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Abstract

Here we report the result of a genetic screen for mutants resistant to the microtubule poison methyl benzimidazol-2-yl
carbamate (MBC) that were also temperature sensitive for growth. In total the isolated mutants were distributed in ten
complementation groups. Cloning experiments revealed that most of the mutants were in essential genes encoding various
26S proteasome subunits. We found that the proteasome mutants are multi-drug resistant due to stabilization of the stress-
activated transcription factor Pap1. We show that the ubiquitylation and ultimately the degradation of Pap1 depend on the
Rhp6/Ubc2 E2 ubiquitin conjugating enzyme and the Ubr1 E3 ubiquitin-protein ligase. Accordingly, mutants lacking Rhp6
or Ubr1 display drug-resistant phenotypes.
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Introduction

Intracellular protein degradation is a regulated process that

maintains cellular homeostasis [1]. However, selective destruction

of regulatory proteins also provides an important control

mechanism for quickly and irreversibly eliminating signalling

proteins such as transcription factors [1]. Intracellular protein

degradation is therefore relevant for most cellular and physiolog-

ical functions including apoptosis, cell cycle progression, differen-

tiation and DNA repair [1], and also partakes in cellular stress

responses [2].

In eukaryotic cells the major degradation pathway for

intracellular proteins is via the ubiquitin-proteasome system

(UPS) [3] [1] [4]. This system relies on a cascade of three

enzymes termed E1, E2 and E3 that conjugate the small protein

ubiquitin to specific target proteins [3] [5]. Subsequently, the

proteins, which have been marked with ubiquitin, are targeted to

the 26S proteasome, a large proteolytic particle found in the

nucleus and cytosol of all eukaryotic cells [4]. At the 26S

proteasome the ubiquitin chains are released while the substrate is

degraded.

The 26S proteasome is composed of two subcomplexes, the

proteolytically active 20S core particle and 19S regulatory

complexes that bind to one or both ends of the 20S particle [4].

Structurally the 20S core is built from 28 subunits, arranged as

four stacked heptameric rings, forming a cylindrical structure [6].

The two outer rings each contain seven different a subunits (a1-

a7) and the two inner rings each contain seven different b subunits

(b1– b7), forming an overall a1–7b1–7b1–7a1–7 structure [6]. Some

of the b subunits are threonine-type proteases that expose their

active sites towards a central chamber inside the 20S cylinder [6].

The 19S regulatory complex is an asymmetric particle

composed of about 19 different subunits distributed between two

subcomplexes called the base and the lid [4]. Some of these

subunits are responsible for binding ubiquitylated substrates, while

others are involved in recycling ubiquitin, by cleaving the

ubiquitin moieties from the substrate during degradation. The

19S particle also contains six different ATPase subunits that

function in unfolding and translocation of the protein substrates

into the 20S cylinder [7–8].

In the fission yeast Schizosaccharomyces pombe a number of mutants

have been isolated by their ability to be resistant to the mitotic

poison methyl benzimidazol-2-yl carbamate (MBC) and also be

temperature sensitive for growth, and were named mts for ‘‘MBC

resistant and temperature sensitive’’. Most of the mts mutants

identified by this screen were found to be in different subunits of

the 26S proteasome [9–12]. Although the 26S proteasome,

through degradation of various substrates, is involved in multiple

cellular pathways, the reason for the enrichment of 26S

proteasome mutants in the screen has remained elusive.

The S. pombe homolog of the human AP-1 transcription factor,

Pap1, is one of the major stress activated transcription factors in

PLOS ONE | www.plosone.org 1 November 2012 | Volume 7 | Issue 11 | e50796



fission yeast [13]. Overexpression of Pap1 results in resistance to a

number of different drugs such as staurosporine [14] and brefeldin

A [15]. Conversely, mutants lacking Pap1 are hypersensitive to

drugs such as caffeine [16].

Here, we characterize six novel mts mutants. Five of these

mutants are in subunits of the 26S proteasome, while one is in the

nuclear export receptor, Crm1. We show that the proteasome

mutants are multi-drug resistant. This phenotype depends on the

Pap1 transcription factor that is degraded by the ubiquitin

pathway, but stabilized in the proteasome mutants. Finally, we

also show that the Rhp6/Ubc2, E2 ubiquitin conjugating enzyme

and the Ubr1 E3 ubiquitin-protein ligase are responsible for

ubiquitylation of Pap1, and targeting Pap1 for degradation by the

26S proteasome.

Materials and Methods

S. pombe Strains, Techniques and Reagents
The S. pombe strains used in this study (Table 1) are derivatives of

the wild type heterothallic strains 972h2 and 975h+. Standard

genetic methods and media were used and S. pombe transforma-

tions were performed using the lithium acetate procedure [17].

The PCR mutagenesis was performed according to a previously

published procedure [18]. Methyl benzimidazol-2-yl carbamate

(MBC) was purchased from Sigma.

Antibodies
The antibody to tubulin was the TAT1 monoclonal (Sigma).

The antibody to actin was from GE Healthcare. The antibody to

GFP was purchased from Roche. The antibodies to Obr1 (p25)

and Pap1 have been described previously [19]. The antibody to

Mts4 has been described previously [11]. The antibody to the 20S

alpha subunits was the monoclonal MCP231 from Enzo Life

Sciences. Secondary antibodies were from Dako. All antibodies

were used in 1:1000 dilutions.

Plasmids and Purification
The expression constructs used here were wild type cDNA

encoding Pap1 and ubiquitin N-terminally tagged with GFP and

6His, respectively, subcloned to the pREP41 S. pombe expression

vector. 6His-tagged ubiquitin was purified on Ni2+-NTA agarose

beads (Qiagen) under denaturing conditions in 8 M urea as

described by the manufacturer.

The S. pombe cDNA library was generously supplied by Prof.

Peter A. Fantes (Edinburgh, UK).

Protein Degradation Assays
Protein degradation kinetics were determined by SDS-PAGE

and blotting of extracts prepared from cultures treated with

cycloheximide (CHX), as described previously [20].

Results

Isolation of the mts Mutants
We carried out a screen to isolate mutants that were resistant

to the mitotic poison methyl benzimidazol-2-yl carbamate

(MBC) and also temperature sensitive for growth. In total 24

mutants were obtained. Crossing them to each other demon-

strated that the mutants lay in 10 complementation groups

(mts1-mts10) (Table 2). Genetic analyses showed that in each

case the temperature sensitive and drug resistant phenotypes co-

segregated demonstrating that the same mutation was respon-

sible for both phenotypes.

Table 1. Fission yeast strains used in this study.

Strain Genotype Reference

wild type leu1-32 ura4-D18 h- Laboratory stock

pap1D pap1::ura4 leu1-32 ura4-D18 h- [14]

cdc25.M35 cdc25.M35 leu1-32 h- [44]

mts1-1 mts1-1 leu1-32 ura4-D18 h- This study

mts2-1 mts2-1 leu1-32 ura4-D18 h- [9]

mts3-1 mts3-1 leu1-32 ura4-D18 h- [10]

mts4-1 mts4-1 leu1-32 ura4-D18 h- [11]

mts5-1 mts5-1 (pad1-1) leu1-32 ura4-D18 h- [12]

mts6-1 mts6-1 leu1-32 ura4-D18 h- This study

mts7-1 mts7-1 leu1-32 ura4-D18 h- This study

mts8-1 mts8-1 leu1-32 ura4-D18 h- This study

mts9-1 mts9-1 leu1-32 ura4-D18 h- This study

mts10-1 mts10-1(crm1) leu1-32 ura4-D18 h- This study

ubc1D ubc1::ura4 leu1-32 ura4-D18 h- [45]

rhp6D rhp6(ubc2)::ura4 leu1-32 ura4-D18 h- [45]

ubc3D ubc3::ura4 leu1-32 ura4-D18 h- [45]

ubc4-1 ubcP1 leu1-32 ura4-D18 h- [46]

ubc6D ubc6::ura4 leu1-32 ura4-D18 h- [45]

ubc8D ubc8::ura4 leu1-32 ura4-D18 h- This study

ubc11-1 ubcP4 leu1-32 ura4-D18 h- [46]

ubc13D ubc13::ura4 leu1-32 ura4-D18 h- [47]

ubc14D ubc14::ura4 leu1-32 ura4-D18 h- This study

ubc15D ubc15::ura4 leu1-32 ura4-D18 h- [48]

ubc16D ubc16::HYG leu1-32 ura4-D18 h- This study

rhp18D rhp18::ura4 leu1-32 ura4-D18 h- [45]

ubr1D ubr1::ura4 leu1-32 ura4-D18 h- [45]

ubr11D ubr11::ura4 leu1-32 ura4-D18 h- [45]

cdc8-27 cdc8-27 leu1-32, h- [49]

cdc13-117 cdc13-117 leu1-32 [50]

sep1D sep1::G418 ura4-D18 leu1-32 h- [51]

cdt2D cdt2::G418 ura4-D18 leu1-32 h- [52]

txl1D txl1::NAT leu1-32 ura4-D18 h- [53]

doi:10.1371/journal.pone.0050796.t001

Table 2. The mts complementation groups.

Mts
group

No. of
alleles Encoded protein Function

mts1 3 Rpn9 19S lid proteasome subunit,

mts2 4 Rpt2 19S base proteasome subunit

mts3 1 Rpn12 19S lid proteasome subunit

mts4 6 Rpn1 19S base proteasome subunit

mts5 1 Rpn11/Pad1 19S lid proteasome subunit

mts6 2 b2/Pup1 20S proteasome subunit

mts7 1 a4/Pre6 20S proteasome subunit

mts8 1 b1/Pre3 20S proteasome subunit

mts9 1 b7/Pre4 20S proteasome subunit

mts10 4 Crm1 Nuclear export receptor

doi:10.1371/journal.pone.0050796.t002

Pap1 Is a 26S Proteasome Target
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Cloning of mts1, mts6, mts7, mts8, mts9 and mts10
Previous published work identified mts2, mts3, mts4 and mts5/

pad1 mutants to be in different subunits of the 26S proteasome [9–

12]. All four mutant strains were in different subunits of the 19S

regulatory complex. The mts2+ gene encodes the Rpt2 base

ATPase subunit, mts3+ the Rpn12 lid subunit, mts4+ the base non-

ATPase Rpn1 and mts5+ the lid Rpn11/Pad1 deubiquitylating

subunit (Table 2). To identify the genes encoding the mts1, mts6,

mts7, mts8, mts9 and mts10 mutants the temperature sensitive

phenotype of each mutant strain was rescued by transformation

with a fission yeast cDNA library in an S. pombe expression vector.

After isolating and sequencing plasmids it was observed that five of

the mutant strains (mts1, mts6, mts7, mts8 and mts9) were rescued by

cDNAs that encoded different subunits of the 26S proteasome.

The mts1+ gene was found to encode the lid Rpn9 subunit. The

mts6, mts7, mts8 and mts9 were rescued by cDNA encoding the 20S

proteasome core subunits b2, a4, b1 and b7, respectively (Table 2).

Finally, the cDNA that complemented the mts10 temperature

sensitive phenotype encoded the nuclear export protein Crm1

(Table 2). To demonstrate that the cloned cDNAs encoded the

authentic genes and not extragenic suppressors, each of the mts

strains were crossed to mutants in closely linked genes: cdt2 for

mts1, cdc8 for mts6, cdc13 for mts7, sep1 for mts8, txl1 for mts9 and

sep1 for mts10. In each case strong linkage was observed indicating

that the temperature sensitive mutations were in the authentic

genes (data not shown). In all cases deleting the mts genes resulted

in lethality, revealing that the mutants were all conditional mutant

alleles of essential genes. As nine out of ten genes encoded subunits

of the 26S proteasome (Table 2) this raised the important question

of why the screen was so biased for isolation of mutants in different

subunits of the 26S proteasome.

The mts Mutants are Multi-drug Resistant
The mts mutants were isolated on account of their resistance to

the mitotic poison MBC. We were interested to ask if the mutants

were resistant to other drugs. When the mts strains were streaked

on complete media containing the drugs brefeldin A, staurosporine

or caffeine at the permissive temperature of 25uC, the mts mutants

were found to be more resistant than wild type cells (Fig. 1). To

show that this was not an effect of the temperature sensitivity of the

mutants, a temperature sensitive mutant in cdc25, a gene encoding

a cell cycle regulated phosphatase, was included as a control. The

mts mutants all showed the same spectrum of resistance although

the level of resistance varied with the different mutants (Fig. 1).

The cdc25 mutant was moderately resistant to staurosporine, but

did not display the multi-drug resistant phenotype of the mts

mutants (Fig. 1). These data confirm that the mts mutants are

multi-drug resistant.

The Pap1 Protein is Stabilized in the mts Mutants at the
Permissive Temperature

The multi-drug resistant phenotype has been observed before

for cells in which the Pap1 transcription factor is overexpressed

[14–15]. Indeed temperature and cold sensitive alleles of the

crm1 (mts10) gene display multi-drug resistance that depends on

the presence of a wild type pap1+ gene [19]. This raised the

possibility that the proteasome mutants were multi-drug resistant

due to the Pap1 protein being a substrate of the proteasome.

Hence, Pap1 could be stabilized in the proteasome mutants

because proteolysis is defective in these strains. To test this

hypothesis the steady state levels of the Pap1 protein were

determined in the mts2-1, mts3-1, mts4-1, mts5-1 and wild type

cells by Western blot analysis using an antibody to the Pap1

protein. The Pap1 protein was significantly more abundant in

extracts prepared from the mts mutants compared to those

prepared from wild type cells (Fig. 2a). In contrast, the level of

Pap1 protein in the crm1/mts10 mutant strain was unchanged

compared to wild type (Fig. 2a). This is consistent with a

different mechanism for multi-drug resistance in the crm1-1

(mts10-1) strain compared to the proteasome mutants. Thus, in

the crm1-1 strain nuclear export of the Pap1 protein is impaired

leading to drug resistance, as previously described [13].

To further demonstrate that the Pap1 protein was stabilized in

the proteasome mts mutants, the degradation of Pap1 was followed

in cultures treated with the translation inhibitor cycloheximide.

The Pap1 protein was fused to GFP and expressed in wild type

cells and the mts2-1 proteasome mutant strain at the restrictive

temperature of 36uC in the presence of cycloheximide. Extracts

were prepared at intervals and analyzed by SDS-PAGE and

blotting using an antibody to GFP. As expected the Pap1-GFP

fusion protein was stabilized in the proteasome mutant compared

to wild type cells (Fig. 2b).

The mts Mutants Contain Elevated Levels of the Pap1
Target Obr1

Although the Pap1 protein is stabilized in the mts mutants, it is

important to demonstrate that this increased amount of Pap1

protein augments the gene expression of Pap1 target genes. The

obr1+ gene contains a consensus Pap1 DNA binding motif in its

promoter and has been shown to be transcribed specifically by

Pap1 [19]. To show that the increased amount of Pap1 protein

resulted in an increase in obr1+ expression, extracts were prepared

from the mts strains and analysed by Western blotting with

antibodies to Obr1. Indeed, the level of the Obr1 was significantly

upregulated in the mts mutants as compared to wild type cells

(Fig. 2c). This demonstrates that the increased amount of Pap1

protein observed in the mts mutants results in an increase in Pap1-

mediated gene expression.

The Pap1 Protein is the Cause of the Multi-drug Resistant
Phenotype of the mts Mutants

If the observed stabilization of the Pap1 protein is the true cause

of the multi-drug resistance observed in the mts mutants then this

phenotype should be lost in strains which have been deleted for the

pap1+ gene. Cells lacking Pap1 are viable although they are stress

sensitive [21]. Therefore the pap1 null strain was crossed to each of

the mts2-1, mts3-1 and mts5-1 mutants to construct pap1Dmts

double mutants. The MBC drug resistance phenotype was then

investigated for each of the double mutant strains. The pap1Dmts

double mutants were all as sensitive to MBC as the pap1D strain,

and were now more sensitive to MBC than wild type cells (Fig. 3).

Similar results were obtained with brefeldin A, staurosporine and

caffeine (data not shown). This strongly suggests that the observed

multi-drug resistance phenotype observed in the mts mutants is the

result of the stabilization of Pap1, and that the Pap1 protein is the

primary target whose misregulation results in a multi-drug

resistant phenotype in the proteasome mutants.

The Pap1 Protein is Polyubiquitylated
If the Pap1 transcription factor is a target of the 26S proteasome

one would expect that it should be polyubiquitylated. To test this,

6His-tagged ubiquitin was expressed in S. pombe cells and purified

on a nickel resin. The tagged ubiquitin conjugates were resolved

by SDS-PAGE and analysed by Western blotting using antibodies

to Pap1. Indeed we found that Pap1 was heavily ubiquitylated

(Fig. 4).

Pap1 Is a 26S Proteasome Target
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Rhp6/Ubc2 Functions as the E2 Ubiquitin-conjugating
Enzyme for Pap1

Ubiquitin is added to substrate proteins by the action of an E1,

E2 and E3 enzyme cascade. We were interested in investigating

which E2s and E3s were involved in the addition of the ubiquitin

chain to Pap1. We postulated that the relevant E2 involved in

targeting Pap1 protein for ubiquitylation and degradation should

show resistance to MBC in an analogous manner to the mts

proteasome mutants. The fission yeast genome encodes several

different ubiquitin-specific E2 proteins. We obtained 8 null or

conditional mutants that were generated previously (ubc1, ubc2,

ubc3, ubc4, ubc6, ubc11, ubc13 and ubc15), and constructed three

additional null mutants (ubc8, ubc14 and ubc16) for this study. The

ORFs of ubc8+ and ubc14+ were replaced with the ura4+ gene, while

the ubc16+ ORF was replaced with the hygromycin resistance

gene. When these strains were streaked on plates containing MBC,

only the mutant in ubc2, also known as rhp6, displayed MBC

Figure 1. The mts mutants are multi-drug resistant. The indicated yeast strains (lower left panel) were streaked onto solid medium containing
MBC, brefeldin A, staurosporine or caffeine at the shown concentrations and incubated for 48 hours at room temperature. On the control medium
lacking drugs (upper left panel) all the strains grew. When the indicated drugs were added to the media the growth of wild type cells was
compromised, while the mts mutants displayed resistance.
doi:10.1371/journal.pone.0050796.g001

Figure 2. Stabilization of Pap1 in the mts mutants leads increased obr1+ expression. (a) To compare the steady state levels of Pap1 cell
extracts of the indicated strains were prepared and analyzed by SDS-PAGE and Western blotting using antibodies to Pap1. Actin served as a loading
control. Compared to wild type cells, the Pap1 levels were increased in the proteasome mutants, but not in the mts10-1 (crm1) mutant. A pap1D
mutant was included as a control. (b) The degradation kinetics of GFP-tagged Pap1 was followed by blotting of wild type (wt) and mts2-1 cultures
treated with cycloheximide (CHX). a-tubulin served as a loading control. In wild type cells Pap1 was rapidly degraded with a half-life of about 50
minutes. In the mts2-1 background Pap1 was stabilized (c) To compare the steady state levels of the Pap1 target Obr1 cell extracts of the indicated
strains were prepared and analyzed by SDS-PAGE and Western blotting using antibodies to Obr1. Tubulin served as a loading control. Compared to
wild type cells, the Obr1 levels were increased in the proteasome mutants and, as expected, in the mts10-1 (crm1) mutant. No Obr1 was detected in
the pap1D mutant.
doi:10.1371/journal.pone.0050796.g002

Pap1 Is a 26S Proteasome Target
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resistance (Fig. 5a), suggesting that Rhp6 is involved in Pap1

ubiquitylation.

To verify that Rhp6 is involved in Pap1 ubiquitylation, the

expression plasmid for 6His-tagged ubiquitin was introduced in

the rhp6 null strain. Indeed Pap1 was no longer ubiquitylated in

the rhp6D mutant (Fig. 5b). These data are consistent with the

observation that the rhp6D mutant is the only E2 mutant of those

tested to show MBC resistance and leads to the conclusion that

Rhp6 functions as the major, or perhaps sole, E2 conjugating

enzyme for ubiquitylation of Pap1.

The Ubr1 E3 Ubiquitin-protein Ligase Targets Pap1 for
Degradation

Since the budding yeast Rhp6 ortholog, Rad6, has previously

been shown to interact with the E3 ubiquitin ligases called Ubr1

[22], Ubr2 [23] and Rad18 [24], we reasoned that the fission yeast

orthologs Ubr1, Ubr11 and Rhp18, respectively, are likely

candidates as E3s for ubiquitylation of Pap1. We therefore

transformed ubr1D, ubr11D and rhp18D mutants with the

expression plasmid for 6His-tagged ubiquitin and purified

ubiquitin-conjugates as above. The results showed that Pap1

remained ubiquitylated in the rhp18 and ubr11 null strains, whereas

no ubiquitylated Pap1 was detected in the ubr1D strain (Fig. 5b).

This suggests that Ubr1, but not Ubr11 and Rhp18, functions as

E3 ubiquitin-protein ligase in targeting Pap1 for degradation.

Accordingly, we found that ubr1D cells are resistant to MBC and

caffeine, whereas the rhp18 and ubr11 null strains are not (Fig. 5c).

Collectively, this leads to the conclusion that Pap1 ubiquitylation

and subsequent degradation is catalyzed by the Rhp6 E2 ubiquitin

conjugating enzyme and the Ubr1 E3 ubiquitin-protein ligase.

Moreover, the complete lack of ubiquitylated Pap1 in the ubr1D
strain implies that the Ubr1 protein plays a major role in targeting

the Pap1 protein for degradation.

Discussion

Here we have described a genetic screen for mutants in fission

yeast that showed resistance to the mitotic poison MBC that were

also temperature sensitive for growth. Mutants in ten different

essential genes were isolated. Nine of the genes encode different

subunits of the 26S proteasome, while one encoded the nuclear

export factor Crm1. The proteasome mutants were obtained in all

the different subcomplexes which make up the 26S proteasome.

Four mutants, mts6, mts7, mts8 and mts9 were in subunits of the 20S

catalytic complex. Two mutants, mts2 and mts4, were in subunits of

the 19S regulatory base subcomplex. The mts2 strain had

mutations in one of the ATPase subunits (Rpt2) while mts4 had

mutations in the Rpn1 nonATPase subunit. The remaining three

mts genes mts1, mts3 and mts5 encoded different subunits of the 19S

regulatory lid sub-complex. All the mts mutants were conditional

alleles of essential genes. Curiously, budding yeast null mutants in

RPN9 are viable [25]. We found that in S. pombe the RPN9 ortholog

mts1+ is an essential gene. The isolation of mutants in all the

different sub-complexes of the 26S proteasome would seem to

indicate that a general defect in 26S proteasome function was

Figure 3. The multi-drug resistance of the mts mutants depends on Pap1. The indicated yeast strains (left panel) were streaked onto solid
medium containing MBC at the shown concentrations and incubated for 48 hours at room temperature. On the control medium lacking drugs all the
strains grew. In the presence of 6 mg/mL MBC some growth of the wild type was still apparent, while no growth of the other strains was observed.
doi:10.1371/journal.pone.0050796.g003

Figure 4. Pap1 is ubiquitylated. To determine the ubiquitylation
status of Pap1, wild type cells and as a control a pap1D strain were
transformed to express 6His-tagged ubiquitin. The 6His-tagged
ubiquitin was then precipitated using Ni2+ agarose under denaturing
conditions in 8 M urea. The precipitates were then washed three times
in a denaturing buffer and analyzed by Western blotting using
antibodies to Pap1. Prior to precipitation, the protein concentrations
were determined and normalized. In total 5 mg cell protein was used
for each precipitation. Ubiquitylated species of Pap1 were detected in
wild type cells expressing the 6His-tagged ubiquitin, but not in the
pap1D strain or in the vector control.
doi:10.1371/journal.pone.0050796.g004

Pap1 Is a 26S Proteasome Target
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responsible for the MBC drug resistance seen at the permissive

temperature. Previous studies in budding yeast have also noted

that mutants in proteasome assembly factors are resistant to

alkylating agents [26], presumably this occurs via a similar

mechanism as the one described here. In this paper we describe

the mechanism which is responsible for the observed drug

resistance. The Pap1 stress-activated transcription factor appears,

by genetic and biochemical criteria, to be the sole, or at least

primary, target for the different mts proteasome mutants that

results in the drug resistant phenotype. In the mts proteasome

mutants Pap1 protein is stabilized, resulting in increased Pap1-

dependent activity and the observed multi-drug resistant pheno-

type. Up regulation of the Pap1 transcription factor has been

implicated in the multi-drug resistant phenotype in a number of

different screens, probably due to the upregulation of ABC

transporters such as Bfr1 [27] [15] [28] that mediate drug efflux

[13] [28].

The Pap1 protein is known to be tightly regulated at many

different levels. Thus, Pap1 is activated by oxidation, but is also

regulated on the level of its subcellular localization. In addition,

the Pap1 protein is rapidly turned over by the UPS [29–31].

Hence, under non stressed conditions Pap1 is and located in the

cytosol, while stress conditions trigger its nuclear translocation.

However, as we show here, this regulation requires that the Pap1

levels are kept balanced by the UPS.

We propose that the fission yeast Rhp6/Ubc2 functions as the

major E2 ubiquitin conjugation enzyme for Pap1 degradation,

while Ubr1, but not the related Ubr11 and Rhp18, functions as E3

ubiquitin-protein ligase in targeting Pap1 for degradation. These

data are in perfect agreement with recent results showing that

Ubr1 regulates the fission yeast oxidative stress response by

targeting Pap1 for degradation [31]. Intriguingly, the budding

yeast orthologues of Rhp6 and Ubr1, called Rad6 and Ubr2,

respectively, were found to regulate degradation of Rpn4, a

transcription factor driving expression of most proteasome

components [32]. Since Pap1 and Rpn4 are not related, this is

most likely coincidental. Accordingly, in Saccharomyces cerevisiae

degradation of the Pap1 orthologue, Yap1, was recently shown to

depend on another ligase called Not4 [33].

Since budding yeast Yap1 transactivates expression of Rpn4

[34], it is possible that in the fission yeast mts mutants the impaired

degradation of Pap1 leads to an increase in proteasome expression.

If this is indeed the case, such a mechanism would only blunt the

response we observe here. Moreover the existence of such a

regulatory mechanism is not obvious, since the S. pombe genome

does not encode any obvious orthologue of budding yeast Rpn4,

the closest relative being Rsv2 that induces stress-related genes

during spore formation [35]. Therefore it is currently unclear how

proteasome gene expression is regulated in S. pombe. However,

previous studies have shown that proteasome expression does not

Figure 5. Pap1 is ubiquitylated by Rhp6/Ubc2 and Ubr1. (a) To identify which E2 ubiquitin conjugating enzyme is responsible for
ubiquitylating Pap1, the indicated E2 null mutants were streaked onto solid medium containing MBC and grown for 48 hours at room temperature.
Since the rhp6D cells grow in the presence of MBC (arrowhead) it was a candidate E2 in Pap1 ubiquitylation. (b) To identify the E2 and E3 enzymes
responsible for ubiquitylating Pap1, the indicated strains were transformed to express 6His-tagged ubiquitin. The 6His-tagged ubiquitin was then
precipitated using Ni2+ agarose under denaturing conditions and analyzed by Western blotting using antibodies to Pap1. Ubiquitylated species of
Pap1 were detected in wild type, ubr11D and rhp18D cells, but not in cells lacking the E2 ubiquitin conjugating enzyme Rhp6 and in cells lacking the
E3 ubiquitin-protein ligase Ubr1. (c) The indicated yeast strains (left panel) were streaked onto solid medium containing MBC or caffeine at the shown
concentrations and incubated for 48 hours at room temperature. On the control medium lacking drugs all the strains grew. In the presence of drugs
the growth of wild type cells was compromised, while the ubr1D mutant displayed resistance.
doi:10.1371/journal.pone.0050796.g005
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depend on Pap1 [36]. Accordingly, we did not observe any

changes in proteasome levels in a pap1D strain (Fig. S1).

Originally Ubr1 was shown to be required for degradation of

proteins carrying destabilizing residues in their N-terminus via the

so-called N-end rule [37–38]. However, Ubr1 also recognizes

misfolded proteins [39–40] and substrates carrying internal

degradation signals [41]. More recently, Ubr1 was also linked to

the Johanson-Blizzard syndrome [42], an autosomal recessive

disorder that involves pancreatic dysfunction and mental retarda-

tion, that has been suggested to be connected with impaired

transcription factor degradation [41].

Since all the components identified here (Pap1, Rhp6, Ubr1 and

the 26S proteasome) are known to have orthologs in mammalian

cells, it is likely that multi-drug resistance could occur by a similar

mechanism in mammalian cells. Interestingly, it has been reported

that the mammalian Pap1 ortholog, the c-Fos transcription factor,

is targeted for degradation by the Ubr1 ortholog in human cells

[41]. Thus, interference with this pathway, either genetically or by

inhibitors, like bortezomib (Velcade), used in cancer therapy [43],

may increase drug and/or stress tolerance also in mammalian

cells.

Supporting Information

Figure S1 Proteasome levels are unchanged in a pap1D
mutant. Whole cell extracts from wild type (wt) and pap1D strains

were analyzed by SDS-PAGE and Western blotting using

antibodies to the 26S proteasome subunit Rpn1/Mts4 and 20S

a subunits. Antibodies to tubulin were used to ensure an even

loading. No significant differences between the strains in

proteasome levels were observed.

(TIF)
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