., 2013).

Deep-sea sponge grounds are present in many of the world’s

ocean and are constituted by high densities of one or more

sponge species (Maldonado et al., 2017). Sponge grounds provide

a three-dimensional habitat known to support a great diversity of

organisms, but also constitute a substrate that other organisms

can colonize (Buhl-Mortensen et al., 2010). Deep-sea sponge

grounds have thus been shown to be associated with higher mega-

fauna diversity and abundance compared with non-sponge habi-

tats (Beazley et al., 2013, 2015). When considered as a substrate,

sponges themselves support higher species richness, biomass, and

diversity than other hard substrates found in the deep sea such as

coral rubble (Kazanidis et al., 2016). Sponge spicule mats are

additionally an important substrate type in the deep sea, support-

ing higher species diversity (Bett and Rice, 1992; Beaulieu, 2001;

Laguionie-Marchais et al., 2015). Sponge aggregations are also

known to serve as nursery grounds for numerous vertebrate and

invertebrate marine species, including economically-important

fish (Okutani and Sasaki, 2007; Marliave et al., 2009;

Kenchington et al., 2013).

In the Faroe-Shetland Channel (FSC) sponge grounds occurring

at depths of around 500 m (Kazanidis et al., 2019), are of the boreal

ostur type formed by accumulations of demosponges, particularly

Geodia spp (Bett, 2001; Klitgaard and Tendal, 2004). In July 2014, a

United Kingdom nature conservation marine protected area

(NCMPA) was established in the FSC to protect deep-sea sponge

grounds. Nevertheless, fishing activities including trawling have

been recorded within the FSC prior to the NCMPA designation

(Bullough et al., 1998). Oil exploration and production activities

are also taking place in the FSC, within and around the NCMPA,

since the early 1990s with the initial discovery of the Foinaven,

Schiehallion and Loyal fields (Austin et al., 2014) and the contin-

ued development of the Quad 204 project (Rees and Parke, 2013).

Most studies on deep-sea ecosystems consider the impacts

from individual human activities at local sites. However, studies

considering multiple anthropogenic activities over larger spatial

scales are needed to better understand their impacts on deep-sea

benthic communities, including sponge grounds. Here, we used

seabed still images and environmental data from a range of aca-

demic and industrial sources to conduct a community-level spa-

tial analysis of sponges and associated megafauna in the FSC. The

objectives of this study were to: (i) untangle the impacts of

environmental and anthropogenic factors on the distribution of

megafauna including sponges in the FSC and (ii) determine at

which spatial scales these environmental and anthropogenic fac-

tors influence local megafauna communities.

Material and methods
Sampling area
Still images from environmental monitoring surveys conducted at

six sites within the FSC between 2002 and 2014 were accessed for

this study: Clair, Foinaven-Schiehallion-Loyal, Laggan, Rosebank

(along a proposed pipeline route), Suilven and William (Figure 1,

Table 1). The FSC is located between the Scottish and Faroese con-

tinental shelves. To the southwest, the FSC reaches depths of about

850 m and is separated from the North Atlantic Ocean by the

Wyville-Thomson ridge. To the northeast the FSC is open to the

Norwegian Sea and deepens to almost 2000 m (Buhl-Mortensen,

et al. 2010). In total, 4665 still images from ROV transects were

catalogued and 2436 still images were selected for further analysis

(Figure 1, Table 1). As images originated from 16 different surveys

(Table 1), image selection was strict to only include images of the

best quality. Images partly obstructed by sediments, too far away

from- or too close to the seabed (below 1 m or beyond 2 m to the

seabed), and images of poor resolution (less than 300 dpi) were

not included in the analysis. Furthermore, since each survey cov-

ered different spatial areas, site will not be considered in this study

as a variable but rather be used as parameter determining the ori-

gin of each still image.

Image analysis
For each still image, all clearly visible megafauna were recorded

and classified into operational taxonomical units (OTUs). In to-

tal, 52 non-sponge OTUs were considered in the analysis

(Table 2). As sponge identification requires biological samples

and examination of their spicules, sponge OTUs were based on

morphology alone based on definitions given in the literature

(Boury-Esnault and Rützler, 1997) and a sponge catalogue devel-

oped for the FSC in Kazanidis et al. (2019). Hence erect sponge

OTUs were grouped into the following six morphological groups:

arborescent, i.e. branching, clathrate, i.e. lattice-forming, flabel-

late, i.e. fan-shaped, globular, massive, and carnivorous morpho-

types (Table 2, Supplementary Figure S1). Three other sponge

OTUs were defined to group the verrucose sponges, encrusting

sponges, and cushion-shaped sponges respectively (Table 2;

Supplementary Figure S1).

Dominant substrate type was also determined for each still im-

age. Substrate types were categorised into the following five groups:

(i) sand, (ii) cobble/gravel, (iii) sand with boulder, (iv) cobble/gravel

with boulder, and (v) boulder, adapted from the Wentworth scale

(1992). Finally, presence of oil and gas related objects and trawl

marks as identified by Roberts et al. (2000) as distinctive linear scars

on the seabed was recorded on each image (Figure 2).

Environmental and anthropogenic factors
In order to assess the importance of environmental and anthro-

pogenic variables on the distribution of benthic megafauna in the

FSC, data from several online resources were accessed. Slope, as-

pect, and rugosity were extracted from bathymetry shapefile avail-

able at the GEneral Bathymetry Charts of the Oceans (GEBCO;

https://www.gebco.net, spatial resolution 30 arc second), using

the freely available software QGIS (QGIS Development Team,

2 J. Vad et al.
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2019). Aspect was subsequently converted into northness and

eastness, as follows:

Eastness ¼ sin Aspectð Þ; (1)

Northness ¼ cos Aspectð Þ: (2)

Average annual temperature and salinity, variance of annual

temperature and salinity as well as neap and spring seabed stress

(parameters determining seabed disturbance arising from tidal

currents) were available through the Atlantic Interactive project

(unpublished data). Spring and neap estimates of bed stress were

estimated from the NEMO simulation AMM60 with a 1.8 km res-

olution for the domain 40.1–64.9 DD latitude, and 24.9–17.3 DD

longitude (Guihou and Polton, 2015; Guihou et al., 2018).

Surface and bed temperature and salinity data from 2000 to 2009

were modelled from a POLCOMS Atlantic Margin Model with

�12 km resolution and domain 40.1–64.9 DD latitude and 13.0–

19.8 DD longitude (available at https://www.bodc.ac.uk/data/

documents/nodb/316641/) (Holt et al., 2012).

Static and mobile demersal fishing intensity (spatial resolution

0.01� by 0.01�) based on the vessel monitoring system (VMS) was

acquired through the Marine Scotland Open Data Network

Initiative National Marine Plan Interactive (NMPI, https://

marinescotland.atkinsgeospatial.com/nmpi/). VMS data for UK

registered commercial fishing vessels greater than 15 m long for

the period 2009–2013 were combined with ICES landings to pro-

duce this layer (NMPI website). Distance to the closest well and

distance to the closest pipeline were also calculated for each still

image with the R package Geosphere (Hijmans, 2017) from Oil

and Gas UK shapefiles available for visualization on the NMPI

website.

Although most environmental and anthropogenic factors used

in this study are at low resolution, these data are, to the authors’

knowledge, of the best quality available. The use of images over a

Figure 1. Location of the study area and of the still images analysed. (a) Location of the FSC highlighted in red. (b) Faroe-Shetland
Channel NCMPA (outlined in black) with still images used in this analysis coloured by oil field (red - Foinaven-Schiehallion-Loyal, blue - Clair,
purple - Laggan, yellow - Rosebank, green - Suilven and pink - William).

Table 1. Summary of still images processed.

Field
Location (Latitude,
Longitude in DD) Depth (m)

Numbers of
surveys included
in the analysis

Year of
survey(s)

Number of
images
available

Number of images
retained in the
analysis

Clair 60.70, �2.51 123–176 4 2000, 2004, 2010, 2013 920 470
Foinaven-Schiehallion-

Loyal
60.36, �4.09 361–925 8 2002, 2003, 2005, 2006, 2007,

2011, 2015, 2016
1525 935

Laggan 60.95, �2.87 567–601 1 2007 1322 490
Rosebank 60.94, �2.92 129–1118 1 2011 115 78
Suilven 60.51, �4.28 455–879 1 2002 181 66
William 60.63, �5.45 749–800 1 2006 601 397
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large spatial area (not just focussed over a single field but over

several) enabled us to extract ranges of values for each environ-

mental and anthropogenic factor and to consider them in our

analysis.

Statistical analysis of the data
All available OTU presence data at each still image location were

organized into an OTU presence/absence matrix in which each

line of the matrix corresponds to a single still image location and

each column record the presence or absence of a specific OTU.

Hence, single photographs were chosen as the sampling unit here.

Individual sampling units typically had abundances of tens of

individuals, which are considered to be sufficient for robust

analysis. Environmental and anthropogenic variables were

checked for correlations, using the R package corrplot (Wei and

Simko, 2017). Hence, depth, slope, salinity, variance of salinity,

and variance of temperature were removed from the analysis as

these variables showed strong correlation with ruggedness and

temperature respectively (see Supplementary Figure S2). The

remaining environmental and anthropogenic variables were then

organized into an environmental matrix. Finally, a spatial matrix

was constructed with the fifteen positive spatial eigenvectors

extracted through dbMEM conducted with the R package adespa-

tial (Dray et al., 2018). Owing to the resolution of our dataset, the

first eigenvectors created through this analysis will describe large

spatial scale changes, in this study over several tens of kilometres

(so across fields) while the last eigenvectors will relate to small

spatial scale changes across tens of meters (within field).

Stepwise selections of statistically significant spatial, environ-

mental and anthropogenic variables were then conducted

through the construction of RDA models. RDA is an extension of

PCA in which the response variables (here megafaunal composi-

tion) can be modelled as a function of multiple explanatory varia-

bles (Zuur et al., 2007). Hellinger standardization was applied on

the OTU matrix to reduce the weight of rare OTUs (present in

fewer images) and to maintain linear relationships between OTUs

and environmental/anthropogenic variables (Legendre and

Gallagher, 2001). The stepwise selection process retained five spa-

tial eigenvectors (MEM1, MEM3, MEM4, MEM13, and

MEM15), three environmental variables (substrate, temperature,

and variance in temperature) and four anthropogenic variables

(distance to well and distance to pipeline, intensity of mobile and

static demersal fishing) (Table 3).

To examine the impact of spatial and environmental variables

on OTUs presence/absence, a total RDA and two partial RDA (a

spatial pRDA and an environmental pRDA) models were con-

structed following Borcard et al. (1992). The total RDA model in-

cluded all the spatial and environmental variables as constraints

to the OTUs data. The spatial pRDA model included all spatial

variables as constraints to the OTUs data while all environmental

variables taken into account within a condition on the model

(Borcard et al., 1992). The environmental pRDA model was built

as the opposite to the spatial pRDA model (Borcard et al., 1992).

The variation of OTUs presence/absence data could then be parti-

tioned, by taking into account the results from all three models,

into four components: pure spatial, pure environmental, spatial

and environmental, and unexplained (Borcard et al., 1992).

Furthermore, the total RDA model biplot was analysed to deter-

mine the relationship between the spatial and environmental vari-

ables and the environmental pRDA model biplot was drawn to

investigate the influence of individual environmental factors on

specific OTUs. The 15 OTUs most impacted by the selected envi-

ronmental variables were also extracted based on their RDA

scores. All RDA and pRDA models were conducted with R pack-

age vegan (Oksanen et al., 2017). All the statistical analysis steps

were conducted in RStudio (RStudio Team, 2015).

Results
General results from the image analysis
Dominant substrate type differed between FSC sites. Gravel/cob-

ble and sand were the most frequent dominant substrate types

recorded in this study (Figure 3a). Sand was dominant at Clair,

Rosebank, and William whereas gravel/cobble was the most fre-

quent substrate type at Foinven-Schiehallion-Loyal and Laggan.

Hard substrate formed by boulders was predominantly recorded

at Suilven (Figure 3a). About 92% of the images analysed did not

contain any objects (Figure 3b). Pipelines were recorded on 3.1%

of the still images while chains and ropes were present on 2.5% of

the still images. No anthropogenic objects were detected at the

Rosebank, Suilven and William sites. On the contrary, Foinaven-

Schiehallion-Loyal appeared to be the most heavily impacted site

as 18.8% of images included an anthropogenic object (Figure 3b).

Trawl marks were observed on 1.7% of the images analysed

(Figure 3c). This proportion reached a maximum of 17.4% at

William. No trawl marks were recorded at Rosebank and Suilven

(Figure 3c).

Some OTUs included in this study were common across the

whole study area. Five OTUs were amongst the most prevalent

OTUs in the overall study area as well as at each site: encrusting

sponges, cushion sponges, globular sponges, flabellate sponges,

and Asteroidea (Figure 4). Cidaris sp, Ophiuroidea, and

Echinoidea were also often detected in the whole study area and

at most sites (Figure 4). However, some OTUs were characterized

by a rather site specific distribution. Notably, branching sponges

were only often encountered at Foinaven-Schiehallion-Loyal

(12.6%, Figure 4). Pycnogonida were amongst the most prevalent

OTUs at Rosebank (4.2%) but mainly absent from other sites and

soft corals (Alcyonacea 1 and 2) were common at Suilven

(Figure 4).

Overview of RDA and pRDAs results
The total RDA and pRDA models constructed in this study allow

us to determine the relationships between spatial and environ-

mental variables. All three models were statistically significant

(Supplementary Table S1). In total, 15.1% of the OTU presence/

absence data was explained by the selected spatial and environ-

mental variables while 84.9% of the variation remained unex-

plained (Figure 5). Of the 15.1% of variation explained, 8.0% was

accounted for by environmental changes whereas 2.6% was

explained by spatial variables (Figure 5). The remaining 4.5% of

OTUs variation was a product of environmental and spatial varia-

bles interactions (Figure 5). When considering the total RDA

biplot (Figure 6), it is clear that substrate type, temperature, and

demersal fishing (both static and mobile) are the main environ-

mental variables influencing OTUs distribution. MEM1, MEM3,

and MEM15 seem to be the main spatial variables affecting the

distribution of OTUs in the study area (Figure 6). Relationships

between spatial and environmental variables could also be deter-

mined. Substrate type, mobile demersal fishing as well as distance

to well and pipelines vectors appear related to the vector

4 J. Vad et al.
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representing MEM3. Temperature and variance of temperature

vectors are tangential with the MEM13 and MEM15 vectors.

Finally, the object vectors are tangential with the MEM1 and

MEM4 vectors (Figure 6).

Specific impacts of environmental and anthropogenic
factors on megafauna in the FSC
Differences in OTU response to environmental variables was ob-

served on the environmental pRDA biplot (Figure 7). Substrate

type strongly constrained the presence of sessile megafauna in the

FSC (Figure 7). Sponge OTUs, Asteroidea, hydrozoan OTUs,

bryozoan OTUs were all associated with coarser substrates

(Figure 7). On the other hand, presence of mobile megafauna

seemed constrained by anthropogenic variables including demer-

sal fishing (both mobile and static) and the presence of anthropo-

genic objects. Decapoda, Cidaris sp. and, to a lesser extent,

Ophiuroidea were detected at locations with high fishing effort.

Sebates sp. and Molva sp. were associated with larger

Table 2. All OTUs considered in this study organized by class (or
phylum for sponges) with short description.

Actinopterygii
Molva sp. Dark grey elongated ling
Gaidropsarus argentatus Elongated lotid fish, red in colour
Macrouridae Dark grey grenadier
Cottunculus microps Small grey sculpin
Sebastes sp. Small red and white rock fish
Lycodes sp. Brownish elongated fish
Anthozoa
Actinaria 1 Orange anemone approximately 2 cm wide
Actinaria 2 Small red anemone approximately 1 cm wide
Actinaria 3 Red anemone with elongated tentacles

approximately 2 cm wide
Actinaria 4 Dark red/brown anemone approximately 2 cm

wide
Ceriantharia Tube dwelling anemone, white to pale pink in

colour
Alcyonacea 1 Pink soft coral
Alcyonacea 2 Dark purple soft coral
Pennatulacea White/yellow short sea pen
Funiculina sp. White long sea pen
Scleractinia Small cup coral approximately 1 cm wide
Zoantharia Small white polyps found in groups of 10–20

individuals, all about 1.5 cm long
Ascidiacea
Tunicata Brown small solitary ascidian with two visible

siphons
Asteroidea
Asteroidea Sea stars of various colours, often not fully

visible (so grouped into one OTU)
Bivalvia
Bivalvia Small white/grey bivalve
Bryozoa
Bryozoa 1 White spiny encrusting bryozoan
Bryozoa 2 Red/brown spiny encrusting bryozoan
Bryozoa 3 White delicate lattice forming bryozoan
Cephalopoda
Octopoda Greyish octopus
Decapodiform Red/orange little squid
Chondrichthyes
Chimaeriform Dark grey chimera fish
Batoidea Dark brown large ray
Clitellata
Notostomum laeve? Brown worm-like animal, slightly flattened
Crinoidea
Crinoidea 1 Large dark brown crinoid
Crinoidea 2 Fine white/pale yellow crinoid
Crinoidea 3 Bright orange large crinoid
Echinoidea
Cidaris sp. Beige slate pen sea urchin
Echinoidea Light red sea urchin
Gastropoda
Gastropoda White/grey sea snail
Holothuroidea
Holothuroidea Orange to red sea cucumber
Hydrozoa
Hydrozoa 1 Fine dark stalked hydrozoan with branches

perpendicular to the stalk
Hydrozoa 2 Fine dark branching hydrozoa
Hydrozoa 3 Fine white branching hydrozoa
Hydrocoral 1 Short bright white hydrocoral with branches

Continued

Hydrocoral 2 Tall hydrocoral with white tentacles and pink
egg like structures in its centre

Tubularia sp. Polyp like animal with pink egg-like structures
in its centre emerging from brown tubes

Malacostraca
Decapoda Small white and red shrimp
Galatheidae Small red squat lobster
Brachyura Orange crab
Anomura Hermit crab
Munnopsurus sp. Large pink crustacean with long antennae
Maxillipoda
Cirripedia Small white barnacle
Myxini
Myxini Light grey/beige hagfish
Ophiuroidea
Ophiuroidea Brittle stars of various colours, often not fully

visible (so grouped into one OTU)
Gorgonocephalus sp. Yellow and red basket star
Polychaeta
Sabellida Brown tube building worm with white feeding

tentacles
Porifera
Globular Sponges Bright white round sponge, potentially Geodia

sp.?
Branching Sponges Beige delicate branching sponge
Verrucose Sponges Brown flat sponge with emerging tubular

structures, often covered by sediments
Clathrate Sponges Lattice forming sponge, often white in colour

around 3 cm in diameter.
Lobose Sponges Lobe forming white glass sponge, potentially

Asconema sp.?
Carnivorous Sponges Small white stalked sponge with round ended

appendices perpendicular to the stalk.
Flabellate Sponges Fan-shaped sponge, light brown/beige in

colour, potentially Phakelia sp.?
Cushion Sponges Flat cushion shaped sponges of various colours
Encrusting Sponges Flat and fine encrusting sponges of various

colours
Pycnogonida
Pycnogonida Yellowish delicate sea spider, about 1–2 cm

wide
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anthropogenic objects such as manifolds and pipelines. Distance

to the closest pipeline also affected specific OTUs with Bivalvia

being associated with locations furthest away from pipelines

(Figure 7).

Discussion
Overall megafauna composition recorded in this study are in ac-

cordance with previous studies (Axelsson, 2003; Howell et al.,

2007; Jones et al., 2007a; Kazanidis et al., 2019). It has been

reported that Cnidaria, Polychaeta, Porifera, Enteropneusta,

Mollusca, and Crustacea together represented 90% of the mega-

fauna present in the FSC (Axelsson, 2003). Fish (blackbelly rose-

fish, Helicolenus dactylopterus), squat lobsters, urchins, sea stars,

anemones, holothurians, brittle stars as well as sponges were also

described as often encountered in the FSC (Howell et al., 2007).

Jones et al. (2007a) reported high abundances in Annelida and

Cnidaria across the Channel with other Phyla including

Anthropoda, Echinodermata, and Porifera detected at high den-

sity at specific stations. In our study, Porifera (encrusting, cush-

ion, globular, and flabellate sponges), Asteroidea, Echinoidea

(Cidaris sp. and other Echinoidea), and Ophiuroidea were the

most recorded taxonomic groups. Eight sponge morphotypes,

similar to the sponges found by Kazanidis et al. (2019) were ob-

served in this study, demonstrating the high diversity of sponge

morphotypes present in the FSC.

Megafauna community distribution varied across both large

and small spatial scales within the FSC. In fact, the eigenvector

representing the largest (MEM1) and smallest (MEM15) spatial

scales were selected in our model. The selected MEMs did not co-

incide with the resolution of the environmental variables used,

demonstrating that the lower environmental resolution used in

this study did not impact the results. Substrate types, distances to

wells and pipelines, the presence of objects, and demersal fishing

(both static and mobile) appear significant in explaining large

spatial scale OTU assembly structures. Conversely, temperature

and variance in temperature shaped the OTU community across

smaller spatial scales. This is an important finding as it means

that the impact of anthropogenic factors in the FSC would not

have been detected if considering individual sites (i.e. oil fields).

Only by sampling datasets covering several sites, like in this study,

can the strong effects of both oil and gas production and fisheries

be separated from environmental controls. Our study therefore

shows that consideration to spatial scales is important when aim-

ing at understanding how environmental factors and anthropo-

genic activities impact spatial distribution of species. Several

studies have already highlighted the significance of spatial scale in

deep-sea marine ecology studies (Henry et al., 2013; Ingels and

Vanresuel, 2013; De Leo et al., 2014). However, to the authors’

knowledge, no previous work has applied dbMEM analysis to de-

termine the scale of impact of multiple anthropogenic activities

on deep-sea benthic communities.

Substrate type and temperature seemed to play a major role in

driving benthic megafauna composition. Substrate type along

with depth, is known to be an important factor driving deep-sea

benthic community composition (Roberts et al., 2008; Howell,

2010; Lacharité and Metaxas, 2017). Substrate type had a stronger

impact on sessile fauna, with most sessile OTUs associated with

coarser substrate. It is known that most sponges will colonize

hard substrate and sponges in the FSC have previously been

shown to be associated with coarser substrate types (Kazanidis

et al., 2019).

Temperature and variance in temperature also played a role in

controlling benthic megafauna spatial distribution. The FSC is

characterized by a complex water circulation as five water masses

with different salinities, temperatures and nutrient concentrations

flow through the channel (Hansen and Østerhus, 2000). The

North Atlantic Water and the Modified North Atlantic Water are

present in the upper layers of the channel travelling in a northeast

direction towards the Arctic Seas while the Modified East

Icelandic Water, Norwegian Sea Arctic Intermediate Water, and

Norwegian Sea Deep Water are moving below, in a southwest di-

rection towards the North Atlantic (Hansen and Østerhus, 2000).

Generally, water temperature on the Shetland side of the FSC can

vary from 0�C or lower below 700 m depth to over 10�C above

100 m depth (Berx et al., 2013). Through this complex mixing re-

gime, benthic organisms present in the FSC can therefore be ex-

posed to great changes in temperature of up to 7�C in an hour

(Bett, 2001). Ostur sponge grounds as described by Bett (2001)

experience, at least occasionally, sub-zero temperatures while the

ostur communities described by Klitgaard et al. (1997) around

Figure 2. Evidence of anthropogenic activities taking place in the FSC. (a) Trawl marks visible in the seabed. (b) Pipeline as an example of an
object detected in this study (lasers separated by 35 cm).
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Figure 3. Overall results from image analysis. (a) Proportion of dominant substrate types recorded at each site; (b) proportion of still images
with object recorded at each site; (c) proportion of still images with trawl marks recorded at each site. FSL, Foinaven, Schiehallion, Loyal; FSC,
Faroe-Shetland Channel.

Table 3. Environmental, anthropogenic, and spatial variables considered in this study.

Environmental variables Anthropogenic variables Spatial variables

Depth (m) Presence of objects MEM1
Substrate type Presence of trawl marks MEM2
Average annual temperature (�C) Distance to closest well (m) MEM3
Variance in annual temperature (�C) Distance to closest pipeline (m) MEM4
Average annual salinity (ppm) Static demersal fishing intensity MEM5
Variance in annual salinity (ppm) Mobile demersal fishing intensity MEM6
Neap tide seabed stress (N.m-2) MEM7
Spring tide seabed stress (N.m-2) MEM8
Rugosity MEM9
Slope (�) MEM10
Eastness MEM11
Northness MEM12

MEM13
MEM14
MEM15

Variables selected for the PCA and pRDA models are highlighted in bold.
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the Faroes thrive under water temperatures higher than 5�C. A

more recent publication also highlighted the role of temperature

and variance in temperature in delimiting the FSC sponge

grounds (Davison et al., 2019).

Natural environmental factors were not the only variables

detected to exert strong control on the spatial structure of the

megafauna. Commercial deep-water fishing is known to have oc-

curred in the FSC (Bett, 2001; Bullough et al., 1998) and both

trawl marks as well as fishing gear (ropes) were detected in this

study. Both dermersal mobile and static fishing variables were

retained in our analysis. Mobile scavenger OTUs (Cidaris sp,

Decapoda, and Ophiuroidea) were detected in locations where

fishing was the strongest whereas sessile OTUs (sponge OTUs,

Cirripedia, and Hydrocorals) were associated with areas charac-

terized by low fishing activities. These results confirm the findings

of Kazanidis et al. (2019) describing fishing effort as one of the

strongest factors driving the distribution of sponges in the FSC

and demonstrate, once more, the significant impact of deep-sea

fishing (both mobile and sessile) on the megabenthos in the FSC.

The current proposed management plan from Marine Scotland

for the FSC NCMPA include restriction zones for all demersal

gears along south-eastern border of the NCMPA and for mobile

demersal gear along the north-western border of the NCMPA

with a fishing corridor present between the two areas (Marine

Scotland, 2017a, b). Recovery/recolonization by sessile megafauna

of the restriction zones will need to be studied in the future to de-

termine the efficiency of the management plan.

In our study, distance to wells and pipelines and presence of

objects linked to oil and gas activities were significant factors af-

fecting megafauna spatial composition in the FSC. One sessile

OTU (Bivalvia) was found clearly linked to locations furthest

away from pipelines. In the FSC, physical disturbance from off-

shore drilling is known to have led to a decrease in diversity in

terms of species richness (Jones et al., 2006, 2007b). Overall

megafaunal diversity increased with distance from the distur-

bance, with sessile benthic taxa being the most affected and dis-

playing high mortality rates (Jones et al., 2006, 2007b). A follow-

up study published in 2012 showed that the megafauna had only

partially recovered between 3 and 10 years post-drilling (Jones

et al., 2012). Furthermore, fish OTUs including economically im-

portant Molva sp. and Sebastes sp., were linked with the presence

Figure 4. Prevalence of the 18 most frequent OTUs recorded at each site and across all sites combined (FSC). Enc. Spo., for encrusting
sponges; Glob. Spo., for globular sponges; Flab. Spo., for flabellate sponges; Cush. Spo., for cushion sponges; Ver. Spo., for verrucose sponges;
Branch. Spo., for branching sponges; Lob. Spo., for lobose sponges; Cla. Spo., for clathrate sponges.

Figure 5. Partition of OTUs presence/absence data variation
explained by the pure environmental, pure spatial, spatial, and
environmental interactive as well as unexplained components.
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of larger oil infrastructure such as pipelines and manifolds. The

association of fish species with oil production infrastructures has

previously been documented (Seaman et al., 1989). Oil platforms

off California can host amongst the most productive fish habitats

(Claisse et al., 2014), with productivity values varying greatly

from one platform to another (Fowler et al., 2015). Under UK

regulation, as offshore infrastructures age, decommissioning

options for the physical removal of ageing offshore infrastructure

needs to be considered. Physical disturbance is of concern when

considering decommissioning as the removal of offshore infra-

structure could strongly impact benthic megafauna (Fowler et al.,

2014; Vad et al., 2018). Although decommissioning west of

Shetland is not yet an immediate issue, consideration around the

environmental impact on benthic megafauna of the removal of

infrastructures in the MPA will have to be examined.

In conclusion, this study demonstrated the importance spatial

scale analysis is to differentiate the impacts of multiple

anthropogenic activities from natural environmental variability.

Fishing activities in the FSC had significant negative impacts on

the sessile megafauna while motile megafauna were found associ-

ated with large oil and gas infrastructures. Environmental varia-

bles such as temperature and substrate types exerted control over

the distribution of the megafauna at small spatial scales.

However, both fishing and oil and gas activities were found to

structure the megafauna assembly at large spatial scales. As hu-

man activities are increasingly taking place in the deep sea, the

findings of this study highlight the need for similar large scale

analysis to disentangle the complex influences between environ-

mental changes and human impacts on deep-sea ecosystems.

Supplementary Data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.

Figure 6. Biplot of total RDA model.

Figure 7. Biplot of pRDA model. For clarity, symbols represent the class/phylum of each OTU (see legend). The 15 most impacted OTUs
have also been marked: (1) Echinoidea, (2) Sebastes sp., (3) Hydrocoral 2, (4) Asteroidea, (5) Cushion Sponges, (6) Bivalvia, (7) Decapoda, (8)
Cidaris sp., (9) Galatheidae, (10) Arborescent sponges, (11) Cirripedia, (12) Molva sp., (13) Globular Sponges, (14) Flabellate Sponges, and (15)
Encrusting Sponges.
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