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Adaptive Stochastic Methods

for Sampling Driven Molecular Systems

Andrew Jones

School of Physics, University of Edinburgh, EH9 3JZ, UK

Ben Leimkuhler

The Maxwell Institute and School of Mathematics,

University of Edinburgh, EH9 3JZ, UK

Abstract

Thermostatting methods are discussed in the context of canonical sampling in the presence of

driving stochastic forces. Generalisations of the Nosé-Hoover method and Langevin dynamics are

introduced which are able to dissipate excess heat introduced by steady Brownian perturbation

(without a priori knowledge of its strength) while preserving ergodicity. Implementation and pa-

rameter selection are considered. It is demonstrated using numerical experiments that the methods

derived can adaptively control the target canonical ensemble in the presence of nonlinear driving

perturbations.
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I. INTRODUCTION

Ergodic sampling is an important requirement in most molecular simulation. Molecular

dynamics simulations have finite, often modest, system sizes, and are based on Hamiltonian

dynamics. Given a sufficiently strong chaotic mixing behavior, averages with respect to

the NVE (constant particle number, volume and energy) ensemble can typically be calcu-

lated using (almost any) trajectory of the system; sampling the canonical or NVT ensemble,

typically requires the use of an appropriate modification of the physical model, termed a

thermostat. A popular scheme for this purpose is the Nosé-Hoover (NH) method, which

supplements the physical system by an additional control variable and an auxiliary nega-

tive feedback loop to allow trajectories (projected to the original phase space) to sample

the canonical ensemble. Because Hamiltonian dynamics, as well as many thermostats, are

deterministic, it is possible for some types of models to be trapped in restricted subdomains

of the thermodynamically accessible region of phase space, preventing an accurate sampling.

As thermostats are artificial constructions, they can be designed to address the ergodicity

problem, either by use of additional auxiliary variables (as in Nosé-Hoover Chains (NHC)

[1]) or by adding a suitable stochastic perturbation in the equations for the physical or

auxiliary variables (e.g. using Langevin dynamics [2] or the recently proposed Nosé-Hoover

Langevin (NHL) method [3]). We describe all of these methods in the next section.

There are certain cases where one wishes to sample a canonical distribution, but this

goal is frustrated by anomalous heating effects. A particular system of this type served

as inspiration for the work presented here: the use of a Quantum-Drude model and Path

Integral Molecular Dynamics [4]. In such systems, as in many other Car-Parinello type

models [5], it is common to employ two temperatures, in this case hot Q-Drudes and cold

atoms, resulting in heat flow between the two components. The artificial adiabatic separation

of the two sets of degrees of freedom can allow a stable evolution; in numerical practice the

electronic degrees of freedom are propagated using a smaller timestep than the nuclei of

the atoms. The simulation of such non-equilibrium (open) systems is a wide and important

area of research, which is currently much less well-understood than is the equilibrium case.

Employing a Nosé-Hoover thermostat allows the excess heat to be removed from the physical

system and deposited into the artificial reservoir (with a consequent steady increase in the

artificial variable). Unfortunately when NHC, NHL or Langevin methods are employed in the
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same manner, they do not reproduce the intended target temperature and the distributions

obtained are modified, often in a complicated way which does not facilitate recovery of

correct thermodynamic averages. Thus there is a fundamental challenge to combine the

nonequilibrium sampling property of Nosé-Hoover with devices that provide ergodicity in

those models that require it.

A number of other authors have encountered this problem [6–8] and some have proposed

solutions. For example [6] introduces a complicated energy control into Langevin dynamics

for two-temperature simulations. Brańka[7] discussed this problem in the case of Nosé-

Hoover Chains and produced a particular solution that can be used only in cases where the

heating is uniform and the rate can be precisely known beforehand. Here we propose new

thermostats (Ad-NHC, Ad-NHL and Ad-Langevin) that are designed to adapt to cancel

average cooling or heating effects, and so maintain a particular temperature in a fluctuating

non-equilibrium environment, without a priori knowledge of the anomaly. These methods

work by combining an equilibrium scheme with an additional Nosé-Hoover control whose

purpose is to shift the ensemble, they are thus of a familiar form and straightforward to

discretize. We also discuss the selection of parameters to ensure a rapid local convergence to

statistical equilibrium. We compare the different thermostats in simple models. Our results

suggest that all of the described methods can work well in the setting of a uniform heating of

the degrees of freedom of the system, but only Ad-Langevin, with a large collision coefficient,

can provide the strong internal equilibration property needed to control the distribution

when the heating is rapid and non-uniform.

Our interest in this paper is in cases where it is specifically desired to force the dynamics

to sample the Gibbs distribution but this is impeded due to an incorporated stochastic

perturbation, coupling to another scale regime, limitations in the model formulation, or

issues with the numerical methods used. In other applications it may be desired to allow

the system to evolve far from equilibrium with e.g. only a control on temperature, in which

case a different perspective should be taken than that put forward here.

II. THERMOSTATS FOR MOLECULAR SAMPLING

As a prelude to the results presented in this article, we describe below several thermostat-

ting methods in common use. We adopt the following notation: q1, q2, . . . , q3N represent the
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position coordinates describing the system, p1, p2, . . . , p3N are the corresponding momenta,

F1, F2, . . . , F3N the forces acting in each coordinate direction, kB is Boltzmann’s constant and

T is the temperature. We write mi for the mass coefficient associated to the ith coordinate,

thus these are repeated in groups of 3. K =
∑3N

i=1
p2i
2mi

is the kinetic energy.

Nosé-Hoover Dynamics (NH)

q̇i =
pi
mi

, i = 1, 2, . . . , Nṗi = Fi − ξpi,

ξ̇ = [2K − gkBT ] /Q.

The system incorporates a coupling to an artificial variable ξ via a coupling parameter

Q which is referred to as the thermal mass. g is the number of degrees of freedom in the

system, typically g = 3N if their are no conserved quantities besides the energy.

The main advantage of NH is that it is simple, deterministic and easy-to-implement. In

the case of a system subject to a driving stochastic perturbation it is possible to show (see

Section III) that Nosé-Hoover dynamics can still correctly regulate the system temperature,

thus it is suited to non-equilibrium applications. Its significant disadvantage is that it can

be shown to be non-ergodic for certain systems, including low dimensional models [9] and

larger systems that are nearly harmonic (e.g. nearly an Einstein crystal [10]).

Nosé-Hoover Chains (NHC) of length r

q̇i =
pi
mi

, ṗi = Fi − ξ1pi, i = 1, 2, . . . , 3N

ξ̇1 = [2K − gkT ] /Q1 − ξ2ξ1,

ξ̇2 =
[
Q1ξ

2
1 − kT

]
/Q2 − ξ3ξ2, . . . ,

ξ̇r =
[
Qr−1ξ

2
r−1 − kT

]
/Qr.

The equations incorporate parameters Q1, Q2, . . . , Qr which represent ‘thermal masses’

associated to the r auxiliary variables ξ1, ξ2, . . . , ξr. NHC dynamics [1] was created in an

attempt to randomise the dynamics of NH through additional complexity. However, NHC

has three major drawbacks. Firstly, it is somewhat complicated to implement, requiring

very small timesteps and/or multi-stage integration schemes [11]. Secondly, NHC is not

rigorously ergodic. As Hamiltonian dynamics, Nosé-Hoover, and Nosé-Hoover Chains are
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all deterministic models, their phase space distributions evolve according to the Liouville

equation, a hyperbolic PDE. As no diffusion is present, the effective ergodicity observed

in some cases must arise from strong internal mixing that allows a dense coverage of the

physical domain by an evolving set of initial conditions. Proving such a property in the

absence of diffusion is exceedingly difficult. As we see below, for some choices of the

parameters in NHC, a nonergodic behavior may be observed in simple models. Thirdly,

and important particularly for this article, the ability of Nosé-Hoover to adapt to heating

or cooling effects is lost when a chain is incorporated; it can be restored only if the

heating/cooling rate is exactly known [7], but not in a general way, as we will see in the

next section.

Langevin Dynamics (LD)

Langevin dynamics supplements the conservative vector field by noise and dissipation as

follows:

q̇i =
pi
mi

, ṗi = Fi − γpi + σẇi,

where the wi(t) represent a Wiener independent processes with independent increments

satisfying wi(0) = 0, and, for s < t, wi(t) − wi(s) ∼ N (0, t − s); (ẇi can be viewed as

Gaussian white noise). Relevant topics regarding stochastic differential equations may be

found in [12] The coefficients γ and σ =
√
2kTγm are chosen by the fluctuation dissipation

theorem in order that the canonical distribution is preserved. Modifications of the standard

framework would allow different coefficients for each stochastic-dynamical perturbation.

Nosé-Hoover-Langevin Dynamics (NHL)

In Nosé-Hoover dynamics the thermostatting force is always in the direction of the mo-

mentum variable, a feature shared by Nosé-Hoover Chains; it has been argued (Bussi and

Parinello [13]) that this feature accounts for its ‘gentle’ effect on dynamics, but it also may

contribute to its lack of ergodicity. Those authors proposed a stochastic modification of

kinetic energy which is intended to maintain the mild perturbation of dynamical quanti-

ties. An alternative, and in some ways simpler, approach was suggested in [14]. The idea
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is just to modify the thermostat variable in Nosé-Hoover dynamics directly by a stochastic

perturbation.

The NHL method [3, 14] is given by:

q̇i =
pi
mi

, ṗi = Fi − ξpi,

ξ̇ = [2K − gkT ] /µ + σ� ẇ − γ� ξ , with γ� = 1
2
µσ2

�/kT,

where w(t) is a Wiener process. Due to the stochastic nature of this system, the parameter

µ plays a different, although somewhat related, role to that of the parameter Q in Nosé-

Hoover dynamics. The introduction of noise (the strength of which is measured by σ�)

the distribution is in effect smeared out while the dissipative term balances it to maintain

the correct temperature; this is analogous to introducing a Langevin thermostat applied to

just the auxiliary degree of freedom. NHL dynamics was created in order to address the

non-ergodicity of NH and NHC dynamics. NHL is only slightly more complex than NH

dynamics, and simpler in structure than NHC. As shown in [3], NHL is ergodic for harmonic

model systems, under a mild nonresonance assumption. This ergodicity property is weaker

than that which can be shown for Langevin dynamics, in that for Langevin dynamics the

ergodic nature does not depend at all on the dynamics of the system to which the Ornstein-

Uhlenbeck process is coupled, whereas for NHL proofs are only available for specific systems.

One typically observes ergodicity with this method, since internal processes will typically

redistribute the fluctuations in energy to the internal degrees of freedom.

Despite its strong ergodic property, as we shall see in the next section, NHL has a similar

problem to NHC when it comes to external heating or cooling. In Section IV we will consider

the general and adaptive modification of NHL to correct the method in the nonequilibrium

setting.

III. APPLICATION OF THERMOSTATTING METHODS TO DRIVEN SYS-

TEMS

We wish to formulate the schemes mentioned above in the setting of driven systems,

by which we mean systems that include coupling to auxiliary, nonconservative, typically

stochastic, forces which represent contact through boundaries or incompletely resolved in-
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ternal degrees of freedom. Such systems may be written, without thermostat, in the form

q̇i =
pi
mi

, ṗi = Fi(q1, q2, . . . , q3N ) + F n
i (q1, q2, . . . , q3N , t) (1)

where Fi is the conservative force acting on the ith coordinate and F n
i represents a generic

non-reversible, non-conserving, possibly stochastic perturbation. We will often abbreviate

these equations by writing q for the vector of positions, p for the vector of momenta, and F

and F n for the force vectors.

What could we logically require of a thermostat for such a model? At a minimum

we would hope (i) that the thermostat would preserve (and be ergodic for) the canonical

ensemble in case F n ≡ 0. It also seems reasonable to require (ii) that the thermostat

correctly adapt to a uniform thermal heating, as when F n is a pure, constant amplitude

white noise stochastic force that models a Brownian impulse. Among the methods given

in the previous section, only Langevin and Nosé-Hoover-Langevin are rigorously ergodic for

the canonical ensemble, i.e. they satisfy the first property.

On the other hand, although each of the thermostat methods described in the previous

section can be naturally adapted to treat the nonequilibrium model (1), only the Nosé-

Hoover method satisfies property (ii).

For Langevin dynamics, the excess Brownian heating, being of the same form as the

heating introduced in the method itself, will obviously lead to an incorrect distribution

(with a shifted temperature). However, with the schemes based on Nosé-Hoover, it is less

obvious what happens to the excess heat. We consider each in turn below.

A. Nosé-Hoover Dynamics with Brownian Heating

Assume that Nosé-Hoover is coupled to a one degree of freedom system (energy H =

p2/2m + U(q)) subject to a steady heating by Brownian collisions. (The results contained

below would naturally extend to systems of many degrees of freedom.) Nosé-Hoover acts to

remove this excess heat. In this case it is possible to find a steady phase space distribution

by studying the Fokker-Planck equation for the combined scheme.

The equations of motion are

q̇ =
p

m
, ṗ = F (q)− ξp + σheat ẇheat , ξ̇ =

[
p2

m
− kT

]
/Q,
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resulting in the Fokker-Planck Equation (subscript q, p, etc. represent partial differentiation

with respect to to the indicated variables):

ρt = −
[
q̇ρ
]
q
−
[
(F (q)− ξp)ρ

]
p
+ 1

2
σ2
heat ρpp −

[
ξ̇ρ
]
ξ

= −
[ p

m
ρq + F (q)ρp

]
+ 1

2
σ2
heat ρpp + ξ

[
pρp + ρ

]
− 1

βQ

[
β
p2

m
− 1

]
ρξ.

We are interested in steady states of this equation, i.e. such that ρt ≡ 0. In the sequel we

work with an unnormalized distribution for ease of exposition; normalization would not effect

the result. If we assume that the distribution in q and p is separable from the thermostat,

i.e. ρ(q, p, ξ) = ρβ(q, p)× ρ̂(ξ), with ρβ = e−βH , then the contents of the first brackets term

cancel, and we simplify using ρq = −βF (q)ρ, ρp = −βp
m
ρ and ρpp = β

m

[
β p2

m
− 1

]
ρ to arrive

at the equation

ρt ≡ 0 =
[
1
2
β
m
σ2
heat ρ− ξ ρ− 1

βQ
ρξ

] [
β p2

m
− 1

]
.

This tells us that the mean of thermostat variable ξ is shifted, and the distribution is

otherwise unaffected:

ρ̂(ξ) = exp
[−1

2
βQ (ξ − ξheat)

2] , where ξheat ≡ 1
2
β
m
σ2
heat = βĖ.

The implication of this is that Nosé-Hoover dynamics is capable of maintaining the correct

temperature under noisy heating. We illustrate this property in Fig. 2 in Section VI, below.

In this model, the stochastic perturbation contacts each degree of freedom in the same way

as in Langevin dynamics. Using an argument based on hypoellipticity [15, 16] it is possible to

show that Nosé Hoover dynamics is actually ergodic in this case. Our interest, however, is in

ultimately applying the schemes to more general dynamical models with complex, restricted,

possibly deterministic, nonequilibrium forcings, thus it would be important to have schemes

that provide ergodicity under more general types of perturbation.

B. Nosé-Hoover Chains with Brownian Heating

Considering, now, Nosé-Hoover Chains of length 2 (length r > 2 would be similar),

we derive the Fokker-Planck equation under steady Brownian perturbation. The relevant

stochastic differential equations are those given in Section II for NHC, with the force per-
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turbed by a term of the form σheatwheat. The distribution evolves according to:

ρt = −
[
q̇ρ
]
q
−
[
(F (q)− ξ1p)ρ

]
p
+ 1

2
σ2
heat ρpp −

[
ξ̇1ρ

]
ξ1
−

[
ξ̇2ρ

]
ξ2

= −
[ p

m
ρq + F (q)ρp

]
+ 1

2
σ2
heat ρpp + ξ1

[
pρp + ρ

]
− 1

βQ

[
β
p2

m
− 1

]
ρξ1

+ ξ2

[
ξ1ρξ1 + ρ

]
− 1

βQ2

[
βQ1ξ

2
1 − 1

]
ρξ2 .

We again assume a steady product distribution, incorporating a unnormalized Gibbs density

in the physical variables, writing

ρ(q, p, ξ1, ξ2) = ρβρ̂(ξ1, ξ2), ρβ = e−βH , ρ̂(ξ1, ξ2) = e−βG(ξ1,ξ2),

then introducing these into the right hand side of the Fokker-Planck equation, eliminating

the derivatives with respect to q and p, and setting the right hand side to zero yields

0 = 1
2
σ2
heat (β/m)

[
βp2

m
− 1

]

+ ξ1(−βp2/m+ 1)− 1

Q1

[
β
p2

m
− 1

]
Gξ1

+ ξ2 [−βξ1Gξ1 + 1]− 1

Q2

[
βQ1ξ

2
1 − 1

]
Gξ2 .

Combining all the terms involving p (and noting that G is independent of p) we must have

1
2
σ2
heat β

2p2/m2 − ξ1(βp
2/m)− 1

Q1

(
β
p2

m
Gξ1

)
≡ 0.

Thus

G(ξ1, ξ2) = −1
2
Q1 (ξ1 − ξheat)

2 +R,

where R is some smooth function of ξ2 only. Reinserting this formula into stationarity

equation, we find that this reduces to

−ξ2(−βξ1Q1(ξ1 − ξheat) + 1)− 1

Q2
(βQ1ξ

2
1 − 1)R′(ξ2) = 0.

We see that it is only possible to satisfy this equation for R independent of ξ1 if ξheat = 0.

The implication of this is that Nosé-Hoover Chains are not capable of adapting to maintain

the canonical ensemble, in the case of Brownian heating. The second thermostat in the

chain frustrates the action of the first.

Brańka [7] discovered this problem previously, and introduced a simple fix to the dynamics

of the second thermostat to take account of the shifted distribution of the first, by adding
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the ξheat term explicitly (B in that paper), but unfortunately it depends on knowing ξheat a

priori.

Nosé-Hoover dynamics on the other hand does not need explicit knowledge of the heating

term a priori; it can effectively measure it instead, and, as we shall see later, can even adapt

should it change.

C. Nosé-Hoover Langevin with Brownian Heating

As we have just done for NH and NHC, we also consider the NHL scheme under Brownian

heating (see Fig. 4). The Fokker-Planck Equation for this system, which has noise in both

the physical and artificial variables, becomes:

ρt = −
[
q̇ρ
]
q
−
[
(F (q)− ξp)ρ

]
p
+ 1

2
σ2
heat ρpp − [((2K − kT ) /µ− γ�ξ)ρ]ξ +

1
2
σ2
� ρξξ

= −
[ p

m
ρq + F (q)ρp

]
+ 1

2
σ2
heat ρpp + ξ

[
pρp + ρ

]
− 1

βµ

[
β
p2

m
− 1

]
ρξ

+1
2
σ2
� ρξξ + γ

[
ξρξ + ρ

]
= LNHLρ.

Assuming ρ = ρβρ̂(ξ) and using the simplifying expressions for ρp and ρpp, we find

LNHLρ =
[
1
2
β
m
σ2
heat ρ− ξ ρ− 1

βµ
ρξ

] [
β p2

m
− 1

]
+ 1

2
σ2
� ρξξ + γ�

[
ξρξ + ρ

]
.

Once again, the first term tells us

log ρ̂(ξ) = −1
2
βµ (ξ − ξheat)

2 ,

Substituting this into the original equation, we find that the distribution is stationary if

1

2
σ2
�βµ[βµ(ξ − ξheat)

2/2− 1] + γ�[1− ξβµ(ξ − ξheat)] ≡ 0.

For this quadratic to vanish identically, each of its coefficients must vanish. The constant

term yields

γ� =
1

2
σ2
�βµ.

Using this, the remaining conditions can only be satisfied if ξheat = 0.

Therefore Nosé-Hoover Langevin dynamics is also incapable of adapting to maintain the

desired distribution under heating, although it fails in a somewhat different way, as is also
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evident in Fig. 4 vs Fig. 3. In the case of NHL, the damping term (γ�ξ) fails to take account

of the shift in the distribution of ξ. Analogous to Brańka’s fix for NHC[7] we could correct

for the problem by a shift of the damping coefficient: (γ�ξ) → (γ�ξ − ξheat), but it again

requires knowledge of ξheat a priori, and thus would only be relevant in the simple model

setting of steady Brownian heating.

IV. THERMOSTATS ADAPTED FOR DRIVEN SYSTEMS

As we have seen, Nosé-Hoover (NH) dynamics can adapt automatically to heating effects,

but Nosé-Hoover-Chains (NHC) or Nosé-Hoover-Langevin (NHL) dynamics fail to do so. As

our goal is to provide a generic method that can address nonergodic systems, for example

those dominated by harmonic components (which includes QD-PIMD), we would like to

simultaneously correct the ergodicity problem while adapting to heating effects.

Here we show that there is a simple way to combine the adaptive property of NH with the

ergodic property of NHL, creating a thermostat that is barely more complex to implement,

and both flexible and robust. Specifically we propose to augment the system by a second

thermostatting variable which is separately adjusted using a Nosé-Hoover-like deterministic

dynamics. Our Adaptive-NHL scheme thus takes the form

q̇ =
p

m
, ṗ = F (q)− (ξ + χ)p + F n(q, t) ,

ξ̇ = [2K − kT ] /µ + σ� ẇ� − γ�ξ ,

χ̇ = [2K − kT ] /Q.

In the case of steady Brownian heating, the Fokker-Planck equation now becomes

ρt = −
[
q̇ρ
]
q
−
[
(F (q)− ξp)ρ

]
p
+ 1

2
σ2
heat ρpp − [([2K − kT ] /µ− γ�ξ)ρ]ξ +

1
2
σ2
� ρξξ − [χ̇ρ]χ

= −
[ p

m
ρq + F (q)ρp

]
+ 1

2
σ2
heat ρpp + ξ

[
pρp + ρ

]
+ χ

[
pρp + ρ

]

− 1

βµ

[
β
p2

m
− 1

]
ρξ − 1

βQ

[
β
p2

m
− 1

]
ρχ + 1

2
σ2
� ρξξ + γ

[
ξρξ + ρ

]
.

We will show that this system has a steady-state solution which is a product distribution of

the form ρ = ρβρ̂(ξ)ρ̃(χ). With this assumption, the right hand side may be written

LAd−NHLρ =

[
1
2
σ2
heat ρ− ξ ρ− χ ρ− 1

βµ
ρξ − 1

βQ
ρχ

] [
β
p2

m
− 1

]
+ 1

2
σ2
� ρξξ + γ�

[
ξρξ + ρ

]
,
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we can rearrange the expression and show it is separable:

LAd−NHLρ =

[
−ξρ− 1

βµ
ρξ

] [
β
p2

m
− 1

]
+ 1

2
σ2
� ρξξ + γ�

[
ξρξ + ρ

]

+

[
−χρ+ χheatρ− 1

βQ
ρχ

] [
β
p2

m
− 1

]
.

With the proposed simple form, we must have

ρ̂(ξ) = exp
[−1

2
βµ ξ2

]
,

ρ̃(χ) = exp
[−1

2
βQ (χ− χheat)

2] , where χheat ≡ 1
2
β
m
σ2
heat.

Essentially, we have divided the original auxiliary variable in NHL into two parts: ξ, which

behaves as a NHL thermostat and promotes ergodicity, and χ, which behaves as an NH

thermostat and allows an adaptive adjustment in the presence of stochastic heating.

It is not essential to restrict to the stochastic case. An Ad-NHC method can be con-

structed in an entirely analogous way, i.e. by combining Nosé-Hoover Chain and Nosé-

Hoover thermostats in a single united framework. In this case, it is possible to demonstrate

a steady state consisting of the NHC steady state multiplied by ρ̃(χ).

Numerical discretization of the Ad-NHL and Ad-NHC methods is based on the corre-

sponding implementations for the original NHL and NHC methods, as the computations of

ξ and χ are independent of each other. Note that the extension of either method to a system

with an arbitrary number of degrees of freedom is straightforward, but the theoretical prop-

erty demonstrated above will only hold in case the heating is uniform in all the degrees of

freedom, so that a single uniform translation is obtained for the Gaussian distribution of χ.

Alternatively, if the system is subject to a nonuniform heating, then the system would need

to rapidly equilibrate this perturbation in order for the Nosé-Hoover variable to correctly

compensate for it. We examine this behavior later in the section on numerical experiments.

Numerical methods for Ad-NHL and Ad-NHC are given in Appendix A.

It is clear that the Langevin method, in which the parameters are frozen a priori, will

be unable to dissipate excess heat adaptively. When the noise is introduced in a uniform

way, we have already seen in the previous section that the Nosé-Hoover method effectively

adapts the Langevin damping coefficient to preserve the canonical distribution. However,

in many cases the heat may be introduced in a subset of the degrees of freedom, and may
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not be present at all times. The idea of our adaptive Langevin method is just to combine

Langevin and Nosé-Hoover thermostats to adaptively handle many separate situations in a

single formulation.

The method is as follows:

q̇ =
p

m
, ṗ = F (q)− (γ + χ)p + F n(q, t) + σẇ,

χ̇ = [2K − kT ] /Q,

where w(t) is a Wiener process and σ =
√
2kTγm. An ambient stochastic bath is combined

with an adaptive temperature regulator to allow thermostatting of a wide variety of systems.

The proof that this method correctly compensates for uniform Brownian heating is already

found in the previous section (where we considered the Nosé-Hoover method with steady

heating). A numerical method for Ad-Langevin is given in Appendix A.

V. PARAMETER SELECTION FOR AD-NHL

In general, it is difficult to fully analyze the statistical convergence behavior in a complex

molecular model. However, as described in [17] in the case of NHL, if one assumes that the

system of interest is near to thermal equilibrium, it is possible to make assumptions which

allow for computation of the convergence rate, specifically the rate of convergence of the

kinetic energy. We perform such an analysis here for the Ad-NHL scheme which is slightly

more complicated than NHL and reveals the different roles of the parameters µ and Q in the

method, and the interplay between them. We perform this analysis under the assumption of

null nonequilibrium forcing, F n ≡ 0. Our purpose here is to obtain values for the parameters

which ensure a good convergence rate of averages, and also to shed some light on the way

in which equilibrium is achieved.

It should be emphasized that parameter selection in the case of Ad-NHL relies on statis-

tical assumptions which are likely to hold in the vicinity of equilibrium. These assumptions

allow us to give precise ranges for parameters for which a certain rate of convergence would

be expected. Importantly, due to the presence of the stochastic terms, the parameters may

be chosen independently of the need in deterministic thermostats such as Nosé-Hoover to

achieve a resonance with the underlying dynamics of the physical system under study.

At any time t, the phase variables and auxiliary variables are distributed according to the
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distribution ρ(q, p, ξ, χ, t) = ρ(·, t). For a suitable function f = f(·) of the state variables,

we will denote by E
tf the expectation with respect to the unnormalized density ρ(·, t), i.e.

a spatial averaging defined by

E
tf := 〈f〉ρ(·,t) =

∫
Ω
f(·)ρ(·, t)d(·)∫
Ω
ρ(·, t)d(·) ,

where Ω represents the product of phase space and R2. Thus E
tf can be viewed as a

time-dependent quantity. Define

x = x(t) = E
t(2K − gkT ) = E

t
N∑
i=1

p2i
m

− gkT.

In order to write simplified equations for the evolution of expectation, we need to make a

near-equilibrium assumption. For a system with energy in the standard form H(q, p) =

K(p) + U(q), positions and momenta are statistically independent, thus E
tf(q)g(p) =

E
tf(q)Etg(p), but this independence is not guaranteed away from equilibrium conditions.

We suppose that for a given system sufficiently near equilibrium, the distribution can be

viewed as canonical with an incorrect temperature T (t) ≈ T , with, for Ad-NHL, the unnor-

malized density ρ = e−β(t)H ρ̄(ξ, η, t), β(t) = (kT (t))−1. This is a very strong assumption.

However, the simulations of [17] on a Lennard-Jones system confirm the analysis presented

here is applicable in that case. It is of course possible to imagine slow converging relax-

ation processes for which the assumption would be invalid, but this assumption allows us

to formulate an elementary analysis of the convergence rate for temperature, isolating the

regulating effect of the auxiliary device.

With the indicated assumption, we have that Etf(q)g(p) = E
tf(q)Etg(p), and, moreover

E
tpF (q) = E

tpEtF (q) = 0, as H is even in p.

From the Ad-NHL equations of motion, with no driving terms, we have

K̇ =

N∑
i=1

piṗi/mi =

N∑
i=1

pi[Fi − (ξ + χ)pi]/mi.

Using the near-equilibrium assumption,

E
t (piFi(q)) = E

tpi · EtFi, E
t (ξK) = E

tξ · EtK,

hence,

ẋ = 2EtK̇ = −2(Etξ + E
tχ)2EtK.
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Define y = E
tξ and z = E

tχ, then as the expectation of a Brownian increment is zero, we

arrive at the system of equations

ẋ = −2(y + z)(x+ gkT ),

ẏ = x/µ − γ�y,

ż = x/Q.

The equilibrium state is characterized by x = y = z = 0. Therefore, we linearize the

nonlinear equations at this point to arrive at:

d

dt



δx

δy

δz


 =




0 −2gkT −2gkT

µ−1 −γ� 0

Q−1 0 0





δx

δy

δz


 .

The eigenvalues are solutions of the characteristic equation

p(λ) = λ3 + γ�λ
2 + 2(µ̂−1 + Q̂−1)λ+ Q̂−1γ� = 0.

where µ̂ = µ/2gkT , and Q̂ = Q/2gkT . The eigenvalues are all in the left half plane

for all values of the parameters, but for some choices of γ�, µ, Q, there may be weak

damping. Indeed, unlike in the case of Langevin dynamics, a very large value of γ� will be

counterproductive with some eigenvalues close to the imaginary axis. In Appendix B we

have carefully analyzed the eigenvalues of the matrix and obtained conditions for certain

damping behavior to be realized.

Our investigation shows that there is an optimal choice of the parameters to achieve the

most rapid convergence (’critical damping’) similar to the case of NHL dynamics, but in

the Ad-NHL method (and unlike for NHL), there is not guaranteed to be an interval of the

damping parameter which places all eigenvalues on the negative real axis, unless the ratio

µ/Q is sufficiently small.

Viewing the eigenvalues as functions of the parameter γ� they exhibit one of the two

behaviors shown below in Figure 1.

Based on Figure 1 and the analysis of the appendix, we propose two representative choices

for parameterization, as detailed in Table I. We stress that these are only examples of

suitable parameters.
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Im{λ}

-r
Re{λ}

Im{λ}

Re{λ}

FIG. 1: Eigenvalues of the linearized system of ordinary differential equations obtained by averaging

the Nosé-Hoover-Langevin method over the evolving distribution. The arrows indicate the change

in the eigenvalues as γ� is increased. At left, the eigenvalue branches remain separated; hence the

optimal choice corresponds to the point of maximal dissipation. At right, the complex eigenvalue

pair meets on the negative real axis.

convergence behavior Q µ γ�

damped oscillation w./ amplitude e−rt gkT
2r2

0.5Q 4r

stable node converging as e−rt 2gkT
r2

.103Q 5.8r

TABLE I: Table of parameter choices for Ad-NHL.

The calculation described above can be extended to the case of Brownian heating, without

any difficulty, and even to the more general case, provided we may assume

E
tpiF

n
i = 0.

We emphasize that optimal choice of parameters might well be to allow a small damped

oscillation, since in this case the damping rate is improved for larger values of the thermal

masses. Moreover, the choice should be informed by consideration of the numerical methods

used for simulating the system. (We have already seen that small thermal masses may lead

to less stable numerical simulations.)

This type of analysis cannot be used to choose parameters in Nosé-Hoover or NHC, since,

in those cases, even under an assumption of statistical independence (an odd concept in the

setting of a deterministic method!) one finds that the system for the expectations does not

have an asymptotically stable equilibrium point consistent with thermal equilibrium, for any

choice of the coefficients.
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Using a similar methodology as described above, we derive a 2-dimensional system to

understand the convergence of kinetic energy in Langevin dynamics in the near equilibrium

regime:

ẋ = −2(y + γ)(x+ gkT ),

ẏ = x/Q,

where x is as before and y = E
tχ. Linearizing, we have the system d

dt
[δx, δy]T = A[δx, δy]T ,

where

A =


 −2γ −2gkT

Q−1 0


 .

The eigenvalues are

λ =
−2γ ±

√
4γ2 − Q̂−1

2
, Q̂ =

Q

2gkT
.

For large γ these are real, but one tends to the origin. Critical damping occurs when

γ =
1

2

√
2gkT

Q
,

which gives a double eigenvalue at −γ/2. This gives γ = 2r, Q = gkT
2r2

for convergence

with exponential rate r. Of course it is possible that γ, which is the collision parameter of

the Langevin dynamics, has been provided from physical considerations. In this case, our

formula gives a value of Q for the kinetic energy device.

In practice (see Section VI), we found that in cases where the system is subject to

nonuniform heating, the key issue was whether externally supplied heat is sufficiently rapidly

equilibrated to the various degrees of freedom, thus it is the internal relaxation rate that is

crucial. For Ad-Langevin we can estimate this by ignoring the Nosé-Hoover kinetic device

and focussing just on the Langevin dynamics; the rate for internal temperature convergence

is proportional to γ (and is independent of Q) in the case of Ad-Langevin. This rate is very

difficult to predict in the case of Ad-NHL, since it requires knowledge of the spectral gap

associated to the Fokker-Planck equation which is problem dependent.

VI. RESULTS FROM SIMULATION

In this section we examine the techniques discussed within this article for a harmonic

oscillator with stochastic driving force showing the relative ability of each method to dissipate

17



external heating. We also consider two examples that are meant to test the ability of the

schemes to adapt to more challenging (and probably more realistic) perturbations: a model

subject to time-dependent external heating, and a nonlinear model problem testing the

internal equilibration in response to a perturbation. These are small dimensional problems,

however the properties being tested here would be generic in a wide range of models.

A. Steady uniform heating

To begin, we verified the theoretical results presented in Sections III and IV by applying

the various methods discussed to thermostat a harmonic oscillator subject to steady Brown-

ian heating. Parameters Q,Q1, Q2, µ, γ� were all taken to be one; as the system is naturally

ergodic under uniform heating, their exact choice was not very critical to obtain the results

shown. Figures 2, 3, and 4 show the performance of Nosé-Hoover, Nosé-Hoover Chains

(of length 2 or 5), and Nosé-Hoover Langevin, demonstrating that only the first is able to

correctly recover the Gaussian momentum distribution at the prescribed temperature.

p,ξ,
χreference

-4 -2  0  2  4
0.00

0.20

0.40

FIG. 2: Nosé-Hoover dynamics has been applied to the harmonic oscillator with a brownian stochas-
tic perturbation. The observed distribution of the thermostat variable ξ (dotted line) is correctly
shifted in such a way as to remove excess heat, giving the correct temperature (seen here as the
variance of p). The average rate of heat-damping can be seen in the position of the peak of ξ (in
units of kT ).

Figure 5 shows that the corresponding Ad-NHL and Ad-NHC methods both recover the

correct distributions for this model. We saw little difference in our simulations between

these methods, up to the issues of reliability and robustness for certain parameter choices

for equilibrium cases discussed in Section II.
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p
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FIG. 3: Nosé-Hoover Chains of length 2 and 5 were applied to the driven harmonic oscillator and
can be seen to fail to respond correctly to heating. While the first thermostat variable ξ1 has a
tendency to damp heat, it is frustrated by the action of the second thermostat ξ2. As a result
too much heat remains in the system and this is reflected in the widening of the momentum (p)
distribution.

0.00

0.20

0.40

-4 -2  0  2  4

p

ξ

reference

FIG. 4: NHL does not respond correctly to heating. As for NHC, the thermostat, which is designed
to give ergodic sampling at the target temperature specified in the control law, is unable to adapt
to the presence of a driving stochastic perturbation. Note that the observed distributions of ξ in
NHL (dotted line) and ξ1 in NHC (Fig. 3) are different, indicating that the way the two methods
fail is subtly different.

B. Time dependent driving force

To test of the ability of the method to respond to a variable rate of heating, we drove the

simple oscillator with a time-dependent term of the form σheat(t)ẇheat, i.e. the amplitude of

the noise process depends on time. When this test was performed with a smooth function

such as σheat(t) = 2(1 + sinωt), the open variant methods gave reasonable results, although

it lost some accuracy in the distibution of the position variable (“twice removed” from the

stochastic perturbation), and in both variables when the driving frequency was increased.

Graphs are shown in Fig. 6 for Ad-NHL. (Ad-NHC and Ad-Langevin results were similar.)

Problems became apparent when the smooth noise amplitude was replaced by a square
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FIG. 5: The adaptive NHL (Ad-NHL) at left responds correctly to Brownian heating, as intended.
The distribution of ξ is not distorted because heat is dissipated via the additional thermostat
variable χ. The heating rate can be read off the peak of the distribution of χ (in units of kT ). In
a similar way, Ad-NHC methods with chains of length 2 (shown) or 5 respond correctly to steady
heating.

q

p, ξ,

χ
ref.

-4 -2  0  2  4
0.00

0.20

0.40 q,p

ξ,

χ

ref.

-4 -2  0  2  4
0.00

0.20

0.40

FIG. 6: Ad-NHL was able to approximately maintain the canonical distribution in the presence
of smooth driving perturbations, with minor defects visible in the distribution for q for both slow
and fast driving, and slightly more significant defects as the system is driven more rapidly.

wave pulse, with period 4τ , where

σheat(t) =


 0, 0 ≤ t < 3τ

4kBT, 3τ ≤ t < 4τ

Then, depending on time parameter τ , very different behaviors were observed.

We applied each of Ad-NHL, Ad-NHC and Ad-Langevin to this problem. The Ad-

NHL results are shown at the left in Fig. 7 for τ = 100. In this case it appears that

the method is able to maintain an approximately correct distribution as enough time is

available for equilibration following driving events, with a slight deviation from the Gaussian

distribution just apparent. When the period between driving pulses is reduced (τ = 10) the

thermostat fails to cope and the distribution forms a sharp nonphysical peak. Similar results
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are obtained for the Ad-NHC method, as shown in Fig. 8. By comparison, the Ad-Langevin

method (γ = 1) gives a much better distribution for both slow and fast pulses (see Fig. 9).

p
q

ref.

-4 -2  0  2  4

0.20

0.40

0.00

χ

ξ
1

p
q

ref.

-4 -2  0  2  4

0.20

0.40

0.00

χ

FIG. 7: Ad-NHL distributions for slow (left) and fast (right) square wave pulsed driving forces.
When the stochastic driving force is sufficiently slow, Ad-NHL is able to adjust the distribution by
eliminating excess heat. For fast driving forces the results are poor.
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FIG. 8: Ad-NHC distributions for slow (left) and fast (right) square wave pulsed driving forces.
The results here are similar to those of 7, i.e. the method does not seem to be able to cope with a
rapid pulsed stochastic driving term.

C. Nonlinear model problem

Finally, we considered a 2-dof model of a pendulum with Hamiltonian

H(q, p) = p21/2 + p22/2 +
K

2
((q21 + q22)

1/2 − 1)2.

When K is large, the system oscillates in the vicinity of the unit circle, with both vibrational

and rotational motions visible. Into this model, we add a Brownian perturbation in just one
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FIG. 9: Ad-Langevin distributions for slow (left) and fast (right) square wave pulsed driving forces.
The results using Ad-Langevin are much better than for either of the Nosé-Hoover based methods.

of the two degrees of freedom

Fheat =


 0

σheatẇheat


 .

This creates two problems for the thermostat: it must correctly equilibrate the two degrees

of freedom while dissipating the excess heat.

We set K = 50 and σheat = 1. The target temperature was kT = 1. The Ad-NHL

method was applied to this case, first with parameters for a damped oscillation of kinetic

energy with rate r = 1 (we chose Q = 1, µ = 0.5, γ = 4). The resulting incorrect momentum

distributions (for p1 and p2) are shown at left in Figure 10. The distributions for χ and ξ

are seen at right.

We then repeated the simulation with parameters corresponding to the critical damping

condition (Q = 4, µ = .103Q, γ = 5.8), and for a number of other cases, with more or less

similar poor results as in the first case. In no case were we able to get correct distributions of

the physical variables. Apparently the Ad-NHL method is not able to reallocate the excess

heating in the q2 variable rapidly enough so heat builds up in this variable.

The Ad-Langevin thermostat proved to be more effective in this application, when prop-

erly tuned. We initially used the parameter selection suggested in Section V, with γ = 2,

Q = 0.25 which should give an exponential rate of r = 1 for the convergence of kinetic en-

ergy. However, these choices proved to be inadequate to provide a proper distribution in the

setting of the anisotropic heating (see the left panel of Figure 11. Only when a much larger

value of γ = 20 was used, did we see a good control of equipartition between q1 and q2 (as

shown in the right panel of Figure 11). The configurational distributions for Ad-Langevin
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FIG. 10: Left: momentum distributions in the stiff pendulum model computed using Ad-NHL

for Q = 1, µ = 0.5, γ = 4. The method was unable to dissipate the excess heat. Right: the

distributions for χ and ξ. Note that the χ distribution correctly reflects the shift as expected, but

this is not enough to give the correct equilibrium distribution.

at γ = 20 and the χ-distribution are shown in Figure 12. When γ is large, the formula for

the eigenvalues derived in Section V suggests that one eigenvalue is near γ and the other is

near 0. The first eigenvalue has to do with the rate of internal equilibration of the system

at equilibrium; the second controls the thermostat variable itself. Our observation suggests

that the problem in this example is not with the adjustment of χ, but with obtaining a suf-

ficiently rapid equilibration between the two degrees of freedom so that the model problem

discussed in Section III is relevant. When this is achieved, the adjustment by a uniform

shift of χ is sensible and leads to the desired equilibrium distribution.

VII. CONCLUSION

We have demonstrated that Nosé-Hoover dynamics is adaptive (i.e. can adapt to a

uniform stochastic perturbation of arbitrary strength while retaining a target canonical dis-

tribution) although it is not ergodic. On the other hand the rigorously ergodic Langevin and

Nosé-Hoover-Langevin dynamics, as well as the popular Nosé-Hoover-Chains of length 2, are

not adaptive. Ad-Langevin, Ad-NHL and Ad-NHC provide alternatives for nonequilibrium

modelling with provable Gibbsian stationary solutions in the case of steady Brownian heat-

ing. Using numerical experiments we have also shown that each of these methods able to
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FIG. 11: Momentum distributions computed using Ad-Langevin. Left: γ = 2, Right: γ = 20. Ad-

Langevin can preserve the canonical distribution if a large collision coefficient γ is used, effecting

a rapid internal equilibration.
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FIG. 12: Distributions for γ = 20 in Ad-Langevin. On the left: radial distribution ρ ∝ e−β(r−1)2/2

compared to the exact, right: χ distribution ρ̃(χ) ∝ e−βµ(χ−χheat)
2/2. Good approximations of all

the distributions were obtained.

adapt to steady or slowly-varying stochastic heating. Only the Ad-Langevin method coped

well with a square wave pulse or an anisotropic perturbation in the experiments shown

here, and the other adaptive methods were unable to sample the target distribution in these

cases. Future work should be performed to gain a deeper theoretical understanding of this

behavior.
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Appendix

A. Numerical Methods

The methods consist of Hamiltonian dynamics supplemented by auxiliary thermostatting

terms. Here we give the formulas for the half steps needed to propagate the auxiliary terms;

these should be composed with a Verlet step for the positions and momenta and a second,

symmetrically reversed half step for the auxiliary terms. That is we write the mapping

describing a full timestep as

Φτ = Φ̃Aux
τ/2 ◦ ΦVerlet

τ ◦ ΦAux
τ/2

where Φ̃Aux
τ represents the same steps indicated for ΦAux

τ taken in reverse order and ΦVerlet
τ

represents a one-step implementation of the velocity Verlet method

p := p− τ

2
F (q); q := q + τM−1p; p := p− τ

2
F (q)).

We define ∆K(p) :=
(∑n

i=1
p2i
m
− nkBT

)
/2.
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ΦAux
τ/2

NHC NHL

ξ2 := ξ2 + τ(Q1ξ
2
1 − kT )/(4Q2)

ξ1 := e−(τ/4)ξ2ξ1

ξ1 := ξ1 + τ∆K(p)/(2Q1)

p := p× e−(τ/2)ξ1

ξ1 := ξ1 + τ∆K(p)/(2Q1)

ξ1 := e−(τ/4)ξ2ξ1

ξ2 := ξ2 + τ(Q1ξ
2
1 − kT )/(4Q2)

ξ := ξ + τ∆K(p)/(2µ)

p := p× e−(τ/4)ξ

ξ := e−γτ/2ξ +
√

kBT
1−e−γτ

µ Gaussian()

p := p× e−(τ/4)ξ

ξ := ξ + τ∆K(p)/(2µ)

Notes:

• Ad-NHC, Ad-NHL: as above, plus χ := χ + τ∆K(p)/Q

• The notation ”Guassian()” refers to a call to a function producing a normally distributed

random number with mean zero and standard deviation one.

• The motivation for sandwiching the p update in NHL between two ξ updates is to im-

prove the accuracy of the latter variable which appears to have a strong beneficial effect on

performance for small µ.

• For Langevin and Ad-Langevin we used a simple splitting into the Hamiltonian part and

the remaining terms (with dissipation and stochastic forces). For Ad-Langevin the additional

formula to propagate χ is the same as for Ad-NHC/Ad-NHL.

B. Eigenvalue analysis for Ad-NHL

There is always at least one real eigenvalue λR, and as the coefficients are positive, this

must be negative when γ� > 0. For λ < −γ� we have, following a straightforward calculation

p(λ) < −µ̂−1γ�

hence the real eigenvalues lie in (−γ�, 0) for all positive γ�.

For γ� = 0, the other two roots η, η̄ are on the imaginary axis λ±
0 = ±i

√
µ̂−1 + Q̂−1 and

these move into the left half plane as γ� is increased. The sum of the eigenvalues is the trace,
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hence λR + 2Re η = −γ�, so

Re η =
1

2
(−γ� − λR) < 0

Viewing the eigenvalues as functions of the parameter γ� we differentiate w = Re η

w′ =
1

2
(−1− λ′

R),

to look for turning points. Setting w′ = 0, we have λ′
R = −1. Differentiating p(λR) = 0 with

respect to the parameter, we have

3λ2
Rλ

′
R + 2γ�λRλ

′
R + λ2

R + (µ̂−1 + Q̂−1)λ′
R + Q̂−1 = 0.

Hence, for λ′
R = −1,

λ2
R + γ�λR +

1

2
µ̂−1 = 0. (2)

Multiplying this equation by λR, and subtracting from p(λR) = 0, we find

(µ̂−1 + Q̂−1)λR + Q̂−1γ� − 1

2
µ̂−1λR = 0,

which gives a formula for λR and hence also a formula for Re η at the turning point:

λR = − 1

ϕ/2 + 1
γ�, ϕ = Q̂/µ̂.

Now we must reintroduce this expression into (2) to find γ�. Setting a = 1
ϕ/2+1

, we have

a2γ2
� − aγ2

� +
1

2
µ̂−1 = 0.

So,

γ� =

√
µ̂−1/2

a− a2
= (1 + ϕ/2)

√
2gkT

Q

We verified this formula using numerical computations, i.e. calculating the eigenvalues and

observing the turning point in the conjugate pair for this choice of γ�. With γ� as above, we

find

λ†
R = − 1

ϕ/2 + 1
γ� = −Q̂−1/2 = −

√
2gkT

Q

and

Re η† = −ϕ

4
·
√

2gkT

Q

The quantity α =
√

2gkT/Q can be identified with the “natural frequency” of the Nosé-

Hoover thermostat [18]. By choosing ϕ appropriately, we may adjust the damping properties
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in proportion to this natural frequency. One way of choosing the parameters might be to

fix ϕ = 2, i.e. Q = 2µ, and adjust Q to achieve a desired rate of convergence; in this case

Re η = −α/2, λR = −α, γ� = 2α. This choice is diagrammed in the left panel of Figure 1.

Another option is shown at right in Figure 1. Here we choose the parameters so that all

three eigenvalues are real and negative. Clearly this occurs if Im η† = 0. To achieve this, we

use synthetic division to remove the factor λ − λ†
R from p(λ) = 0, resulting in a quadratic

equation which may be written

λ2 +
1

2
ϕαλ+ (1 + ϕ/2)α2 = 0,

for the other two roots. For these to be real, we must have(
1

2
ϕα

)2

− 4(1 + ϕ/2)α2 ≥ 0.

Dividing out by α2, we get a condition for ϕ of the form

ϕ ≥ 4(1 +
√
2) ⇒ Q ≥ 4(1 +

√
2)µ

Thus, to place all the eigenvalues on the real axis, we would need to use a relatively small

value of µ ≈ Q/10; such a choice may influence numerical stability.
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