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Abstract 

The ever-increasing quest to identify, secure, access and operate oil and gas fields is continuously 

expanding to the far corners of the planet, facing extreme conditions towards exploring, securing and 

deriving maximum fluid benefits from established and unconventional fossil fuel sources alike: to this 

end, the unprecedented geological, climatic, technical and operational challenges have necessitated the 

development of revolutionary drilling and production methods. This review paper focuses on a 

technological field of great importance and formidable technical complexity - that of well drilling for 

fossil fuel production. A vastly expanding body of literature addresses design and operation problems 

with remarkable success: what is even more interesting is that many recent contributions rely on 

multidisciplinary approaches and reusable Process Systems Engineering (PSE) methodologies - a 

drastic departure from ad hoc/one-use tools and methods of the past.  

The specific goals of this review are to first, review the state of art in active fields within drilling 

engineering, and explore currently pressing technical problems, which are in dire need, or have recently 

found, PSE-and/or CFD-relevant solutions. Then, we illustrate the methodological versatility of novel 

PSE-based approaches for optimization and control, with an emphasis on contemporary problems. 

Finally, we highlight current challenges and opportunities for truly innovative research contributions, 

which require the combination of best-in-class methodological and software elements in order to deliver 

applicable solutions of industrial importance. 

 
1.0 Well drilling in the oil and gas industry 

The annual increase in global energy demand and the diverse applications of conventional & 

unconventional oil and gas resources are indicative of the fact that these resources will continuously 

remain relevant to humanity in the far future. With increasing climate change concerns, natural gas 

already provides a promising transition between some oil-based fuels and renewables in the long run, 

despite its well-known transportation difficulties.1 It can be further argued that natural gas represents 

an economically attractive option for electricity generation (particularly in the US where shale gas is 

naturally abundant) with significantly reduced greenhouse gas emissions compared to coal; thus 

increasing its market demand.2 These reasons have warranted the advancements in technologies of 
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varying sophistication for larger-scale development of complex hydrocarbon reservoirs, over the past 

ten decades. Oil field development projects aim to locate, characterise and extract oil and gas resources 

in a safe and profitable way over the field’s lifetime. These processes can be systematically classified 

into the exploration (searching for oil and gas deposits), appraisal (investigating the volume of reserves), 

development (install oilrig & processing equipment), production (fluid extraction) and abandonment 

(uninstalling facilities) phases.3  

It can be argued that well drilling is the most important activity that takes place throughout a field’s life 

and it spans through the appraisal to the production phases. Only by drilling a well, can a well prospect 

be validated after many geological and geophysical (seismic-based) interpretations in the exploration 

phase. It is not surprising that a derrick (Fig. 1) towering high above the well site has become the most 

recognisable icon of the oil and gas industry. The drilling process commences with a plan of a well 

trajectory that optimises the wellbore’s exposure to the pay zones of a reservoir/formation; 

subsequently, designs of the bottomhole assemblies to attain the desired trajectory are made. The 

surface location, total vertical depth (TVD), measured depth (MD), bit and drill pipe size, casing size, 

mud weights, extent of drill pipe’s rotating and reciprocating motion, kick-off point (KOP) and well 

azimuth are some important variables that characterize the drilling process and its resultant cost as stated 

in an authorization for expenditure.4 

The average capital cost of constructing a well (drilling, completion and facilities) in US onshore basins 

could be as high as $8.3 million. Drilling alone translates to approximately 31% of the total well 

development costs.5 In 2015, Shell abandoned drilling activities in the Arctic (northwest coast of Alaska 

– $7 billion USD worth of investment) after finding disappointing results from a well in Chukchi Sea. 

Huge drilling and developing costs of the project were some of the main reasons leading to such 

decision.6,7 This example demonstrates the challenges of field development in difficult-to-access, 

environmentally unfriendly and highly uncertain regions, which oil companies must address to maintain 

global relevance. Typically, oil fields may consist of tens to hundreds of wells depending on their size. 

Thus, operating companies pay detailed attention to reducing total drilling time and the corresponding 

well cost. This cost involvement is one of the major reasons why major oil companies form partnerships 

(joint ventures) to share the development costs.  

The complicated economics, technical operational challenges and the overall multifaceted nature of 

industrial drilling activities have made it open to multiscale modelling, robust simulation methodologies 

and state of the art experimentation techniques for accurate understanding of the flow scenarios and 

optimal parameters necessary for a problem-free operation.8–10 Over the past decades, the field has 

attracted numerous successful contributions from the chemical, petroleum and mechanical engineering 

communities for well trajectory optimisation and particle removal/hole cleaning processes. More 

recently, a body of literature specifically belonging to the process systems engineering community has 
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emerged; majorly targeting wellbore stability challenges with respect to the fracture pressure and pore 

pressure.11–14 In light of these contributions, this paper aims to: 

Figure 1: Components of a typical drilling system.15 

 Review the state of art in active fields within drilling engineering, and explore currently 

pressing technical problems, which are in dire need, or have recently found, PSE-and/or CFD-

relevant solutions, e.g. wellbore pressure control cuttings transport, multiphase operational 

protocols and drilling fluid rheology modeling and optimization. 

 Illustrate the methodological versatility of novel PSE-based approaches for optimization and 

control, with an emphasis on contemporary problems, e.g. underbalanced/UBD and managed 

pressure/MPD drilling model identification, optimization and control, and their variations. 

 Highlight factors limiting the industrial application of the developed numerical methods and 

experimental findings with recommendations, which could aid their applicability; thus opening 

a new area of research for improved experiments and simulations. 

 Highlight current challenges and opportunities for truly innovative research contributions, 

which require the combination of best-in-class methodological and software elements in order 

to deliver applicable solutions of industrial importance. 

Before presenting detailed discussions on the advancements in drilling systems engineering, we briefly 

describe some of the drilling terminology that are used in subsequent sections of the text for better 

comprehension and clarity. These definitions are adapted from the Schlumberger Oilfield Glossary. 

 Wellbore/borehole: the drilled hole or the space between the rock face and the drillpipe.  

 Cuttings: particles generated because of the cutting action of the drill bit on the rock formation. 

 Drillstring: the combination of the drill pipes used to make the drill bit turn at the bottom of 

the wellbore. 

 Fishing: the application of techniques for the removal of objects (debris, tools etc.) left in the 

wellbore during drilling operations. 

 Kick: the flow of formation fluids into the wellbore during drilling operations. 

 Kick detection: the use of sensors and flow devices to determine the influx of formation fluids 

from the rock formation to the wellbore. 

 Kick attenuation: the reduction in the influx rate of fluids from the formation to the wellbore. 

 Kick-off point: the point at which a vertical well is intentionally deviated. 

 Logging While Drilling: the process of measuring rock formation properties simultaneously 

as drilling progresses. 

 Measured Depth: the length of a wellbore as if determined using a measuring stick. 

 True Vertical Depth: the vertical distance from a point in the well (usually the current or final 

depth) to a point at the surface. 
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 Rate of Penetration: the speed at which the drill bit breaks a rock formation, thus deepening 

the wellbore. 

 Weight on Bit: the amount of downward force exerted on the drill bit. 

2.0 Challenges of drilling operations and real field drilling case studies  

Excessive drill pipe torque, slow drilling rates, pressure instabilities, stuck drill pipe and loss circulation 

are some of the operational challenges faced by drilling engineers.16,17 These problems culminate to an 

increased overall cost, reduced efficiency of the drilling process, unwanted fluid influx, severe 

interruption for days and sometimes an entire abandonment of the well. In the following section, a 

detailed discussion of these problems is presented with some real field observations. 

2.1 Flow assurance & hydrate bearing zones  

Flow assurance evaluates the potential of hydrocarbons to disrupt field operations due to deposition and 

instabilities in a flow system.18 This problem is mostly thought to be production-related; however, flow 

assurance difficulties also arise during drilling operations. The increase in the number of deep-water 

drilling operations and the move towards environmentally friendly water-based over oil-based drilling 

muds have resulted in frequent hydrate-related problems over the past decade.  Hydrates are crystalline 

solids formed by the encasement of gas molecules in cages of water molecules.19 These solids may also 

occur during underbalanced drilling (UBD) operations in which there is deliberate maintenance of the 

wellbore pressure below the formation pressure. Although UBD technology enhances penetration rates 

and reduces the risk of invasive formation damage, this pressure difference created induces a net influx 

of fluids from the reservoir into the wellbore as drilling progresses. These fluids are circulated back to 

the surface together with the mud and cuttings. In gas-bearing reservoirs, there is potential for hydrate 

formation at the right conditions of falling temperature and high pressures; this could plug the wellbore, 

subsea risers, chokes and blowout preventers - BOPs.20 Furthermore, hydrate bearing zones and 

sediments are occasionally encountered during operations.20–22 If this is the case, gas hydrate 

dissociation occurs, and gas released will erode the drilling pipe, thus increasing the risk of mechanical 

failure. In addition to this risk, the mud density is reduced and there could be uncontrolled flow 

(potentially leak to the sea floor) and ultimately a blowout of the well.23 

A comprehensive geotechnical investigation was carried out by Shell to evaluate the potential of drilling 

difficulties due to gas hydrates in the Gumusut-Kakap offshore development in Malaysia.24 This was 

done using logging while drilling (LWD) techniques coupled with rigorous seismic interpretations. The 

presence of hydrates was observed from the abnormal LWD responses and the gas bubbles produced at 

the wellhead during drillpipe connections. Numerical simulations were carried out to evaluate in more 

detail the implication of gas hydrates on the sustainability of the field’s development. The results 

implied a change in location in the location of the development wells, although at a significant expense.  
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These hydrate-related problems have continued to draw much research attention over the years, 

especially from a mathematical modeling point of view (for thermodynamic prediction of hydrate 

formation and dissociation conditions, equivalent density and viscosity determination of gas-mud 

mixtures and pressure-rate predictions). This is because of the high explosion risks involved with 

handling natural gas and its hydrate equivalent under laboratory conditions. These numerical 

advancements are however plagued by the fact that typical rate relationships are usually highly 

nonlinear; this creates a difficulty in ascertaining what pump pressures are required to initiate a desired 

flowrate in a wellbore. This complication is further augmented by the fact that non-Newtonian flows 

are challenging from an analysis perspective.25 Only few exact solutions are available for circular 

pipe/annular cross sections. However, when realistic operational difficulties like a heavily clogged 

eccentric wellbores exist, the flow geometry becomes non-circular and exact analytical and numerical 

solutions are even more difficult to obtain. 

2.2 Loss circulation  

Loss circulation is the migration of drilling fluids through the pores, fissures and high permeability 

zones in rock formations. The loss of drilling fluids and its accompanying problems represent a major 

fraction of the total drilling cost in most fields. Calcada et al.26 reported that drilling fluids of varying 

compositions represent 15-18% of the total drilling cost. In turn, 10-20% of the total cost of production 

and exploration wells can be attributed to fluid loss circulation. It is estimated that over 2 billion USD 

is spent annually in combating and mitigating the problem of lost circulation.27 

Overbalanced drilling (in which the well pressure is higher than the formation pressure) is a common 

practice in the Brazil oil industry. This practice, coupled with the occurrence of naturally fractured 

reservoir zones further induces drilling mud loss. It becomes more complicated when the fracture 

networks are complex and difficult to plug. According to Waldmann et al.28, 1 out of 3 wells drilled by 

PETROBRAS have lost circulation problems. This generates additional net costs and in extreme cases 

compromises completion integrity, operational safety and the environment, thus increasing non-

productive time. Palsson et al.29 described a series of lost circulation events in the drilling of a 

geothermal well in the Krafla field in Iceland (designed to reach a depth of 4500 m). Over 60 L/s of 

mud losses occurred at a depth of 2043 m; this could not be stopped by the drilling team and the remedy 

was to replace the mud with water. Breakage of the bottomhole assembly occurred at 2101 m; due to 

unsuccessful fishing, the well was eventually sidetracked and terminated. In the Azar field of Iran, 

complete loss of the drilling fluid was occasionally observed.30 A decrease in the mud weight was the 

adopted mitigation strategy for this problem and this resulted in a mud gain of 1.59 L/s. These practical 

challenges highlighted are indications of the severity of this problem to the oil and gas industry. 
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2.3 Wellbore stability challenges  

During drilling, several process disturbances that could cause pressure fluctuations might occur, and 

drilling operators must ensure that a safe operating pressure window is maintained for the avoidance of 

formation fracturing (extreme OBD) and unwanted fluid influx/kicks (UBD) which may lead to 

blowouts. The small tolerance between pore pressure and fracture pressure gradients is of paramount 

concern to drilling engineers.31–33 Fig. 2 shows a blowout preventer (BOP) which is usually installed at 

the top of the annulus to avoid the outflow of formation fluids. When uncontrolled flow of hydrocarbons 

occurs, a hard shut-in may be performed by closing the BOP and the well choke. Some instrumentation 

used for measuring the choke pressure, pump pressure and annular flowrate to monitor wellbore 

stability are also shown in Fig. 2. As drilling progresses (Fig. 2), the well length increases and the 

wellbore is exposed to more of the formation’s high pressure. This gradual-to-rapid exposure 

(depending on the penetration rate) constitutes a disturbance to the overall system’s stability that must 

be controlled. Since the drillstring is made up of many pipe segments which must be connected together 

(to reach the reservoir kilometres away), the pipe connection procedure can result in wellbore 

instabilities.34,35 This is because the drill bit rotation and the mud pump must be stopped and restarted 

for the new pipes to be mounted or installed.  

 

Figure 2: A managed pressure drilling system showing unwanted gas influx from the reservoir.11  

This stop-start procedure significantly influences the fluid flowrates and in turn the bottomhole 

pressure. Another complication is that downhole measurements are usually unavailable, and mostly 

topside measurements (such as the inlet pressure at the well choke and standpipe) can be utilized for 

control purposes.35,36 The immense industrial significance of wellbore stability and control can be 

derived from the Macondo oil well blowout incident across the Gulf of Mexico in 2010, which lasted 

for 87 days.37 Since this catastrophe, the level of automation in the oil and gas industry has continued 

to evolve due to severe economic implications and stringent health and safety standards/constraints. 

This has paved way for the advancements and implementation of control methods in the oil and gas 

industry, given the highly complex extended-reach and multilaterals wells the industry must drill to 

access oil and gas in harsh environmental and climatic conditions.  

Event detection (e.g. kicks) and post-drilling data analysis require the application of sophisticated 

downhole sensors. Challenges such as repeated rigorous calibration, sensor drift, poor quality data at 

extreme downhole conditions, high cost and false alarms that exist in real field operations provide 

opportunities for performance improvements of these devices.  Pournazari et al.38 provided developed 

a pattern recognition algorithm that allows for real time calibration and speedy analysis of sensor 

patterns for event identification such as kicks. Chhantyal et al.39 also emphasized the need for reliable 

and accurate downhole flow measurements using robust sensors. They highlighted that the accuracy of 

the sensors must be maintained for wide range of drilling fluid viscosity (1-200 cP) and density (1000-
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2160 kg/m3). The combination of machine learning algorithms and physics-based modelling holds a 

promising potential for improved sensor accuracy. 

2.4 Stuck drillpipe and slow drilling rates  

Well drilling in the oil and gas industry is usually done with a highly flexible rotating drill string (to 

which the drill bit is attached), and this produces a trajectory that is never perfectly vertical. This implies 

that the drillpipe makes contact with the walls of the wellbore at numerous positions several meters 

downhole.17 Thus, frictional resistance generated may require extra torque than otherwise required to 

turn the drillpipe and the bit; this translates to an unacceptable power consumption. Similarly, the drill 

string’s tripping (lowering into and pulling out of the wellbore) movements often causes a differential 

sticking effect on the mud cake (residue generated from drilling mud due to pressure difference between 

the formation and the wellbore) deposited around the borehole wall. This causes the drill string to be 

trapped and the pulling power of the rig is unable to release the string from the mud cake.40 Loosely 

compacted and fractured formations and gravels may also collapse into the wellbore as drilling 

progresses, thus forming a bridge around the drillstring or jamming the drill string. The clay swelling 

effect of certain reactive formations in contact with water-base muds may also constrict the wellbore. 

Poor hole cleaning which causes cuttings accumulation may also cause stuck pipe problems.41,42 

Due to the complex geological properties of most reservoirs, it is expected that the layers of rock 

formations will vary in their hardness. This translates to different penetration rates of the drill bit 

through these layers. The mechanical performance of the drilling machinery as typically indicated by 

the quality of drill bit and extent of pipe rotation attainable will largely affect the overall efficiency of 

the operation. Furthermore, since drilling muds, cool, lubricate, and transmit hydraulic energy, the 

rheological properties of these fluids will largely affect the penetration rate. 

In 1993, the Dutch petroleum company (Nederlandse Aardolie Maatschappij – NAM) reported a 

number of major cost overruns due to stuck drillpipe problems.43,44 According to the report, the cost 

incurred to handle stuck equipment incidents amounted to US$15 million (5% of entire drilling capital 

expenditure). These problems are likely to increase despite technological advancements over the last 

decade. This is because the ever-growing complexity of exploration activities (large diameter wellbores 

with high inclination angle, extended reach and multilateral structures) in challenging offshore 

environments with very harsh conditions such as the Arctic. 

2.5 Complex wellbore geometries. 

Drilling wells with deviated/horizontal geometries and multiple branches to improve recovery from 

multiple reservoir zones by commingling production have become common in the oil and gas industry. 

A successfully designed and implemented multilateral well that replaces several vertical wells may 

drastically reduce the overall completion costs; thus enhancing field profitability. However, the 

accompanying complexities of these well types increase the risks of failure.45 Compared to vertical 
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wells, sophisticated mechanical steering tools are required to ensure the planned trajectory is attained. 

Hence, correctly positioning and maintaining the horizontal well section within the target reservoir 

(layer) thickness is of utmost concern to drilling engineers.46,47 Furthermore, ensuring proper zonal 

isolation in each of the well sections is also a major challenge with horizontal and multilateral wells. If 

the drilling crew fails to maintain zonal isolation, downhole annular pressure control becomes extremely 

difficult and blowouts may occur. Depending on the well perforation intervals adopted, these wells may 

be subsequently exposed to production related problems such as water and gas coning and sand 

production. Hence, challenges of deviated well drilling are largely influenced by the expected fluid 

delivery rates of the well.  

3.0 Previous Contributions: A Process Systems Engineering (PSE) Perspective 

Although there has been an enormous body of work on high-fidelity multiscale modeling and 

optimization by the PSE community on production-oriented upstream operations, (a few review papers 

adequately covering those), there is an equally important (albeit perhaps smaller, in comparison) body 

of work addressing drilling-oriented operations. Moreover, a critical literature mass has appeared in 

SPE sources and audiences, somewhat further afield from the standard PSE venues. In this section, a 

PSE perspective to addressing some of the earlier identified problems is presented. The discussion 

herein is categorised into four subsections on control and automation of managed pressure drilling, real 

time monitoring (using high fidelity and lower order models), drilling optimisation and artificial 

intelligence techniques for solving drilling-related problems. 

3.1 Drilling optimisation  

Depending on the intended application within the multifaceted nature of a drilling program, 

mathematical optimisation techniques have shown great potential for operation improvement. 

Downhole pressure control using NMPC schemes is one of the most explored aspects as far as 

optimisation is concerned.33,48,49 However, the rate of penetration is a parameter drilling engineers aim 

to always maximise. Eren and Ozbayoglu50 applied multiple linear regression for parameter estimation 

of an ROP equation (in terms of the WOB, formation depth and rotary speed) based on real time data. 

The authors sought to arrive at an optimisation methodology that utilises past drilling data while 

predicting the drilling trend for optimum drilling parameter selection and cost savings; this was 

achieved.  Based on a similar concept, Rommetveit et al.51 similarly, introduced a bit load optimisation 

module that modulates rotary speed and WOB for an optimal ROP. With the application of their solution 

algorithms in the module, they reported that ROP increased by 15-30%. The application of ROP 

optimisation software developed by Chapman et al.52 and Detournay et al.53 has shown the possibility 

of attaining reduced equipment vibration and equipment failure. The software employs a formulation 

that relates the ROP (depth of cut per revolution) to the WOB and bit torque. 
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The concept of mechanical specific energy (MSE), introduced by Dupriest & Koederitz54 evaluates the 

efficiency of drill bits in real time; this approach has been readily applied by drilling operators as an 

optimisation tool in combination with drilling logs for decision support55. Koederitz and Johnson56, 

achieved semi-autonomous steering optimisation during drilling using the MSE concept. A simulated 

annealing optimisation algorithm coupled with an abductive neural network was applied  by Lee et al.57 

for the prediction of drilling performance (torque, tool life, metal removal rate, and thrust force) with 

drill diameter, cuttings speed and feed rate as the input parameters. Several drilling experimental tests 

performed confirmed the effectiveness of this approach. Enhanced visualisation and interpretation 

techniques in state-of-the-art drilling simulators provide an optimised 3D tracking of the well trajectory 

as drilling progresses.58 It was highlighted that, drilling optimisation here is not static because drilling 

parameters vary as the depth increases. Rather it is a dynamic function of depth. Hence constantly 

varying constraints (e.g. due to formation heterogeneities and strengths) and varying optimised 

parameters cannot be avoided if drilling cost must be minimised. Several other simulation packages for 

optimising drill string torque and drag, wellbore propagation, well trajectory (inclination and azimuth) 

and downhole steering have been developed as detailed in Siguira et al.58. It is evident from these 

contributions that classical optimisation in the industry is usually a semi-heuristic based approach that 

relies on several simulation studies; the use of standard mathematical optimisation concepts has rarely 

been adopted in the industry. 

Drilling rigs are not only used in drilling new wells, but also in servicing existing ones (workover). 

However, the number of new target well sites and existing wells usually exceeds the number of available 

drilling rigs; thus increasing the complexity of the operation.59 This necessitates the determination of 

optimal rig-to-well allocation, rig routing and scheduling (collectively described as workover rig 

scheduling – WRS).  Although geared towards production optimisation, this aspect of drilling has 

received considerable attention from Tavallali et al.60 and Gupta and Grossmann61. Rigorous mixed 

integer nonlinear/linear optimisation formulations (with thousands of binary variables) have been 

formulated with adaptive algorithms for efficient solutions, thus aiding field development decisions. 

Such depth of work has hardly been adapted to other drilling aspects.  

Despite being a subject of intensive research, the transport of cuttings has received little or no 

contribution from optimisation experts. This may be due to the prevalence of rigorous fluid/particle 

dynamics simulations used in studying the transport phenomena of cuttings; such simulations are not 

readily adaptable to an optimisation routine due to computational cost required at each iteration; 

furthermore, coupling the CFD solver with an optimisation solver is also not an easy task.62,63 However, 

several robust empirical cuttings transport models developed by Ozbayoglu and co-workers64–66 provide 

room for nonlinear optimisation studies in this regard. There is also a potential for embedding ANN 

proxy models based on numerous reasonably timed and validated CFD simulations within a stochastic 

optimisation framework such as genetic algorithm (GA). It is also worth mentioning that the uncertainty 

associated with measured drilling parameters is often very high. For example, highly uncertain hole 
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calliper measurements could result in erroneous estimations of the hydraulic diameter and in turn fluid 

superficial velocities and frictional pressure loss; uncertainty of the MD-TVD relationship would 

inevitably affect the calculated hydrostatic effect. Fluid properties must also be corrected for pressure 

and temperature deviations using PVT models.67 Hence, the industrial applicability of drilling models 

and optimisation algorithms is dependent on their capabilities to address this inevitable uncertainty in 

the governing parameters.  

3.2 Real-time monitoring using high fidelity and reduced order models  

Nygaard and Naevdal68 highlighted that pressure control during pipe connections is often challenged 

by temporal unavailability of downhole data from a mud pulse telemetry system or via a wired drill 

pipe. This is because the signal transmission is dependent on the mud circulation, which is stopped 

during pipe connections. Furthermore, signal cables must be disconnected during connection 

procedures.  Recently, it has been shown that electromagnetic transmission systems may be utilised for 

data transmission from the rock formation to the surface; however, the attenuation of electromagnetic 

signals and reduced data quality in very deep wells (> 2500 m) is an encumbrance68,69. These challenges 

imply that pressure control systems must rely on sufficiently accurate dynamic well hydraulic models. 

The scarcity of downhole data is another (if not the main) motivation for the use of robust and calibrated 

models in most MPD operations.11,48 Models may be used for simulation purposes (during which control 

parameters may be tuned, tested, and verified); furthermore, models may be used for estimating the 

states of the process, especially when noisy measurements occur. Future process behaviour may also be 

predicted by the model and future set points selected.70–74  

Model-based control techniques applied in oil and gas drilling systems often impose limitations on the 

structure of reduced order models that may be applied for system control. Aarsnes et al.75 classified 

reduced order models based on complexity and physical interpretations of the simplifications adopted. 

Their classification categorizes these models into Reduced Drift Flux Models, Lumped Order Lower 

Models, 1-phase models and Lagrangian models. The performances of these reduced order models 

when compared to an industrially implemented high fidelity simulator are shown in Fig. 3. In evaluating 

the models performance, three practical scenarios are adopted (MPD gas kick, pipe connections during 

UBD, different drawdowns from a UBD gas well - UBD envelope). Compared to the other models, the 

lower order lumped model showed the poorest performance. A lower-order drill string dynamics model 

developed by Ke and Song76 has been utilised for control purposes. The model incorporates axial motion 

and torsional vibration of the drill string and the bit-rock interactions. This model shows good 

performance when validated with a high-fidelity drilling dynamics model. The application of local 

model order reduction techniques for nonlinear PDE systems such as, Proper Orthogonal 

Decomposition (POD), Dynamic Model Decomposition (DMD) and Ensemble Kalman Filters (EnKF) 

have been applied to several other oil and gas systems, but have received little attention in drilling 

systems. These methods often rely on analysing information obtained from a series of observational 
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data of high-dimensional systems to identify coherent patterns embedded in such systems.77–79 The 

computational cost required for the development of these reduced order models and their need for 

frequent calibration, may constitute reasons for their limited application in drilling systems. 

Notwithstanding, a quantitative exploration of these reduced model types is required for drilling systems 

to verify their potential in comparison to the reduced order models detailed in Aarsnes et al.75 

Figure 3: Bottomhole pressure and wellhead pressure trends for three operational scenarios and the 

evaluation of lower order models (mechanistic and reduced Drift Flux Models, 1-phase model, Hauge 

et al.36 model and the low order lumped model) in comparison with a high fidelity multiphase flow 

simulator OLGA.75  

During mud circulation, a very complex multiphase flow scenario exists; the liquid mud phase interacts 

with possible fluid influx (gas, oil & water) in the presence of solid rock cuttings that evolve. This 

occurrence creates an avenue for the application of fluid dynamics concepts in process control (Fig. 3). 

In addition to multiphase flow and wellbore hydraulics, rigorous descriptions of drill string dynamics58, 

rate of penetration and dynamic response of topside equipment are also essential for a full description 

of the entire process (first principles models). Apart from being difficult and time consuming to develop, 

the combination of these rigorous models is computationally demanding when embedded in a control 

scheme (due to extreme nonlinearity).  However, since the emphasis here is placed on pressure control, 

simplifying assumptions (such as a uniform fluid distribution in the well) are usually made to reduce 

the complexity from a PDE based model (used in classical fluid dynamics) to a system of ordinary 

differential equations (lower order models which focus on fluid flow and the impact on wellbore 

pressure). However, Nygaard and Naedval68 have reported that un-modelled effects due to severe 

approximations may cause errors in the prediction of the downhole pressures; thus resulting in severe 

costly deviations from the downhole pressure. Although detailed first principles multiphase flow 

models have been used for simulation and control purposes in14,80, the scarcity of some model 

parameters (which are not easily measured in real drilling operations) places a demand on empiricism 

for model adjustment purposes. Despite the applicability of first principles models (over a wide range 

of operating conditions – less tuning requirements compared to empirical models),  closed loop 

empirical model identification can be costly and disruptive to MPD operations; thus causing 

instabilities.  

Controller stability is a function of model accuracy; this is because fewer iterations are required to 

match the model to the process output compared to inaccurate models. With the occurrence of sensor 

failure and loss of feedback signals (common in MPD operations), maintaining control via high fidelity 

simulators working in parallel with lower order empirical models becomes very important. Hence, 

operating and controlling drilling programs with both classes of models has delivered huge benefits 

while achieving acceptable sustainability, as demonstrated by Eaton and co-workers.14 The need for 

speedy computations and increased accuracy has inspired the development of several low order control 
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models in the drilling industry. Some of the prevalently used models include the SINTEF’s model81 and 

Stammes et al.73 hydraulic model. A subset of these empirical models that describe specific drilling 

properties such as rate of penetration, frictional pressure drop, rotational dynamics and weight on bit 

are also under continuous development.82 Asides the literature developed models, several proprietary 

simulation models (embedded in commercial simulators) have been developed by different oil 

companies. However, the numerous developments of advanced modelling tools produced by the 

academia in the last decade have not fully gained industrial acceptance and implementation. A 

perspective of industrial operators on the use these models as reported by Sugiura et al.58 revealed that 

model validation and benchmarking must be carried out; with limitations and assumptions explicitly 

stated if industrial applicability is desired. The capability of these models to quantify an envelope of 

safe operating conditions (based on continuous calculation of the system’s boundaries) using the current 

state of the well and topside machine limitations is also an important attribute of these models affecting 

their industrial acceptability.35 

Real-time measurement techniques used in the drilling industry include wired coiled tubing telemetry 

(WCTT), Mud Pulse Telemetry (MPT), Wired Drillpipe Telemetry (WDPT), Acoustic Telemetry (AT), 

and Wireless Electromagnetic Telemetry (WET). The performances of these technologies are 

summarised in Table 1. By using data (manipulated, controlled and inputs) from these telemetric 

systems, a calibrated annular flow model may be written and controllers designed to achieve a stable 

annular pressure as described by an objective function.82 

Table 1: A comparative performance of LWD telemetry technologies.83  

3.3 Control and automation of managed pressure drilling  

Although drilling operations possess some elements of a mechanical system with important associating 

concerns (vibration control, equipment performance monitoring and maintenance), process control is 

similarly important. In the latter, issues like mud flow, surface and downhole pressure management 

become important for operational efficiency and safety.84 Managed pressure drilling (MPD) is an 

emerging technology formed out of this necessity of precise wellbore pressure control within tight 

bounds. The use of a closed annulus, valves and additional pumps in addition to the standard main pump 

makes MPD different in contrast to a conventional drilling process.48,85 In conventional drilling, drill 

mud is returned to the surface through an open line at atmospheric pressure. The closed circulation 

nature of MPD operations provides better flexibility than conventional drilling in which pressure control 

is usually achieved by pump rate and mud weight adjustments alone. According the SPE/IADC, MPD 

is an adaptive drilling process used precisely control the annular pressure profile throughout the 

wellbore. The objectives are to ascertain the downhole pressure environment limits and to manage the 

annular hydraulic profile accordingly. The intricate nature of such a system requires the application of 

multivariate control strategies, for which model predictive control (MPC) is often preferred; IMC and 

PI control schemes have also been frequently adopted.49,82,86 Furthermore, the multiplicity of operational 
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scenarios and the simultaneous considerations needed for the highly interdependent variables (weight 

on bit, penetration rate, surface flowrates, pressures etc.) characterising the MPD system imply that 

manual procedures and workflows cannot guarantee the continuous satisfaction of strict pressure 

constraints. Control schemes like MPC provide coordinated operability of the process via the 

automation of lower-level decisions, thus allowing humans to attend to higher-level decisions.69,87,88  

In exploring the shallow gas Nagar prospect in the southern coast of Myanmar, PETRONAS had to 

apply MPD technology for quick kick detection and accurate pressure control to maintain economic 

viability of the project89. It was estimated that within 3 minutes, the installed system would have to 

detect and shut in a gas influx and circulate the gas out the wellbore, while controlling the BHP within 

safe limits of ± 15 psi during active drilling and ± 45 psi during drillpipe connection procedures. This 

is a classic example that demonstrates the complicated nature of the well control problem. Tackling this 

challenge with the help of three other service providers made PETRONAS the first to develop and 

implement an automated real-time pressure control system while drilling. Further details on the 

implementation of their dynamic annular pressure control (DAPC) system and the lessons learned 

during the application of this technology can be found in Fredericks et al.89 The probability of such 

successful implementation can be increased if high quality downhole data becomes available through 

wired drill pipes (or competitive technology).  

Figure 4: Diagram of a switched control system.14 

High-speed telemetry systems have been applied in the studies of Park et al.71, Pixton et al.69 and 

Asgharzadeh Shishvan et al.90 for the regulation and control of ROP, BHP and WOB during MPD 

operations.  A nonlinear multivariate MPC framework that directly utilizes downhole and surface data 

is utilised in these studies. Asgharzadeh Shishvan et al.82 also applied a similar control strategy with 

further adjustments of other conditions such as the drill pipe rotation, bottomhole pressure and hook 

position for dual gradient drilling operations. Their proposed algorithm showed good performance in a 

high-fidelity simulation environment. When downhole data is unavailable, a real-time hydraulics model 

is a reliable option that can predict downhole conditions based on surface data of pumps rates and 

chokes settings. With the obvious inability to use high-fidelity models for real time control purposes 

(due to computational cost), Eaton et al.14 developed a switched control scheme (Fig. 4) that implements 

a linear empirical control model of satisfactory accuracy in comparison to high fidelity models. A lower 

order NMPC controller is also utilised for maintaining control over the process during empirical model 

identification tasks (using simulated data from a high fidelity model); thus reducing the computational 

cost. This strategy allows for the inclusion of the slow but very accurate high-fidelity model without 

interrupting the process. The frequent of gas kicks in most drilling operations has warranted the 

development of a novel model-based control scheme for kick detection and attenuation by means of 

real-time pore pressure estimation;31,36 the proposed method also lends itself to loss mitigation purposes 

in naturally fractured formations. Robust controller design using linear matrix inequalities has been 
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formulated for kick handling purposes by Aarsnes et al.33. Handling gas influx during MPD operations 

depends on the size of the kick (Fig. 5); while small kicks may be circulated out by increasing surface 

back pressure, larger kicks may be handled using standard well control procedures (such as shutting in 

the well). This is because a planned limit for the influx indicator is usually defined before the MPD 

operation.48 If this limit is exceeded, the conventional well control is usually implemented with 

considerations on the operational limits of the choke valve and pressure margins that could fracture the 

formation.35 It is obvious that these considerations are not only dependent on the prevailing conditions 

of the downhole conditions but also on the field and the equipment capabilities.  

Although downhole uncertainty continues to drive automation-related research endeavours (with 

increasing contributions in the last decade), the industrial implementation of these automated control 

methods has remained at a low level.35,58 A further complication that limits the holistic automation of 

drilling systems is that several independent software solutions exist that address the different aspects of 

the drilling operation in isolation.9,91 Integrating all solutions within a single control framework is not 

a trivial task. In order to address this challenge, a control hierarchy design for production optimisation 

by Saputelli et al.92 was adapted to drilling automation operations. The multilevel control approach 

comprises a feedback control level, a supervisory control level and an optimisation level. Despite these 

advancements, Breyholtz and Nikolaou35 highlighted that it is impossible for the automation design to 

foresee all possibilities in such a complex and uncertain operation as drilling, hence the driller must be 

able to manually take over the operation at highly critical moments. Furthermore, more recent 

advancements in sensor design38,39 also emphasize the need for occasional manual intervention due 

sensor drift (from calibration). 

Figure 5: Bottomhole pressure control during a kick at 80 mins.93 

The application a dynamic programming (DP) approach for the downhole control and optimisation of 

a drilling system was presented by Ke and Song.76 They constructed a novel drilling dynamics model 

and a customised DP algorithm for improved computation efficiency and controller robustness as 

validated by a higher order dynamic model. Tian and Song12 designed a two-chain observer strategy to 

estimate real time states of the drilling system dynamics and the prevalent downhole conditions. Their 

design showed good performance in addressing measurement/signal delays of mud pulse telemetry 

systems. 

Advanced methodologies such as Dynamic Mode Decomposition with control (DMDc) have recently 

been applied in hydraulic fracturing processes for accurate representation of high-dimensional complex 

data associated with this process.79 Control schemes that determine an optimal pumping schedule and 

regulate the uniformity of proppant bank heights along fractures have also been developed by Kwon 

and co-workers.77–79,94,95 A framework for closed-loop model-based control of hydraulic fracturing 

processes (fracture propagation, proppant bank growth and fluid-solid transport phenomena) was 

developed by Gu and Hoo.96,97 Good attenuation of disturbances to the system were obtained using a 
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Quadratic-Dynamic Matric Controller (QDMC). Autonomous directional drilling using a mud motor 

and rotary steerable systems is also an area that has received attention from the process systems and 

control community using MPC technology.98,99 These systems are often formulated and solved as Mixed 

Integer Quadratic Programs due to the presence of binary and continuous quantities. Satisfactory 

trajectory control of the drillstring while satisfying operational constraints has been achieved as detailed 

in Zhao et al.99 

It is thus evident that the applications of the process control techniques discussed herein show good 

potential for increased drilling efficiency, safety and reduced cost if they are well integrated into drilling 

processes. 

3.4 Application of artificial intelligence techniques  

With increasing industrial demand for intelligent drilling automation and optimisation, artificial 

intelligence holds a promising potential for bridging the gap between the two tasks, improving current 

drilling practices and real time decision making. The most widely used techniques include artificial 

neural networks, fuzzy logic, genetic algorithms, support vector machines and hybrid techniques.100 

Such computational intelligent methods can be used to analyse data from sensors, survey data, geology 

data and the well plan in order to make real-time closed-loop predictions for fast reaction (prompt flags 

of potential anomalies) and resolution of drilling dysfunctions.101 Big data analytics is also an emerging 

trend in the oil and gas industry that aids the application of AI techniques.102 After generating a dataset 

of specific offshore drilling information using fuzzy logic, Mendes et al.103 implemented a genetic 

algorithm for the prediction of feasible trajectories for wells and directional drilling parameters using 

retrieved datasets of similar drilling scenarios. Popa et al.104 applied case-based reasoning (an AI 

technique) for the selection of the optimum hole cleaning procedure in unconsolidated sands by 

collating datasets from nearly 5000 wells; an accuracy of 80% between AI proposed methods and those 

actually implemented was observed. Wang et al.105 applied an artificial neural network model developed 

by British Petroleum (BP) for the optimal selection of deep-water floating platforms (a decision 

dependent on many interconnected variables). In solving this model, the Levenberg-Marquardt 

algorithm was applied. This resulted in 70% accuracy for 10 datasets with limited errors, thus validating 

this quantitative approach (which would have been otherwise carried using engineering judgement 

alone).  

The capability of ANN for accurate real time prediction of frictional drag and drill string contact force 

as a function of the radial clearance, slack-off load, bending stiffness and other drilling parameters was 

demonstrated by Sadiq and Gharbi.106 This prediction has tremendous importance when time 

consumption due to expensive downhole trips (for BHA replacement) are to be avoided. Rooki et al.107 

applied an experimentally validated back propagation neural network coupled with multiple linear 

regression for the prediction of cuttings concentration in an annular wellbore during foam drilling. They 

compared the performance of their ANN model with the results of a mechanistic cuttings transport 
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model and realised an absolute average deviation of less than 6%. A similar approach by Al-Azani et 

al.108 was adopted for hole cleaning; this was however based on 116 experimental data records. 

Chamkalani et al.109 developed a pattern recognition neural network (Fig. 6) for the drilling optimisation 

in shaly formations. An extensive discussion on the application of AI for well integrity problems, 

operational troubleshooting, real time drilling optimisation and well planning can be found in Bello et 

al.100 In addition, the application of AI techniques in drilling fluid engineering has been 

comprehensively reviewed by Agwu et al.110,111 The highlighted applications include rheological 

parameter determination of various drilling fluids,112,113 prediction of loss circulation,114 differential pipe 

sticking,115 fluid flow patterns,116 downhole fluid properties,117 mud velocity/flowrates and pressure 

drop.118 

 

Figure 6: Schematic structure of a pattern recognition network.109  

It should be pointed out that AI techniques should be applied with care; the necessity of maintaining 

sensible physical interpretations of predictions cannot be overemphasised, despite high values of 

statistical correlation indicators (RSME, R2), which may be misleading. A comparative analysis111 

based on different AI techniques applied in the drilling industry showed that although ANN, SVM, 

fuzzy logic and GA are robust against noise (in data); whereas, fuzzy logic ranks highest in terms of 

convergence speed. Susceptibility to overfitting, limitations of data volume, generalisation and self-

organising ability are other criteria that may be assessed when choosing these AI methods. 

4.0 Previous Contributions: A fluid & particle dynamics perspective 

Contributions from the field of fluid dynamics have been mainly targeted towards cuttings removal and 

the rheological performance of drilling muds at unfavourable downhole conditions. The development 

of good rheological designs and an accurate understanding of mud shearing behaviour has been aided 

by advancements in multiphase flow description using physics-based phenomenological models.62,119 

Due to the profound economic implications of poor/late rheological planning, drilling engineers are 

constantly faced with several intricate questions; some of which include: what flow properties are 

associated/expected with a given drilling mud? Can the level of downhole blockage (due to accumulated 

cuttings) be inferred from flow rate and pressure drop data? In the worst scenario of sever cuttings 

accumulation, what is the optimal/critical flow rate to lift cuttings back into full suspension.120,121 

Furthermore, the occurrence of dense fluid-particle flows (granular flows) in which inter-particle 

collisions are a dominant feature in drilling operations;122 these flows can be very different to single-

phase flows of drilling muds. Accurate understanding of different forms of granular flow have been 

made possible by the use of robust particle collision models (hard and soft particle models) embedded 

in state of the art computer simulators;123 thus making it possible to describe slow and rapid granular 

flows effectively. 
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4.1 Drilling fluids and rheological models  

Although many requirements (cooling and cleaning the bit, maintaining wellbore stability, reduce pipe 

friction) are placed on drilling fluids, their originally intended purpose was for the removal of rock 

cuttings (Fig. 8) generated by the weight and rotary motion of the drill bit.17 Field decisions regarding 

the choice of drilling fluid for a particular project are usually driven by cost, technical performance and 

environmental impact. Drilling fluids may be categorised into freshwater systems, saltwater systems, 

oil- or synthetic-based systems and pneumatic (air, foam, mist, gas) systems as shown in Fig. 7. Water-

base muds (WBMs) are prevalent in the industry compared to oil-base muds (OBMs) which are more 

expensive, but provide excellent lubricity.124 Pneumatic muds are the best candidate when there is high 

risk of formation damage and lost circulation. 

The performance of these fluids is mostly understood through their shearing behaviour, determined 

from experiments (using spindle mixers/blenders, viscometers, filter and stability testers) and 

rheological modelling efforts (using power law-PL, Herschel Bulkley-HB, Bingham plastic-BP 

models).113,125,126 The applicability of these rheological models is dependent on the mud 

components/additives (surfactants, emulsifiers, lubricants corrosion inhibitors etc.). Furthermore, mud 

performance is not only dependent on the fluid rheology, but also on the flow regime (laminar, 

transitional or turbulent) in the drillpipe and the annulus as determined by the Reynolds number.127 With 

the advent of computational fluid dynamics, and advances in high performance computing, several 

studies have emerged that address Newtonian and non-Newtonian fluid behaviour in channels of 

different geometries.128,129 Typical field flow conditions and flow phenomena, which can be difficult to 

measure or replicate at laboratory conditions can be readily modelled and their impacts on the fluid 

performance understood using CFD.  

Figure 7: Classification of drilling fluids according to their principal constituent.17  

Hussain and Sharif130 demonstrated via CFD calculations the existence of a secondary flow zone in 

conjunction with a primary axial helical flow in the wider section of an eccentric annulus using a 

viscoplastic HB fluid. They also evaluated the impact of a blockage height (e.g. caused by accumulated 

cuttings) and inner pipe rotation on this secondary flow region. In furtherance to this observation, it was 

discovered via numerical simulations (using a yield-PL fluid) that velocity profiles in eccentric annuli 

are too complicated to be represented by an average velocity.131 Rooki et al.112 showed that the PL model 

better described the rheological properties of foam compared to the HB model. Zaisha et al.132 pointed 

out the limitations of the continuous viscoplastic approximation method in bypassing the shear stress 

discontinuity when solving the governing equations of a yield viscoplastic fluid flowing through 

concentric and eccentric annuli. A numerical procedure that adequately resolves this problem for HB 

fluids was proposed in their work. A combination of experimental and CFD-based simulations has been 

adopted for the study of steady state and transient mud (liquid) shearing behaviour at varying degrees 

of eccentricity and drillpipe rotation.125,133–135 Duan et al.136 also examined the impact of pipe rotation 
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on foam velocity profiles and pressure losses during drilling using experiments and CFD. It was 

discovered that the maximum axial velocity core of an eccentric wellbore is shifted in the direction of 

drill pipe motion. However, when a cuttings bed occurs, the core shifts to the opposite direction of drill 

pipe motion. More contributions on the performance of foam-based fluids in drilling (particularly 

related to cuttings transport) can be found in review paper of Yan et al.137 

4.2 Recent developments for improved mud performance  

Advancements in drilling mud technology have mostly centred on the design of new additives for 

performance enhancement under harsh downhole conditions (high temperature and pressure) where 

performance deterioration is likely to occur.138–140 In this section, the application of nanoparticles – NP 

(such as Fe2O3, Fe3O4, SiO2 etc.)141 and supercritical fluids are the main advancements discussed. Smart 

(nanoparticle-based) drilling fluids enable better controllability of in-situ fluid rheology, thus 

facilitating drilling programs in a variety of reservoir environments.142 It is expected that these particles 

further complicate the fluid’s rheological behaviour; however, first principles rheological modelling 

(HB model) carried out by Gerogiorgis et al.143,144 provided clarifications to this complexity. Several 

experimental studies that demonstrate the potential of nanoparticle-based drilling fluids for wellbore 

strengthening, cuttings lifting capacity, thermal and magnetic performance enhancement for viscosity 

control are documented in the review by Vryzas and Kelessidis.145  

Research in the area of supercritical fluids (which exhibit physical-chemical properties between those 

of liquids and gases) has increased over the years. Supercritical carbon dioxide (SCCO2) possesses 

remarkable viscosity characteristics at downhole conditions; it has been successfully applied for the 

removal of cuttings,146–148 reduction of mechanical drilling forces and efficient cooling of the drill head. 

A study by Kolle,149 suggested that SCCO2 is useful in providing better jet erosion (jet-assisted drilling 

for cutting through rock formations) and penetration rates compared to water-based fluids. Gupta et 

al.150 developed a model to simulate potential scenarios during drilling operations with a SCCO2. From 

model simulations performed, it was discovered that the large pressure drop across the nozzles allows 

rapid change of SCCO2 from liquid to gas; thus accelerating cuttings movement while maintaining 

UBD conditions. They further demonstrated the economic and environmental viability of the operation 

in terms of CO2 sequestration and CO2-based enhanced oil recovery. 

4.3 Wellbore cleaning/cuttings transport and summary of published findings  

Numerous interdependent factors and the inherent complexity of the transport process pose challenges 

to efficient wellbore cleaning (Fig. 8). These factors can be generally classified into the operational 

parameters (drill bit penetration rate, drillpipe rotation, circulation velocity etc.), rock and fluid 

parameters (particle shape, size and density; fluid density, composition and rheological behaviour) and 

geometrical parameters of the wellbore (diameter, length, inclination, eccentricity). The importance of 

understanding the effects of these independent parameters on the efficiency of the wellbore cleaning 
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process has been long recognised.41,151–154 Previous research contributions have mostly accounted for 

the influence of these parameters in groups, because, considering all parameters in a single study would 

be very cumbersome from both experimental and modelling perspectives.155–157  

Although the general term ‘cuttings transport efficiency’ has been used thus far, it worth mentioning a 

set of dependent parameters exist that reflect the efficiency of the cuttings transport process. They 

include the annular pressure drop, cuttings concentration or volume fraction, cuttings velocity (axial, 

tangential and radial) and the downhole retainment of drilling mud quality (Fig. 9). As earlier indicated, 

accurately monitoring and measuring all these parameters (for attaining robust insights into the cuttings 

transport phenomena), would require sophisticated 3D dynamic visualisation techniques.158,159 Thus, 

the limitations of laboratory equipment have thus far guided the parameter sets considered by most 

research groups.  

Figure 8: Particle transport in the presence of a mainstream non-Newtonian fluid during drilling 

operations.160  

From a modelling perspective, several 1D mechanistic and 2D layer models have been previously 

constructed.161–165 These models have shown good potential for predicting experimental measurements 

with additional insights provided by sensitivity analyses. More recently, the application of 3D 

Computation Fluid Dynamics (CFD) tools for studying cuttings transport phenomena has gained 

prevalence due to its unparalleled ability to predict experimental measurements. Furthermore, the 

accompanying spatio-temporal visualisations obtainable via this approach make it possible for direct 

qualitative comparisons with experimental observations. The increasing number of CFD-based 

contributions can also be attributed to the advancements in computational power coupled with robust 

algorithms for solving the underlying equations.166,167 In the following sections of this article, we 

extensively explore the findings of several experimental and simulation-based contributions to the field 

while elucidating some fundamental aspects of both approaches. We also analyse the challenges faced 

from both perspectives and proffer new research directions that could improve the state of the art as far 

the scientific understanding of cuttings transport operations is concerned.  

Figure 9: Factors affecting drill cuttings transport efficiency. 

4.3.1 Experimental studies  

In order to complement multiphase flow modelling efforts and assess/verify their industrial 

applicability, experimental measurements under a controlled set of conditions are inevitable. The 

construction of a flow loop that replicates the actual wellbore conditions (high temperatures and 

pressures, wellbore lengths reaching several kilometres with large diameters etc.) in the industry is not 

realisable; hence, downscaling typical parameters obtainable on a field scale is vital for carrying out 

multiphase flow studies under laboratory conditions (Fig. 10). Although several flow loops168,169 for 

studying multiphase flows in pipes exist around the world, there are few that mimic the annular 
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geometry encountered in drilling operations. Despite this scarcity, the number of experimental 

investigations of cuttings transport has continued to increase over the past decade.66,118,159,170–179 A 

summary of our observations from various published studies is presented next. 

 

Figure 10: Typical components of an experimental set-up for cuttings transport (a);180 Experimental 

testing facility at the University of Tulsa (b).181 

 A cuttings injection tank, mud tank, annular test section, compressor, pump, flow/pressure 

measuring (robust instrumentation) and visualisation equipment are the main components of 

most experimental testing facilities. 

 Majority of the studies shown analysed involve a wellbore of perfectly spherical cross-section. 

However, Taghipour et al.182 performed transport experiments over a tortuous non-circular 

wellbore that imitates real field operations. 

 The annular cuttings concentration (via the cuttings bed height) is the most widely used metric 

for assessing the efficiency of cuttings transport. The development of sophisticated camera 

systems aid this observation.  

 The impact of particle shape on the efficiency of cuttings transport has not been widely studied 

by means of experiments; spherical Sand particles with density of approximately 2650 kg/m3 

are dominantly applied. 

 For foam-based experiments, foam density is a parameter that is hardly reported, thus making 

it difficult to use such experimental studies for model validation purposes. 

 The inlet volume fraction of cuttings into the annulus is also scarcely reported; the specification 

of boundary conditions in most CFD simulation requires this parameter; however, Han et al.183 

and Osgouei155 clearly state this parameter in their experiments, thus making them suitable 

options for validation studies. 

 Polymer-based water drilling muds are the most applied. Few studies170,179,184 have applied oil 

base muds for in their work with superior performance of the OBM observed compared to 

WBM. 

 The University of Tulsa drilling research projects (TUDRP) flow loop appears to be largest 

(30.5 m long, 0.2 m diameter)158 and one of the most popular experimental facilities used so far 

in studying cuttings transport. 

 There appears to be conflicting findings regarding the ease of transport of smaller particles 

compared to larger particles, as indicated by the key findings of Sanchez et al.185 and Li et al.186  

 Depending on inclination angle, rolling, lifting and settling motions best describe the transport 

phenomena, with inclination angle, fluid velocity, and fluid rheology being the most influential 

parameters. 
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4.3.2 Mechanistic and empirical studies  

First principles modelling efforts that describe the transport phenomena and mechanisms of rock 

cuttings in a wellbore of any configuration are numerous (Fig. 11). Numerous extensions and 

improvements of earlier developed160,187,188 mechanistic models have been carried out more 

recently.164,165,189  

 
Figure 11: Schematic representation of a 2-layer (a, b, e) and 3-layer (c, d, f) cuttings transport model 

with corresponding experimental observations (e, f). The 3-layer assumes the existence of a bottom 

stationary cuttings layer, a moving middle layer and a top suspension layer; whereas the 2-layer model 

assumes a bottom stationary layer and a top suspension layer.138,189,190. 

The underlying assumptions of these studies present new opportunities for advancements in the 

accuracy of these models. However, it is necessary to ascertain (by means of experimental validation) 

if the inclusion of more physical phenomena results in a significant improvement in model accuracy; 

this is not usually the case. Furthermore, empirically derived models have become popular with most 

experimental contributions despite their limited range of application. Mechanistic and empirical 

modelling research efforts can be categorised based on the model characteristics/limitations and 

assumptions, flow conditions, system properties, sensitivity analyses performed and the solution 

method applied. Based on our evaluations of published contributions, we highlight some important 

trends. 

 Mechanistic models are generally either 1D (along the length of the wellbore) or 2D along the 

cross-sectional area of the wellbore (2-layer and 3-layer models). A detailed sequence of 

developments on 2-layer and 3-layer mechanistic models can be found in Kelessidis and 

Bandelis.138  

 The effect of drillpipe rotation has been hardly considered in most mechanistic models. 

However, the studies of Naganawa and Noruma191 (with a simplified rotation model) and Guo 

et al.164 are amongst the few that consider this effect.  

 The stability enhancing two-step (SETS) method and Crowe’s modification of the semi-implicit 

method for pressure-linked equations (SIMPLE) are the main adopted numerical methods for 

the system of PDEs, ODEs and AEs in mechanistic models.162,164,189–191 However, some 

empirical models (such as that of Larsen et al.120) can be solved by hand.  

 The assumption of an incompressible solid-fluid system is prevalent despite the usage of 

compressible foam in some studies. The use of cubic equations of state as demonstrated by 

Chen et al.192 is a more reliable method to addressing foam compressible behaviour. 

Homogenous bubbly flow (where foam is the drilling fluid) is mostly assumed. 

 Instant acceleration of influx gas velocity to the mean flow velocity is usually assumed in UBD-

based studies.162,165,180,193 



22 
 

 Friction pressure loss (between flow layers and between fluid phases and the walls of the 

wellbore) appears to be the most developed aspect of mechanistic and empirical 

models.187,188,191,192,194,195 

 Most cuttings transport modelling studies do not account for loss circulation. 

 The use of dimensional analysis (Buckingham-pi theorem) is the widely adopted approach for 

empirical modelling. Good performance of these models have been verified.65,66,196–198 

 Majority of these modelling studies show good performance with reasonably low deviations 

from experimental results, (as indicated in the model validation studies carried out). 

Experimentally observed phenomena are also observed.138  

4.3.3 Application of CFD  

There are two main approaches for solid-liquid multiphase flow modelling applied in literature; the 

Euler-Euler approach (consisting of the mixture models, volume of fluid models and the Eulerian 

models) and the Lagrangian-Eulerian approach (in which particle trajectory calculations are coupled 

with the Eulerian description of the fluid phase).123,199 One of the earliest applications of CFD for 

cuttings transport was by Bilgesu et al.200 Since then, the application of CFD has continued to increase 

with accompanying developments in the context of the resolution of particle dynamics (with the use of 

kinetic theory models, discrete phase models – DPM, discrete element method – DEM), domain 

discretisation (using finite volume and finite element methods on structured or unstructured grids). 

Robust turbulence modelling concepts, high performance computing and advanced CFD software (Fig. 

12) have also undergone continuous developments.  An overview of previous contributions and major 

highlights with regard to these developments is discussed next.  

 

Figure 12: CFD simulation of cuttings transport in a horizontal annular configuration during 

drilling.119  

 The Reynolds Averaged Navier Stokes (RANS) models are the fundamental fluid flow 

equations implemented in most CFD codes, which are solved to obtain general fluid flow 

behaviour. 

 Compared to Lagrangian-Eulerian (LE) methods, the Eulerian-Eulerian (EE two-fluid) model 

based on the kinetic theory of granular flow is the most widely used CFD model for cuttings 

transport.154,166,201–204 LE computations when implemented are often transient, whereas, EE 

methods are either done in steady or transient flow conditions. 

 Microscopic effects (smaller turbulent length and time scales) are usually not emphasized in 

CFD models; the models herein have focused on but rather macroscopic flow effects. 

Reasonably accurate representations of experimental findings are still achievable.41,62,63,167 
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 Flow geometry and system properties employed are usually an adaption from experimental 

measurements. However, it has been shown through rigorous CFD simulations that a helicoidal 

cleaning tool attached to the drill pipe aids cuttings transport.156 

 Uniformly sized particles have been mostly applied. The effect of particle size distribution 

(using the Rosin-Rammler model or an equivalent) has been rarely studied.205  

 The finite volume based Ansys Fluent software is the most applied in CFD studies. In-house 

and open-source codes of similar computational capability but with a less-friendly user 

environment have also been designed for solving CFD problems. 

 Larsen’s model120 has been readily applied for the conversion of ROP (reported in some 

experiments) to cuttings inlet velocity – a required boundary condition for CFD simulations. 

The scarcity of the cuttings inlet velocity is a factor that limits experimental validation of CFD 

models. Busch et al.91 presented a benchmarking procedure for cuttings transport studies and 

provided a set of parameters that must be reported in experimental and modelling studies. It is 

expected that such procedures will enhance industrial applicability of developed models and 

the accompanying findings/results. 

 The application of 4-way coupling with key concentration on particle-particle interactions using 

DEM contact models coupled with a CFD solver is still emerging.119,199,206 

 Particle sizes modelled range from a few microns to 10 mm.63 

 CFD studies that account for cuttings transport with air or other gases are very scarce. The work 

of Hajidavalloo207 is the main contribution in this regard. 

 Compared to tetrahedral meshes, structured hexahedral meshing is the predominantly applied 

meshing style in most CFD studies.41,208–210 This may be attributed to the nature of the annular 

geometry; thus reducing the risk of unstable and diverging simulations. 

 The few CFD-DEM studies that exist on cuttings transport often recommend a particle tracking 

timestep, which is 100 times smaller than the fluid flow timestep in transient calculations.119,211 

This often results in long computational times. An assessment of computations done with 

somewhat similar timesteps for both phases in comparison to this recommendation may be 

worthwhile.  

 Volume averaged analyses of key parameters (such as cuttings velocity, and cuttings 

concentration) over the entire annular domain is often utilized in most CFD studies. However, 

positional variation in of flow properties along the wellbore geometry (Fig. 13) is necessary for 

understanding geometrical effects on cuttings transport efficiency.    

Figure 13: Positional distribution of cuttings annular concentration.42,212 

5.0 Tools and Software  

Numerous software packages have been developed by key oil and gas service companies for the 

simulation, monitoring and control of the different aspects of the drilling process. Max3DiTM, 
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MaxActivityTM, MaxBHATM and MaxDrillTM have the developed by Halliburton for drilling 

optimisation, monitoring drill floor activities, designing the bottomhole assembly and estimating the 

drill bit efficiency respectively. More recently, they developed DrillingXpertTM as platform for 

designing an entire drilling system in a single advanced software package. DrillbenchTM by 

Schlumberger is capable of performing dynamic simulations for wellbore pressure control, well control, 

blowout control during managed and underbalanced operations. It is capable of integrating 

PETREL’sTM trajectory planning module within its interface. TechlogTM another Schlumberger 

software can be interfaced with DrillbenchTM for pore and fracture pressure analysis, thus facilitating a 

unified modelling interface. These packages have been largely applied in different projects with 

remarkable benefits (drilling cost and time savings) achieved. OLGATM, a transient multiphase flow 

simulator by Schlumberger may also be applied to simulate the multiphase conditions during drilling 

mud circulation. Pegasus-Vertex, DrillScan and OLIASOFT are other emerging companies with a 

variety of software packages for modelling torque and drag, drilling hydraulics and trajectory design.  

The approach from the academia to studying pressure control during MPD and conventional drilling 

applications has focused on the development of first principles and lower order models (made up of 

PDEs, ODEs and AEs, which are sometimes configured within a user interface), for which solutions 

are coded in platforms like MATLAB® and C++.81 This may be attributed to the fact that most 

commercial blackbox software (with little or no allowance for modification of the source codes) are not 

readily adaptable to the explorative research activities in the academia. Expensive licensing costs (when 

academic software versions are unavailable) may also be attributed to the infrequent usage of these 

highly sophisticated commercial packages. Asides, the research-friendly SINTEF drilling hydraulic 

model, the IRIS drilling simulator (WeMod) has been applied for studying process control-related  

concepts as in many research contributions.31,32 

The fluid dynamics community has witnessed the development of commercial software packages such 

as ANSYS FluentTM, ANSYS CFXTM, Star CCM+TM, (mainly for cuttings transport and drilling mud 

analyses) with ANSYS Fluent being the predominantly applied software in CFD related studies. Other 

open source codes such as GerrisTM, OpenFOAMTM, SU2 codeTM and SimscaleTM have also gained 

popularity. Pre-processing, visualisation and post processing of CFD results are also paramount for 

successful interpretation of computations and have been carried out suing software like GAMBITTM, 

AUTOCADTM, SpaceClaimTM and ParaviewTM respectively. Recent studies that couple CFD 

computations with DEM models for detailed resolution of particle contacts, have applied EDEMTM and 

LIGGGHTSTM. 

6.0 Integrated application of control (PSE-based) and fluid dynamics (CFD-based) perspectives 

for sustainable operations  

It is evident from the discussion so far that process control and optimisation studies have largely 

simplified or ignored key phenomena such as the effects of cuttings/particle modulation on the fluid 
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flow profile and wellbore pressure. Similarly, cuttings transport studies have neglected the need for real 

time monitoring, automation and control of drilling parameters such as downhole pressure. Although 

some of the developed mechanistic models account for downhole pressure variation as a function the 

mud flowrate and other key parameters, the fast-paced dynamics of drilling operations requires frequent 

calibration using field data for their industrial applicability. Hence, an integrated approach (PSE+CFD) 

will be desirable for drilling operations. Despite the pronounced difficulty such an attempt may require, 

Cayeux and co-workers213–215 have attempted such integration for real time applications.  

A cuttings transport model was developed to monitor two separate drilling (conventional and MPD) 

operations in the North Sea. Unknown parameters such as the cuttings size were calibrated to yield a 

good match with topside measurement such as the slurry flow rate.213 This enabled precise identification 

of cuttings bed locations along the wells, and the adjustment of drilling parameters (operational 

recommendations) for bed removal. A real time operation support tool developed by Cayeux and 

Daireaux215, enabled automatic friction monitoring with the capability of triggering alarms when severe 

downhole deterioration was detected. The system’s online interpretation of large amounts of drilling 

data aided this early recognition of downhole problems; this was also demonstrated in a similar work 

of theirs in a North Sea well.214 Warnings that indicated poor hole cleaning emerged; thus guiding the 

operator’s decisions on cleaning the wellbore (after stopping the drilling operation) or continuing the 

drilling process. A similar contribution by Frangos216 involved the development of a statistical-based 

approach (ensemble Kalman filtering) for the prediction and monitoring of the location and extent of 

cuttings build-up along a wellbore. Their model is able to capture the dominant characteristics of the 

cuttings transport process while incorporating process disturbances and uncertainties in real time field 

measurements. Salminen et al.217 developed a real-time method for predicting impending stuck pipe 

with sufficient warning for its prevention. Their method implements a hydraulic model, real-time and 

historical data and some data analytics techniques for predicting the risk of a stuck pipe. They 

demonstrated early prediction of stuck pipe incidents; thus allowing preventive measures to be taken. 

No false alarms were observed using their proposed approach.  

It is worth emphasizing that similar drilling problems in field operations do not necessarily present 

themselves with the same pattern of symptoms. Hence, the detection of abnormal drilling conditions 

depends on rigorous analysis of multiple symptoms (e.g. abnormal rise in friction factor) if safety must 

be maintained.213 These analyses in turn require the application of specialised tools, which must be used 

in an integrated manner. As research in both fields continues to advance, better integration 

methodologies for sustainable operations should be sought after. 

7.0 Open problems and research opportunities  

The advancements in drilling simulation, control and experimentation have some unaddressed 

challenges that pave way for potential research opportunities: 
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 Despite several sophisticated developments of drilling simulators in the oil and gas industry, 

they have hardly penetrated the realm of academic research. Collaborations in this regard hold 

great potential for fruitful improvements in drilling software. More efforts are needed towards 

a unification of the functionalities of separate software for providing robust solutions to drilling 

challenges. 

 Cementing and completion operations, which require efficient displacement of the drilling mud 

is an area requiring more research attention218,219. This is because downhole rheological control 

(maintain the correct rheological hierarchy) of the cement slurry, spacer fluid and the drilling 

mud significantly affects the stability of the displacement process. Blowout events have often 

been attributed to hydrocarbon leakage due to poor cementing jobs. 

 More studies are needed on the use of multiple nanoparticle types in drilling fluid formulations. 

High temperature and pressure experimental studies are required to full ascertain drilling fluid 

rheological behaviour under harsh downhole conditions. Novel quantitative techniques (such 

as Nuclear Magnetic Resonance) for the evaluation of formation damage and potential fluid 

loss are also required. More experimental and numerical assessments on the stability of 

supercritical CO2 for MPD operations are required. 

 There is a growing need for downhole data quality improvement via wired drillpipe (WDP) and 

mud pulse telemetry systems. Poorly calibrated sensors, data transmission errors, and abnormal 

wellbore conditions are some reasons for bad data.220 Hence, the developments of corrective 

data processing techniques and noise filtering techniques would greatly facilitate modelling 

efforts. Methods to determining unmeasurable model parameters and differentiating accurate 

from inaccurate data points are also needed. Furthermore, the details of signal modulation, data 

compression and surface noise cancellation techniques are mostly not clearly described in the 

few available journals or sometimes kept as company secrets;83 more work is needed on the 

elucidation of high bandwidth electromagnetic data transmission systems. Low bit rate is a 

fundamental limitation of some of telemetric systems (especially mud pulse telemetry; 1-2 

pulses per second); this causes severe delays (in tens of seconds) between information 

transmission from the subsurface (downhole) to the surface, thus creating challenges for real-

time control. Ingenious solutions and new technologies are required to address this problem.83 

 A comparative analysis of model performance carried out by Aarsnes et al.75 against a high 

fidelity simulator (OLGA) revealed that drift flux models (DFMs) had superior performance to 

the popularly used ODE models for annular multiphase flow description. The accuracy of 

DFMs may be further explored with particular emphasis on the adaptation of accurate closure 

relations to simplified DFM models.  
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 The desire to replace super challenging models with calibrated simpler models will increase the 

need for machine learning (AI techniques). These techniques will also be very suitable for proxy 

model development from numerous simulations of expensive commercial software, which 

contain high fidelity models. Hence, run time may be significantly reduced for future prediction 

and optimisation studies. More robust switched control schemes for online usage of high 

fidelity, reduced order/AI models and real time data wold greatly facilitate the automation of 

drilling operations. 

 Advanced drilling optimisation methodologies are required to determine the optimal ROP while 

ensuring adequate hole cleaning. While a high ROP is often desired, and indicates good bit 

performance, the accompanying increase in cuttings influx rate into the wellbore must be 

compensated for. Optimisation studies will also help clarify ambiguities concerning the use of 

low-viscosity mud (for promoting turbulence and increased transport efficiency) or the use of 

medium viscosity muds, which promote better suspension. 

 Turbulence modelling is still a challenging topic in the field of fluid dynamics. Although several 

advancements have been made in describing turbulence in single phase flows, more work is 

still required for multiphase flows (especially those involving particles). In this age of big data, 

the combination of machine learning and turbulence modelling (using physics-based and 

statistical methods) holds great potential for understanding turbulence induced particle motion. 

This may also be useful for increasing the accuracy and reducing the uncertainty of RANS 

models implemented in commercial CFD codes used in cuttings transport studies.221,222   

 More research is needed on the coupling of CFD and DEM methods for understanding the effect 

of particle collision and fluid dynamics of cuttings transport. However, the accuracy of 

simulations is dependent on the contact models (Spring-dashpot, Hertzian etc.) and several 

input parameters of the rock particles (friction coefficients, elasticity properties, Young’s 

modulus, Poisson ratio), which are only obtainable from material calibration studies. 

Unfortunately, these studies are scarce. The potential for FEM-DEM coupling223 in describing 

cuttings transport needs to be further explored. Further advancements in GPU architecture are 

required for these time consuming calculations.224  

 UBD operations with numerous phases: gas/oil/water influx, drilling mud, solid cuttings, has 

hardly been modelled via CFD methods.119,206 Detailed evaluation on the impacts of fluid influx 

on cuttings transport efficiency is indeed worth investigating. 

 More clarity is needed on the stopping criteria for transient simulations of cuttings transport. 

Although the attainment of statistically stationary state (with fully developed flowing 

conditions), is a theoretically reasonable stopping criteria, most studies do not provide 

explanations on this concept when setting up their simulations. Hence, the accuracy of obtained 

results becomes difficult to ascertain. CFD modelling frameworks that provide guidance on the 
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choice of computational settings (time-step size, under-relaxation factors, courant number etc.) 

for different flow conditions are needed. 

 Comparative benchmarking studies (via experimental validation) on the use of different CFD 

softwares is necessary for ascertaining their limitations in modelling several aspects 

(turbulence, particle deposition, particle tracking and fluid-particle coupling) of cuttings 

transport phenomena. Furthermore, studies that compare the accuracy of Eulerian-Eulerian and 

Lagrangian-Eulerian methods for modelling cuttings transport at different particle 

concentrations are needed.  

 Most CFD studies pertaining to cuttings transport have hardly analysed flow behaviour around 

bends or with a tortuous wellbore. The effect of particle shape has also been hardly been 

considered experimentally and numerically. An important factor to consider here will be the 

particle size to mesh size ratio especially with highly nonspherical particles. The consideration 

of the smallest cell size (in a mesh) being large enough to contain each particle in the EE 

framework still needs clarification; given the fact that cuttings encountered during drilling may 

be as large as 10 mm. Is such a system beyond the capabilities of the EE modelling approach? 

 Polydispersed particle systems with the aid of a size distribution model have not been widely 

considered. Furthermore, industrial sand is the most applied type of solid in experimental 

campaigns. However, various rock types are encountered during drilling. 

 Mechanistic and semi-empirical models hardly consider the effects of turbulence fluctuating 

velocity on the efficiency of cuttings bed removal.225 Hence, this prevalent assumption of 

ignoring the effect of flow turbulence on bed erosion needs to be addressed. Furthermore, the 

effect of fluid rheology on the drag and lift forces if incorporated, is also expected to improve 

the accuracy of these models. More advanced multi-particle velocity measurement techniques 

(e.g. particle image velocimetry) in highly turbulent flows are needed for extensive validation 

of these models. 

 Future modelling efforts need to incorporate the effects of downhole uncertainty. Increased 

economic potential from model-based decisions drilling require the consideration of 

complicated uncertain downhole events.  

 The development of additional robust closure relations from experiments or direct numerical 

simulations will hugely aid two-fluid Eulerian-Eulerian models. The application of stochastic 

particle collision models based on the Enskog Simulation Monte Carlo approach will be useful 

for dense particulate flow modelling using the LE approach.199  

 Although the effect of drillpipe rotation on cuttings transport has been widely considered, the 

impact of drillpipe reciprocating motion requires more experimentation and modeling research 
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contributions. A combination of rotary and reciprocating motion is expected to better represent 

the drillpipe motion. 

 1D and 2D mechanistic models require improvements in correlations for the friction factor, 

drag coefficient, shear stress between different interfaces, particle deposition and entrainment 

rates. Thus enhancing the reliability of particle deposition predictions along the entire wellbore 

profile. Highly accurate models are also required for the determination of the wiper trip speed 

especially during coiled tubing cleaning operations. 

 The development of benchmarking case studies to assess the performance of open source and 

commercial codes/software is essential.9 This would be further facilitated by the availability of 

open source (sharable and expandable) data sets for model performance evaluation.  

 Dispersed multiphase (gas-liquid and liquid-liquid) flows in open and closed channels, free 

surface flows and segregated flows constitute challenging fields (with unresolved problems) 

which have received tremendous attention from the chemical engineering community over the 

past decades. Sophisticated fluid dynamics techniques have often been applied to model flows 

with such complexity for industrial applications such as diary production and spray drying. The 

modelling advancements developed for the description of such phenomena could be further 

extended to particulate flow systems in petroleum engineering. Particularly, the Ergun226 

equation developed for fluidized beds (in reactors, absorber columns and other chemical 

process equipment) has been readily applied for the description of cuttings transport 

phenomena. The development of a mechanistic model for the prediction of the drag coefficient 

of a nonspherical particle in a non-newtonian fluid is open research question in chemical 

engineering. Developments in this area will definitely increase the accuracy of cuttings 

transport and deposition predictions during drilling in the petroleum industry. 

8.0 Conclusions  

In this article, we have expounded on the necessity for drilling modelling, control and automation in oil 

and gas development, based on an overview of existing research contributions; important challenges 

and research opportunities have been identified. Although the process control community has 

tremendously advanced the field of managed pressure drilling using, sophisticated control schemes, the 

fluid dynamics community has majorly addressed the modelling of wellbore cleaning operations. We 

believe that future research endeavours will progress towards a seamless integration of both 

perspectives. The application of artificial intelligence techniques to the drilling industry is expected to 

increase in the near future, as these computationally intelligent methods hold promising potential for 

real time decision support. Amongst several other opportunities highlighted herein, it is expected that 

GPU-based computations will gain increasing acceptance; their computational efficiency compared to 

conventional CPU computations on several processing cores has been widely demonstrated; thus 

allowing quicker insights into important phenomena. The need for model calibration during pressure 
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control and cuttings transport has been strongly emphasized in this paper, if developed models must 

maintain industrial relevance. With increasing discoveries of oil and gas fields in highly challenging 

locations, drilling operations are commensurately expected to be complicated; scientists and engineers 

must be equipped with the current state of the art (described herein), if novel, innovative, 

environmentally friendly, economic and safe drilling methods must be developed.  
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Nomenclature 

AT: Acoustic Telemetry 

AE: Algebraic Equation 

AI: Artificial Intelligence 

ANN: Artificial Neural Network 

BHA: Bottomhole Assembly 

BHP: Bottomhole Pressure 

BOP: Blowout Preventer 

BP: Bingham Plastic (Rheology) 

BP: British Petroleum (Company) 

CFD: Computational Fluid Dynamics 

DFM: Drift flux Model 

DAPC: Dynamic Annular Pressure Control 

DP: Dynamic Programming 

DMD: Dynamic Model Decomposition 

DMDc: Dynamic Mode Decomposition with 
control 

EE: Eulerian-Eulerian 

EnKF: Ensemble Kalman Filters 

FEM: Finite Element Method 

GA: Genetic Algorithm 

HB: Herschel Bulkley 

KOP: Kick-off Point 

LE: Lagrangian-Eulerian 

LOL: Lumped Order Lower Models 

MPD: Managed Pressure Drilling 

MD: Measured Depth 

MPC: Model Predictive Control 

MPT: Mud Pulse Telemetry 

MSE: Mechanical Specific Energy 

NMPC: Nonlinear Model Predictive Control 

OBM: Oil Base Mud 

ODE: Ordinary Differential Equation 

OLGA: Oil and Gas Simulator 

PDE: Partial Differential Equations 

PL: Power Law 

POD: Proper Orthogonal Decomposition 

PSE: Process Systems Engineering 

QDMC: Quadratic-Dynamic Matric 
Controller 

RANS: Reynolds Averaged Navier Stokes  

RSME: Root Mean Square Error 

ROP: Rate of Penetration 

SCCO2: Supercritical carbon dioxide 

SETS: Stability Enhancing Two-Step 

SIMPLE: Semi-Implicit Method for Pressure-
Linked Equations 

SPE/IADC: Society of Petroleum 
Engineers/International Association of Drilling 
Contractors 



31 
 

SVM: Support Vector Machines 

TVD: True Vertical Depth 

UBD: Underbalanced Drilling 

WBM: Water Base Mud 

WCTT: wired coiled tubing telemetry 

WDPT: Wired Drillpipe Telemetry 

WET: Wireless Electromagnetic Telemetry 

WOB: Weight on Bit 
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Table 1: A comparative performance of LWD telemetry technologies83 

Features 
LWD telemetry technology 

Electromagnetic Acoustics Mud pulses Wired Drill pipe 
Maximum transmission data 
range (bps) 

10 20 20 57600 

Maximum depth (m) 5500 3700 12200 Unlimited 
Data quantity Medium Low High Very high 
Signal attenuation High High Medium N/A 
Signal interference High Medium medium low 
Installation and other cost Medium Medium Low High 
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Figure 5: Bottomhole pressure control during a kick at 80 mins.93 
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51 
 

 

 

 

Figure 7: Classification of drilling fluids according to their principal constituent.9 

 

  



52 
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Figure 10: Typical components of an experimental set-up for cuttings transport (a);180 Experimental testing facility at the University of Tulsa (b).181 
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Figure 11: Schematic representation of a 2-layer (a, b, e) and 3-layer (c, d, f) cuttings transport model 

with corresponding experimental observations (e, f). The 3-layer assumes the existence of a bottom 

stationary cuttings layer, a moving middle layer and a top suspension layer; whereas the 2-layer 

model assumes a bottom stationary layer and a top suspension layer.138,189,190. 
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Figure 12: CFD simulation of cuttings transport in a horizontal annular configuration during drilling.119 
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Figure 13: Positional distribution of cuttings annular concentration.42,212 

 

 


