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Synopsis: 

Functionalized biaryl building blocks (Ar
1
-Ar

2
) are prepared by site-selective Au-catalyzed arylation of arenes 

(Ar
1
-H) with arylsilanes (Ar

2
-SiMe3).  
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Abstract 

Biaryls (two directly connected aromatic rings, Ar
1
-Ar

2
) are common motifs in pharmaceuticals, 

agrochemicals, and organic materials. Current methods for establishing the Ar
1
-Ar

2
 bond are dominated by the 

cross-coupling of aryl halides (Ar
1
-X) with aryl metallics (Ar

2
-M). We report that, in the presence of 1 to 2 

mole percent of a gold catalyst and a mild oxidant, a wide range of arenes (Ar
1
-H) undergo site-selective 

arylation by arylsilanes (Ar
2
-SiMe3) to generate biaryls (Ar

1
-Ar

2
), with little or no homocoupling (Ar

1
-

Ar
1
/Ar

2
-Ar

2
). Catalysis proceeds at room temperature and tolerates a broad range of functional groups, 

including those incompatible with cross-coupling. These features expedite biaryl preparation, as demonstrated 

by synthesis of the nonsteroidal anti-inflammatory diflunisal. 

 

Main text 

The biaryl moiety (two directly connected aromatic rings, Ar
1
-Ar

2
) is a common functionality in 

pharmaceuticals [such as Lipitor, Crestor, and Diovan, three of the most widely prescribed drugs in 2010 (1)]; 

in agrochemicals; and in many modern organic materials, including liquid crystal displays, light-emitting 

diodes, and conducting polymers. The high value of the biaryl motif is reflected in the myriad strategies for its 

construction, the majority of which involve transition metal–catalyzed cross-coupling of an aryl halide (Ar
1
-

X) and an aryl organometallic (Ar
2
-M) (Fig. 1) (2, 3). Nonetheless, it is widely appreciated that there remains 

a need for biaryl syntheses that are more concise, more selective, more versatile, or complementary to 

conventional routes. In response to this need, much effort has been devoted to direct arylation: cross-couplings 

in which one preactivated partner is replaced by a simple arene [for reviews, see (4–7); for selected examples, 

see (8–14)]. 

 

 

Figure 1. Cross-coupling and oxidative direct arylation approaches to biaryl (Ar
1
-Ar

2
) building blocks. X

1
, 

halide or sulfonate; M, electropositive element (such as Mg, Zn, B, Sn, or Si); FG
1-2

, functional group 

(including alkyl, aryl, halogen etc); [O], oxidant; cat., transition-metal catalyst. 
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Direct arylation of an arene (Ar
1
-H) with Ar

2
-M constitutes coupling of two nominal nucleophiles and hence 

requires an oxidant. As a corollary of the oxidative mechanism, functional groups incompatible with 

traditional cross-coupling may be tolerated; for example, when one or both partners bear additional 

(pseudo)halogens (i.e., in Fig. 1, FG
1
 and/or FG

2
 = X

2
, X

3
). The mechanistically orthogonal direct arylation 

approach then facilitates a powerful synthetic strategy for step-economic construction of complex biaryl 

molecules; for example, delivering versatile halogenated biaryl systems primed for direct entry into the cross-

coupling manifold. Although tremendous progress has been made in the field of (oxidative) direct arylation 

(4–14), delivery of an efficient protocol remains nontrivial. In particular, the inherent low reactivity of a C-H 

bond (relative to the C-X bond it replaces) must be overcome, and high selectivity must be exhibited for a 

specific C-H bond in Ar
1
-H, without competition from C-H bonds in the coupling partner (Ar

2
-M) or the 

product (Ar
1
-Ar

2
). Many of the extant methodologies involve harsh reaction conditions, limiting the substrate 

scope, and employ high catalyst loadings. Moreover, selectivity is frequently achieved by the use of an excess 

of one coupling partner (for example, as the solvent), and/or substrates incorporating a directing group capable 

of delivering the transition-metal catalyst to a specific C-H bond (15). 

We report a gold-catalyzed direct arylation of simple arenes (Ar
1
-H) with arylsilanes (Ar

2
-SiMe3) that affords 

biaryls (Ar
1
-Ar

2
) under remarkably mild conditions. The site of arylation is predictable and not dependent on 

the presence of adjacent, coordinating functionality. Both partners (Ar
1
 and Ar

2
) can be decorated with a 

diverse array of functionality, including halogens, thus providing valuable biaryl building blocks. 

The stimulus for pursuing the direct arylation described here was provided by two recently disclosed gold-

catalyzed processes: the dehydrogenative homocoupling of Ar
1
-H in the presence of iodine(III), as reported by 

Tse (16, 17), and a competing homocoupling of Ar
2
-SiMe3 that we observed in gold-catalyzed oxidative 

additions to alkenes (18, 19). Whilst these reactions do generate biaryls, they are by definition symmetrical 

products (Ar
1
-Ar

1
 and Ar

2
-Ar

2
) and thus of limited value. Arylsilanes are well documented to react via 

electrophilic aromatic substitution pathways (SEAr), analogously to simple arenes, with ipso substitution of 

the silyl moiety rather than loss of a proton (20). We thus hypothesized that SEAr might be operative in both 

homocoupling processes. Extension of this argument raised the tantalizing possibility that site selective gold-

catalyzed oxidative heterocoupling of arylsilanes with arenes (to give Ar
1
-Ar

2
) should provide a pathway for a 

synthetically valuable direct arylation. The feasibility of this process was confirmed by a 
19

F nuclear magnetic 

resonance (NMR) study of mixtures of mesitylene (1,3,5-trimethylbenzene, Ar
1
-H) with (4-

fluorophenyl)trimethylsilane (Ar
2
-SiMe3) in the presence of a gold(I) precatalyst (Ph3PAuCl) and an 

iodine(III) oxidant at 65°C. The desired direct arylation process was detected but accompanied by 

homocoupling of the arylsilane (Ar
2
-Ar

2
), a competing electrophilic substitution of Ar

1
-H by iodine(III), and 

further arylation of the biaryl product (Ar
2
-Ar

1
-Ar

2
). 

Four criteria were identified as key for the delivery of a practical and general direct arylation process, leading 

us to engage in an extensive program of reaction refinement (21): (i) high selectivity for heterocoupling over 
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homocoupling; (ii) economic, ideally stoichiometric, quantities of the reactants; (iii) tolerance of a wide range 

of functionalities; and (iv) efficient catalysis at convenient temperatures, without the need for inert-

atmospheres. 

Using these criteria as guiding principles, conditions were developed that facilitate high-yielding direct 

arylation, in the majority of cases with near-complete suppression of all side reactions (Tables 1 and 2). Key 

developments were using Ph3PAuOTs as a precatalyst (Table S2), conducting the reaction in the presence of a 

low concentration of methanol co-solvent at room temperature (Tables S3 and S4), and forming the active 

oxidant in situ from iodobenzene diacetate [PhI(OAc)2] and camphorsulfonic acid (CSA) (Tables S1 and S4); 

the latter are both commercially available, bench-stable free-flowing solids. Control reactions established the 

essential role of a gold precatalyst over other late transition elements or Brønsted/Lewis acid promoters (Table 

S5) and demonstrated both the innocence of diaryliodonium salt side-products and the absence of uncatalyzed 

arylation, even at elevated temperatures (Schemes S1 and S2). 

Two general sets of conditions were identified, which were tailored to the cost and complexity of the arene: 

for heavily functionalized or valuable arenes, a 1:1 stoichiometry of coupling partners was used (conditions 

A), whereas for simple or cheap arenes, a 2:1 stoichiometry was used and the precatalyst loading reduced 

from 2 to 1 mole % (mol %) (conditions B). Most reactions proceeded to completion within 20 to 40 hours at 

room temperature, although some were notably quicker (21). Longer reaction times (up to 80 hours) or higher 

temperatures (up to 65°C) were required when reactants were sterically hindered (14, 31, and 32), or when 

less electron-rich arenes (4, 8, 20, and 28) or electron-deficient arylsilanes (46 and 47) were coupled, these 

reactivity trends being consistent with SEAr elementary steps for both partners. The arylation process exhibits 

excellent site selectivity with respect to the arene partner (Ar
1
-H, Table 1), the position of arylation also being 

readily predictable based on the well-understood patterns of SEAr (20). The mildness of the conditions is 

evident from the reaction of (4-fluorophenyl)trimethylsilane with a range of ortho-anisole derivatives under 

conditions A, to give the corresponding biaryls in high yield and with excellent site-selectivity (97 to 99% 

isomeric purity) (21). 

A wide range of functional groups is tolerated, including synthetically useful (pseudo)halogenated species (1 

to4), esters and amides (5 to 8), and sensitive functionalities remote from the ring, such as primary alcohols (9 

and10) and sulfonate (11). Biaryl 8 also demonstrates tolerance of an amine in the gold-catalyzed direct 

arylation; a basic nitrogen moiety is present in all of the 10 most widely prescribed drugs of 2010 (1). In 

compounds 1 to 8,14, and 17 to 19, the methoxy substituent itself is of further synthetic potential; for 

example, directing SEAr and ortho-metallation, or via derivatization, cross-coupling, amination, or reductive 

cleavage [for a review of catalytic activation of arylmethyl ethers, see: (22)]. 
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Table 1. Scope of Ar
1
-H in Au-catalyzed direct arylation. Conditions: arylsilane (0.50 mmol), PhI(OAc)2 

(0.65 mmol), and CSA (0.75 mmol) in CHCl3/CH3OH (50:1) at room temperature, and A, Ar
1
-H (0.50 mmol) 

and Ph3PAuOTs (2 mol %); or B, Ar
1
-H (1.00 mmol) and Ph3PAuOTs (1 mol %). Ts, p-toluenesulfonyl; Ms, 

methanesulfonyl; Piv, pivaloyl (COCMe3); NPhth, N-phthalimido. 

 

Simple arenes, including those lacking strongly electronically-activating and/or -directing groups, also proved 

excellent substrates and were ideal for reaction under conditions B; the site-selectivity observed with anisole 

and toluene, giving biaryls 17 and 20, respectively, being consistent with SEAr by a gold(III) electrophile (23). 

Although the electron-rich 4-methylanisole, in which the position para to the methoxy substituent is blocked, 

promoted double arylation, 18 was generated with >99.7% discrimination between electronically different 

sites. In contrast, 3-methylanisole, in which the 4- and 6- positions are similarly activated, underwent arylation 

to give 19as a 2:1 mixture of isomers. Arylation even occurred smoothly at C-H bonds flanked on either side 

by methyl substituents (24 to 26), and although the parent naphthalene reacted with low selectivity (21), the 

methyl-substituted analog generated biaryl 27 with >96% site selectivity, in just 5 hours at room temperature. 
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A preliminary investigation indicated that thiophenes are viable substrates, although, without further 

optimization, the conditions proved less general [for example, compare 15 (91%, >99.5% site selective) and 

16 (29%, 57% site selective)]. The low reactivity of electron-deficient (hetero)arenes, such as PhF (29) and 

pyridine (30), is again consistent with an SEAr mechanism. The selectivity for electron-rich aromatics not only 

suppresses over-arylation but is also complementary to direct arylation processes that proceed via 

deprotonation-type mechanisms and favor electron-poor substrates or require ortho-directing groups (4–7, 15). 

Diverse functionality could also be introduced through the arylating partner (Ar
2
-SiMe3, Table 2). Ortho-

substituted arylsilanes that reacted sluggishly at room temperature gave the corresponding biaryls (e.g., 31 

and32) in excellent yield at 65°C, using a less-reactive iodine(III) oxidant. The synthetically useful halogens 

and sulfonates (31 to 36 and 40) were well tolerated, as were an aldehyde (37) and a pivaloyl ester (41) that 

remained in the products without oxidation or transesterification, respectively. Although electron-rich silanes 

proved more challenging, as a result of arylsilane homocoupling, the selection of appropriate reaction 

conditions allowed even biaryl 45 to be isolated in reasonable yield. Homocoupling of the arene partner (16, 

17) was not observed; instead, the material balance of the less efficient reactions detailed in Table 1 (typically 

for electron-rich Ar
1
-H) comprised diarylation and diaryliodonium side-products (21). 

 

 

 

Table 2. Scope of Ar
2
-SiMe3 in Au-catalyzed direct arylation. Reaction conditions are as in Table 1. Tf, 

trifluoromethanesulfonyl. 

 

The utility of the direct arylation methodology is exemplified by the preparation of diflunisal (Dolobid, Merck 

& Co.), a non-opioid, nonsteroidal anti-inflammatory drug (24, 25). Unoptimized direct arylation of methyl 

ortho-anisate (X = CO2Me, Fig. 2) with (2,4-difluorophenyl)trimethylsilane afforded the corresponding biaryl 

46; routine demethylation gave diflunisal (69%). Previous methods for forging the key biaryl linkage of 

diflunisal include Gomberg-Bachmann coupling of a diazonium salt and traditional cross-coupling (21). The 

power of the direct arylation approach is also evident in a second route to diflunisal, proceeding via biaryl 47; 

this iodide intermediate can also serve as a versatile platform for structural diversification via a broad 

spectrum of stoichiometric and catalytic methodologies, including cross-coupling. 
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Figure 2. Diflunisal via gold-catalyzed direct arylation; yields are unoptimized. Site selectivity for the 

arylation step (46 and 47) is 98 to 99%. 

 

In summary, compared to many other direct arylations (4–14), gold-catalyzed arylation with arylsilanes is 

notable for its mild conditions, low loadings, and site selectivity. It also provides complementarity and 

orthogonality to traditional cross-coupling strategies (2, 3), allowing the strategic linking of the two processes 

(Fig. 2). Arylsilanes are particularly valuable as substrates, because the stability of the silyl moiety allows it to 

be installed early in a synthesis, and they are readily handled, lacking the toxicity and/or air sensitivity that 

can be displayed by the aryl metallics traditionally used in cross-coupling. Their synthesis, via silylation of a 

range of precursors that includes arenes, aryl halides, benzonitriles, and arylmetallics, is generally 

straightforward (21), and both camphorsulfonic acid and iodobenzene diacetate are commercially available; 

alternatively, the latter can be very efficiently prepared from iodobenzene with a cheap stoichiometric oxidant 

(21). In addition, and in contrast to such metals as palladium and nickel, gold residues are regarded as 

relatively benign, and the Ph3PAuOTs precatalyst can be prepared in near-quantitative yield (26) in a single 

step from commercially available precursors. All of these aspects suggest the expedient application of gold-

catalyzed direct arylation for the concise construction of synthetically valuable biaryl building blocks for 

pharmaceutical, agrochemical, and materials chemistry.  
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