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Temperature control of nematicon trajectories
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University of Rome “Roma Tre”, Via della Vasca Navale 84, 00146 Rome, Italy
2School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.

Using modulation theory, we develop a simple ((2+1) dimensional) model to describe the synergy
between the thermo-optical and reorientational responses of nematic liquid crystals to light beams
in order to describe the routing of spatial optical solitary waves— nematicons— in such a uniaxial
environment. Introducing several approximations based on the nonlocal physics of the material,
we are able to predict the trajectories of nematicons and their angular steering with temperature,
accounting for the energy exchange between the input beam and the medium through one photon
absorption. The theoretical results are then compared with experimental data from previous studies,
showing excellent agreement.

PACS numbers: 42.65.Tg, 42.70.Df, 05.45.Yv

I. INTRODUCTION

Nematicons are optical solitary waves propagating
in liquid crystals in the nematic phase, i.e., with
the constituent anisotropic molecules sharing the
same angular orientation θ in space, but without any
positional order [1]. Owing to the response of these
dielectric materials to electromagnetic perturbations,
linearly polarized light beams can induce self-focusing
and, thereby, the generation of self-guided solitary
waves in space, namely nematicons [2–6]. Such two
dimensional, (2 + 1)D, all-optical self-trapped beams
are essentially non-diffracting, polarization dependent,
nonlocal with respect to the excitation wavepacket
and non-resonant with respect to the wavelength. For
these reasons they are deemed to be ideal for the
study and development of novel generations of solitary
wave-based and light controlled systems for optical
signal manipulation and switching [5, 7]. Numerous
basic and applied features, phenomena and potential
applications of nematicons have been proposed and/or
demonstrated [5, 6]. The development of models able to
describe and/or predict nematicon behaviour and effects
in various situations are therefore of importance, both
theoretical and experimental [8–24]. Notably, all such
models are simplified to some extent, as the nematicon
physics gives rise to non-integrable equations which
do not possess any known exact, general solitary wave
solutions [7, 24, 25]. Despite the substantial literature on
nematicons and their related theory, models describing
synergetic nonlinear effects and their interplay with
nematicons are scarce, as they tend to be more involved
than the standard equations for non-dissipative solitary
waves and, thereby, less prone to general and/or
simple solutions. Notable exceptions to this trend
are recent studies of complex nematicon dynamics
[26], dissipative nematicons [27], spatio-temporal
nematicons [28] and light-bullet nematicon trains [29],
self-focusing/defocusing effects on beam localization in
nematic liquid ccrystals [30] and transverse fluctuations

of nematicons due to correlated noise [31, 32]. In this
paper, we model the routing of nematicons due to
thermo-optic changes in the material properties, i.e.,
variations of the optical parameters of the dielectric due
to the ambient temperature, as well as the (localized)
heating caused by light absorption as the beam travels
through the bulk medium. As recently demonstrated,
such thermo-optical effects can alter the degree of
nematicon confinement, its oscillatory behaviour in
propagation and its trajectory [33–35]. Hereby, we
adopt modulation theory [36] and develop a simple
mathematical model describing temperature control
of nematicon trajectories in undoped nematic liquid
crystals, which includes the role of external temperature,
input beam power and one-photon absorption. This
model has an exact solution. When actual material and
experimental parameters are used in its solution, it is
found to give excellent agreement with measured results
for the dependence of beam walkoff on temperature
and beam power. This specific application confirms
how powerful modulation theory is in predicting the
evolution of spatial solitary waves in nematic liquid
crystals [7, 9, 11–24], even when multiple nonlinearities
are present, which were not been considered previously.

II. NEMATICON TRAJECTORY EQUATIONS

Let us consider the propagation of a linearly polarised,
coherent light beam of wavenumber k0 through a planar
cell filled with nematic liquid crystals (NLC). Let us
assume that the electric field E of the light beam
oscillates in the x direction and that the wave-packet
propagates down the cell in the z direction. The y
direction then completes the coordinate triad [3, 7]. The
cell interfaces are treated so that the molecular director
lies at an angle θ0 to the z direction in the plane (x, z).
We shall denote the extra director rotation due to the
electromagnetic field by φ, so that the total angle of
the director to z is θ = θ0 + φ. This configuration is
sketched in Figure 1. The refractive index eigenvalues for
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FIG. 1: Sketch of a thick planar cell showing input wavevector
k of the beam, extraordinary-wave walkoff δ = tan−1 ∆ and
preset orientation of NLC molecules.

electric fields polarised parallel and perpendicular to the
molecular director (optic axis) in the equivalent uniaxial
are n‖ and n⊥, respectively, with an optical anisotropy

ǫa = n2
‖ − n2

⊥ > 0. The dimensional equations governing

the propagation of the beam in the NLC sample are [6]

2ik0ne
∂E

∂z
+ 2ik0ne∆

∂E

∂x
+∇2E

+ k20

[

n2
⊥ cos2 θ + n2

‖ sin
2 θ − n2

⊥ cos2 θ0

− n2
‖ sin

2 θ0

]

E = 0 (1)

for the electric field of the beam and

K∇2θ +
1

4
ǫ0ǫa|E|2 sin 2θ = 0 (2)

for the reorientational response. Here, K is the
elastic response of the nematic liquid crystals in the
single constant approximation, for which the elastic
coefficients describing bend, twist and splay deformations
are assumed equal [1]. The refractive index ne of the
NLC for x-polarised electric fields at optical frequencies
is given by

n2
e =

n2
⊥n

2
‖

n2
‖ cos

2 θ + n2
⊥ sin2 θ

. (3)

The extraordinary wave undergoes walkoff of the
Poynting vector, so that the beam propagates in (x, z)
at an angle δ = tan−1 ∆ to the beam wavevector (i.e.,
the z direction), where the walkoff ∆ is given by

∆ =
ǫa sin 2θ

ǫa + 2n2
⊥ + ǫa cos 2θ

. (4)

The present work is concerned with the effect of
temperature on the propagation of nematicons through

the sample. The light beam directly heats the medium,
while the whole material is held at a fixed temperature.
As the refractive indices n‖ and n⊥ are temperature
dependent [35], the walkoff ∆ and the optical anisotropy
ǫa are also temperature dependent. Let the NLC
temperature be T . The heat flow in the NLC is then
governed by the (steady) forced heat equation

S∇2T = −αΓ|E|2, Γ =
1

2
ǫ0cne. (5)

Here, S is the thermal conductivity and α is the thermal
absorption coefficient of the material.
The nematic equations (1) and (2) and the thermal

equation (5) are set into non-dimensional form to
simplify the analysis of the nematicon trajectory. The
propagation variable z is scaled by a typical length Lz,
the transverse variables (x, y) are scaled by a typical
width W and the electric field is scaled by a typical
strength Ae in order to transform the dimensional
coordinates (x, y, z) to the non-dimensional coordinates
(X,Y, Z) and the electric field E to the non-dimensional
u, with

z = LzZ, x = WX, y = WY, E = Aeu. (6)

Suitable length scales are

Lz =
4ne

(ǫa)tk0 sin 2θ0
, W =

2

k0
√

(ǫa)t sin 2θ0
. (7)

These scalings (7) are evaluated at a typical temperature
T0, denoted by the subscript t, as the NLC parameters
are temperature dependent. The input wave-packet is a
Gaussian beam of power Pb, width Wb and amplitude Ae.
Hence, a suitable scale for the electric field of the beam
is Ae, given by

A2
e =

2Pb

πΓW 2
b

. (8)

Typical beams used to generate nematicons have
milliwatt powers [6], with an optical reorientation φmuch
smaller than the pre-set θ0, |φ| ≪ θ0. The trigonometric
functions in the nematic equations (1) and (2) are then
expanded in Taylor series to O(φ). Using the scalings (7)
and (8) the system (1) and (2) becomes

i
∂u

∂Z
+ iγ∆(θ0, T )

∂u

∂X
+

1

2
∇2u+ 2

ǫa
(ǫa)t

φu = 0, (9)

ν∇2φ+ 2
ǫa

(ǫa)t
|u|2 = 0.(10)

The non-dimensional walkoff factor γ is given by

γ =
2ne

√

(ǫa)t sin 2θ0
(11)

and the non-dimensional NLC elasticity is

ν =
8K

ǫ0(ǫa)tA2
eW

2 sin 2θ0
. (12)
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The elasticity parameter ν is large, O(100), for typical
experimental regimes [12, 38]. This regime is termed
highly nonlocal and the large value of ν plays a vital role
in the calculation of the nematicon trajectories below. It
should be noted that the walkoff ∆ has been truncated
at the leading order with θ = θ0, so that the beam
self-bending due to nonlinear changes in walkoff [39, 40]
are ignored. This approximation has been found to
give good agreement with experiments and numerical
solutions for low power beams [7, 41–43]. The inclusion of
self-bending presents extra challenges and is the subject
of current investigations.
In a similar manner the thermal equation (5) can be

set in non-dimensional form. Let us set AT to be a
typical temperature change from the initial temperature
T0 due to the optical heating, so that T = T0 + AT τ ,
with τ the non-dimensional temperature change from the
background temperature T0. Then using the coordinate
scalings (6), the thermal equation (5) becomes

µ∇2τ = −|u|2, (13)

where the non-dimensional thermal conductivity is

µ =
2Sτt

αΓW 2A2
e

. (14)

Note that the Laplacian in (13) is in the transverse
variables (x, y). The longitudinal length of the cell
is much greater than the transverse lengths, so heat
preferentially flows in the transverse direction. In
addition, in non-dimensional variables the coefficient of
τZZ is O(W 2/L2

z) ≪ 1 relative to the coefficients of
τXX and τY Y . Equation (13) will be solved for τ for
a Gaussian input beam

u = ae−r2/w2

, (15)

where r2 = X2+Y 2 is the radial distance centred on the
nematicon axis. Hence, the temperature change due to
the light beam is described by

µ

r

∂

∂r

(

r
∂τ

∂r

)

= −a2e−2r2w2

, (16)

which has the solution

τ =
a2w2

4µ

∫

√
2
R
w

√
2
r
w

1− e−η2

η
dη (17)

on assuming the fixed boundary condition T = T0,
τ = 0, at r = R. Experimental cells have rectangular
cross-section, but we assume the cell width much
larger than the beam width, so that assuming circular
symmetry is a good approximation, as will be found
below. The solution (17) can now be used to determine
the temperature dependence of the parameters in the
nematic equations (9) and (10). This solution gives this
temperature in terms of the beam power and medium
parameters.

It is noted that the full system consisting of the
nematic equations and the temperature equation (13)
does not possess a Lagrangian representation. However,
if the temperature is given as a function of (X,Y, Z)
by the solution (17), then the (X,Y, Z) dependence of
the refractive indices n‖ and n⊥ due to optical heating
are established and the temperature equation (13) is not
needed in the determination of the Lagrangian. The
nematic equations (9) and (10) then have the Lagrangian

L = i (u∗uZ − uu∗
Z) + iγ∆(θ0, τ) (u

∗uX − uu∗
X)

− |∇u|2 + 4
ǫa

(ǫa)t
φ|u|2 − ν|∇φ|2, (18)

where the ∗ superscript denotes the complex conjugate.
To calculate the trajectory of the nematicon, this
Lagrangian is “averaged” [36] by integrating in X and
Y from −∞ to ∞ on substituting suitable solutions u for
the nematicon and φ for the molecular director response.
This averaging treats the (slowly varying) nematicon as
an equivalent mechanical particle moving in a potential
and is the basis of standard solitary wave perturbation
theory [24, 44, 45]. Unfortunately, there are no known
exact nematicon solutions, besides isolated ones for fixed
parameter values [25], on which to base this averaging.
For this reason, let us assume the general profiles

u = afe(ρe)e
iσ+iV (X−ξ), (19)

φ = adfd(ρd), (20)

where

ρe =

√

(X − ξ)2 + Y 2

w
, ρd =

√

(X − ξ)2 + Y 2

wd
. (21)

The calculation of the averaged Lagrangian can now be
based on these general profiles. The only difficulty is the
averaging of the walkoff term ∆(u∗uX − uu∗

X), as the
walkoff ∆ depends on (X,Y ) through the temperature
(17). To enable the averaging integral to be calculated,
we note that the change due to temperature of the
refractive indices n‖ and n⊥ is small compared with the
initial values [35]. We then expand the walkoff ∆ in a
Taylor series in τ

∆ = ∆(θ0, T0) +
∂∆

∂T

∣

∣

∣

∣

∣

T=T0

τ + . . .

= ∆(θ0, T0)

+
4n‖0

n⊥0

(

n⊥0

dn‖0

dT − n‖0

dn⊥0

dT

)

sin 2θ0
[

n2
‖0

+ n2
⊥0

+
(

n2
‖0

− n2
⊥0

)

cos 2θ0

]2 τ + . . . ,

(22)

where τ is given by (17) and the 0 subscripts on the
refractive indices denote that these are evaluated at T =
T0. Despite this approximation, the average of ∆(u∗uX−
uu∗

X) is too involved to calculate, even if fe is assumed
to be a Gaussian (15). We note that the non-dimensional
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conductivity µ is large, O(100), for typical experiments,
as found by using the parameter values of [35] and the
NLC thermal parameter values of [37]. Therefore, the
width w of the light beam is much narrower than the
width of the temperature response of the medium, in
much the same manner in which the NLC re-orientational
response is nonlocal [6]. Hence, in averaging ∆(u∗uX −
uu∗

X), the value of τ at the centre of the beam can be
taken. With these assumptions, averaging (18) gives the
averaged Lagrangian L

L = −2a2w2S2 (σ
′ − V ξ′)

− 2a2w2S2γ

(

∆(θ0, T0) +
∂∆

∂T

∣

∣

∣

∣

∣

τ=0

a2w2C1

4µ

)

V

− a2S22 − a2w2S2V
2 − 4νS42a

2
d

+ 4a2w2adSm

(

1 +
dǫa
dT

∣

∣

∣

∣

∣

τ=0

a2w2C1

4(ǫa)tµ

)

, (23)

where the various integrals involved are

S2 =

∫ ∞

0

ζf2
e (ζ) dζ, S22 =

∫ ∞

0

ζf ′2
e (ζ) dζ,

S42 =
1

4

∫ ∞

0

ζ

[

d

dζ
fd(ζ)

]2

dζ,

Sm =

∫ ∞

0

ζf2
e (ζ)fd

(

w

wd
ζ

)

dζ (24)

and

C1 =

∫

√
2
R
w

0

1− e−η2

η
dη. (25)

The exact values of these integrals are not needed to
calculate the nematicon trajectory. The only assumption
needed for the nematicon solution is the Gaussian
approximation (15) to calculate the beam induced
temperature change.
As a nematicon propagates, its amplitude a and width

w oscillate and evolve to a steady state. However, it
has been found [13, 46, 47] that this amplitude/width
evolution decouples from the trajectory evolution owing
to the highly nonlocal response [6]. The main effect of the
nematicon amplitude/width oscillations is the shedding
of dispersive radiation, enabling the solitary wave to
reach a steady state. For a large nonlocality ν the shed
radiation has low amplitude and is emitted on a long Z
scale [13, 48], so that the approach to a steady state is
gradual. Physically, a high nonlocality gives rise to a
very wide potential well around the evolving nematicon,
which essentially traps the radiation. As we are only
interested in the nematicon trajectory, we shall assume
constant values for the nematicon amplitude a and width
w, as well as the amplitude ad and width wd of the
molecular director distribution. Taking the beam and
director amplitudes and widths as constants, variations

β‖0 β‖1 β‖2 β‖3

1.832 −9.642 × 10−3 2.973 × 10−4
−3.152 × 10−6

β⊥0
β⊥1

β⊥2
β⊥3

1.47 4.908 × 10−3
−1.285× 10−4 1.406 × 10−6

TABLE I: Coefficients of interpolating cubic polynomials (30)
and (31) based on the experimental data of [35].

of the averaged Lagrangian (23) with respect to η and V
give the equations for the beam trajectory as

V ′ = 0, (26)

ξ′ = V + γ

[

∆(θ0, T0) +
∂∆

∂T

∣

∣

∣

∣

∣

T=T0

a2w2C1

4µ

]

. (27)

The transverse velocity V is constant, with V = 0 since
the beam is launched along z, as in the experiments [35].
Integrating the trajectory equation (27) and reverting
back to dimensional coordinates using (6), (7), (11), (12)
and (14) gives the dimensional trajectory ξdim of the
optical wave-packet as

ξdim =

[

∆(θ0, T0) +
∂∆

∂T

∣

∣

∣

∣

∣

T=T0

αC1

2πS
P

]

z, (28)

where the beam power is

P = Γ

∫ ∞

−∞

∫ ∞

−∞
|E|2 dxdy. (29)

To calculate the beam trajectory from (28), using (22)
for the temperature derivative of ∆, the temperature
dependence of the refractive indices n‖ and n⊥ are
needed. The experimental work of [35] gives data for
these dependencies. It was found that a cubic polynomial
fit in temperature T

n‖ = β‖0
+ β‖1

T + β‖2
T 2 + β‖3

T 3, (30)

n⊥ = β⊥0
+ β⊥1

T + β⊥2
T 2 + β⊥3

T 3 (31)

provides an excellent match to these dependencies, as
shown in Figure 2. The coefficients of these interpolating
polynomials are given in Table I.
To compare the trajectories given by (28) with

experimental results, values of the parameters in this
solution are needed. For the thermal absorption
coefficient α for the NLC mixture E7 we use the typical
value α = 10m−1 [37]. In addition, the E7 thermal
conductivity is S = 0.7Wm−1K−1 [37]. The experiments
of [35] used a beam of waist 3µm. If we take the waist
of the beam to be radius r at which (19) falls to 0.01 of
its centre value, this gives w = 1.5/ ln 10. Hence, as the
half width of the experimental cell was 50µm, this gives
R/w = 50 ln 10/1.5 = 76.75, so that the integral (25) is
C1 = 4.98.
The comparisons between the simulated trajectories

and the experimental data requires the acquisition of the
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FIG. 2: Comparison between the experimental data for (a) n‖

and (b) n⊥ as a function of temperature in E7 [35] and the
interpolating polynomials (30) and (31). Experimental data:
squares; interpolating polynomials: solid lines.

beam path versus propagation distance for various input
powers and sample temperatures. Such systematic work
can only be conducted in temperature controlled and
temperature stabilized NLC samples with the molecular
director distribution in the observation plane (x, z), i.e.
the plane parallel to the planar interfaces defining the
cell. The latter yields beam trajectories and walk-off in
(x, z), in such a way that out-of-plane light scattering
can provide a means for acquiring photographs with a
microscope and a camera mounted with axes along the y
direction. This analysis was conducted by U. Laudyn
and coworkers, as detailed in Ref. [35]. It should be
noted that there were errors in the reporting of the
experimental results in [35], which were corrected in the
erratum [49]. In checking the validity of the simulation
results against laboratory data, a few issues have to
be underlined beyond the approximations introduced
in the model and discussed above. Experiments are
subject to nonlinear changes in walk-off versus input
power, as well as scattering losses. These two effects
can cause a significant distortion of the trajectories
from rectilinear paths, as the beam power decays versus
propagation. The model detailed in the present paper
accounts for the non-homogeneous temperature changes
due to absorption and heating along/across the beam,

20 25 30 35 40 45 50 55
Temperature [°C]
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W
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 [d
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]

FIG. 3: Comparison between the experimental data (symbols)
of Ref. [35] for the beam walk-off angle and the results of the
model (28) (colour lines), at various temperatures between
22◦ and 55◦. The experimental results were averaged over
various input powers at 1.064µm. The error bars resulted
from transverse fluctuations of the beam, as well as the limited
accuracy of the setup. Colour lines are (28) for beam powers
2, 4, 5, 7.5, 15 and 20mW (from top to bottom), respectively.

(a)

beam power mW 40oC 45oC 50oC 55oC
7.5 5.53 5.19 4.33 2.95
15 5.81 5.19 3.93 2.59
20 5.33 5.08 3.82 2.46

(b)

beam power mW 40oC 45oC 50oC 55oC
7.5 5.37 4.84 4.00 2.75
15 5.34 4.79 3.92 2.64
20 5.32 4.76 3.87 2.57

TABLE II: Initial walkoff angle δ in degrees as given by (a)
experimental results of [35], (b) theoretical angle (28), ξ′dim,
at z = 0.

but neglects the reorientation driven changes to the
walk-off. Figure 3 shows the calculated walk-off angle
versus sample temperature for various input powers as
compared with an average of the experimental results
[35]. The experimental data are derived from the
initial paths of the nematicons, in order to reduce
the influence of beam attenuation and the resulting
change in walkoff angle. The latter values are obtained
from photographs of beam evolution at a wavelength of
1.064µm in 100µm thick E7 samples with the molecular
director set by anchoring at 60◦ in (x, z) with respect to
the input wave-vector k parallel to z [35] (see Fig. 1).
The transverse fluctuations of the nematicons [31, 50],
as well the limitations of the setup and temperature
controller/stabilizer, are accounted for by error bars.
The walkoff angles were averaged over several input
powers between 2 and 20mW . The agreement between
the analytical model and the experiments is remarkably
good, in spite of the aforementioned shortcomings.
It can be seen from Figure 3 that the walkoff angle

only shows significant dependence on beam power at
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high powers and at the upper end of the temperature
range. This is because the physical properties of E7
are dependent on temperature due to its weak optical
absorption [37]. Table II shows comparisons between
the initial walkoff angle (z = 0) as obtained from
the experimental results of [35] in (a) and the angle
as calculated from (28) for a moderate power 7.5mW
and the two high powers 15mW and 20mW in (b).
The experimental results of [35] and the theoretical
walkoff results of Figure 3 show that there is significant
walkoff deviation with power above 45oC and for the
beam powers 15mW and 20mW . It can be seen
that the theoretical results are in good agreement with
experimental results at 50oC and 55oC for the higher
powers. The agreement at the lower temperatures and
the moderate power 7.5mW is reasonable, given the
approximations mentioned above. The experimental
results of Table II(a) at the lower power 7.5mW and
the lower temperatures show significant non-monotonic
variation, which is presumably due to the experimental
limitations mentioned above. Hence, close agreement
cannot be expected for these temperatures and powers.

This study emphasises and confirms the power of
modulation theory and averaged Lagrangian analyses
for modelling light beam evolution in nematic liquid
crystals [7, 9, 11–24]. This study has only touched on
the effects of the temperature dependence of the NLC
physical properties on nematicon propagation and leaves
a large number of questions open, including the role of
such nonlinear synergy/competition on multi-humped,
two-dimensional nematicon profiles, power-dependent
walkoff, nonlocal effects and so on. Several such
investigations are underway.
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[41] U. A. Laudyn, M. Kwaśny, F. A. Sala, M. A. Karpierz,

N. F. Smyth and G. Assanto, “Curved optical solitons
subject to transverse acceleration in reorientational soft
matter,” Sci. Rep., 7, 12385 (2017).

[42] F. A. Sala, N. F. Smyth, U. A. Laudyn, M. A. Karpierz,
A. A. Minzoni and G. Assanto, “Bending reorientational
solitons with modulated alignment,” J. Opt. Soc. Am. B,

34, 2459–2466 (2017).
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