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Revisiting the Reduction of Stochastic Models
of Genetic Feedback Loops with Fast Promoter
Switching
James Holehouse1 and Ramon Grima1,*
1School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
ABSTRACT Propensity functions of the Hill type are commonly used to model transcriptional regulation in stochastic models of
gene expression. This leads to an effective reduced master equation for the mRNA and protein dynamics only. Based on deter-
ministic considerations, it is often stated or tacitly assumed that such models are valid in the limit of rapid promoter switching.
Here, starting from the chemical master equation describing promoter-protein interactions, mRNA transcription, protein trans-
lation, and decay, we prove that in the limit of fast promoter switching, the distribution of protein numbers is different than
that given by standard stochastic models with Hill-type propensities. We show the differences are pronounced whenever the
protein-DNA binding rate is much larger than the unbinding rate, a special case of fast promoter switching. Furthermore, we
show using both theory and simulations that use of the standard stochastic models leads to drastically incorrect predictions
for the switching properties of positive feedback loops and that these differences decrease with increasing mean protein burst
size. Our results confirm that commonly used stochastic models of gene regulatory networks are only accurate in a subset of the
parameter space consistent with rapid promoter switching.
SIGNIFICANCE A large number of models of gene regulatory networks in the literature assume that because promoter
switching is fast, then transcriptional regulation can be effectively modeled using Hill functions. Although this approach can
be rigorously justified for deterministic models, it is presently unclear if it is also the case for stochastic models. In this
article, we prove that this is not the case; i.e., stochastic models of gene regulatory systems, namely those with feedback
loops, describing transcriptional regulation using Hill functions are only valid in a subset of parameter conditions consistent
with fast promoter switching. We identify parameter regimes where these models are correct and where their predictions
cannot be trusted.
INTRODUCTION

Many biochemical systems have one or more species
with low molecule numbers, which implies that the dy-
namics can be highly noisy, and consequently a deter-
ministic description may not be accurate (1–4). Rather,
a more appropriate mathematical description is stochas-
tic and given by the chemical master equation (5).
When the system is made up of zero- and first-order re-
actions only, exact solutions at both steady state and in
time are occasionally possible (6). However, many sys-
tems have at least one bimolecular reaction and in
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such cases only a few exact steady-state solutions of
the chemical master equation (CME) are known (see
for example, (7–10)). A common example of such sys-
tems are autoregulatory feedback loops, whereby a pro-
tein produced by a gene binds to its own promoter
region to activate or suppress its own production (11–
13). In the absence of exact solutions, we become reliant
on either 1) the stochastic simulation algorithm (SSA)
(14) or 2) approximations of the original network so
that analytic results become tractable (15–17). Generally,
it is a challenge to utilize approximations to simplify the
CME such that the resulting reduced equation is repre-
sentative of the true system dynamics.

A common set of approximation methods are based on
timescale separation. At the microscopic level, there are
several different scenarios that can lead to timescale
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separation conditions. Depending on their firing rate, reac-
tions can be classified as either slow or fast. Depending on
the reaction system, it is possible that fast and slow reactions
do not involve the same species but, more commonly, fast
and slow reactions share some species, and hence, it is
generally unclear what should be considered a fast or a
slow species. Methods in the literature differ according to
the definition of what is a slow or fast species. Zeron and
Santillán (18) assume that fast species are only involved
in fast reactions, whereas slow species can participate in
both slow and fast reactions. In contrast, Cao et al. (19)
define slow species as those involved in slow reactions
only and fast species as those participating in at least one
fast reaction and any number of slow reactions. These two
approaches lead to a reduced CME description in the slow
species only. Other approaches due to Haseltine and Raw-
lings (20) and Goutsias (21), model the state of the system
using extents of reaction as opposed to molecules of species.
A singular perturbation-theory-based method has also
recently been used to obtain a reduced stochastic description
(22). There are also several formal results that have been
mathematically proven for reaction systems in various sce-
narios (23–26).

Despite the wide breadth of rigorous approaches (e.g.,
perturbation theory (27)), by far the most popular
approach in the literature of computational and systems
biology to obtain a reduced master equation is heuristic.
The key idea is to use the results of timescale separation
for deterministic kinetics. Under the quasi-steady-state
or fast equilibrium approximations, the mean concentra-
tion of a subset of species (the fast species) reaches steady
state on a much shorter timescale than the rest of the spe-
cies (the slow species). Using the deterministic rate equa-
tions, it is then possible to express the concentration of
the fast species in terms of the concentration of the slow
species. This leads to a reduced chemical system
composed of effective reactions, with non-mass-action ki-
netics describing the dynamics of the slow species. The
reduced chemical master equation is then obtained by
writing effective propensities analogous to the non-mass-
action reaction rates obtained from the deterministic anal-
ysis. For example, Hill-type effective protein production
rates in the deterministic rate equations result if the
gene equilibrates on a much faster timescale than
mRNA and protein, i.e., the fast promoter switching limit
(see for example (28) for experimental evidence of this
limit), and hence by analogy, Hill-type propensities for
the protein production rates are commonly used in sto-
chastic simulations of gene regulatory networks (29–36).
All of these studies and many others assume that such
effective propensities are justified in the limit of fast pro-
moter switching.

The advantage of this heuristic approach is its
simplicity and ease of use, and this is the main reason
for its widespread use. However, clearly the use of a
2 Biophysical Journal 117, 1–20, October 1, 2019
reduced master equation obtained from deterministic con-
siderations is doubtful. This has led to a number of studies
evaluating the accuracy of these reduced master equations.
Thomas et al., in a series of studies (37–39), showed using
Langevin approximation theory that in the limit of large
molecule numbers and for parameters consistent with the
quasi-steady-state approximation, the mean number of
molecules of slow species predicted by the reduced master
equation agrees with that predicted from the master equa-
tion of the full system, but the variance of molecule num-
ber fluctuations does not. Similar results have been shown
using stochastic simulations by Kim et al. (in particular,
see Fig. 1 of (40)). In contrast, Bundschuh et al. (41)
have shown that the SSA corresponding to the heuristic
reduced master equation of a negative feedback loop,
whereby the DNA-protein binding reactions are assumed
fast compared to the rest of the reactions and hence are
eliminated, is in very good agreement with the SSA of
the full system for parameter values specific to the phage
l system (this case is referred to as the ‘‘Michaelis-Menten
system’’ in their work). At first sight, the results of
Thomas et al. and Bundschuh et al. may appear contradic-
tory, but in reality, they are not: although the results of
Thomas et al. prove that the heuristic approach of obtain-
ing reduced master equations cannot be considered equiv-
alent to the stochastic version of the quasi-steady-state
approximation (see also (42)), nevertheless, it is possible
that the error in the predictions of the heuristic approach
are small for specific parameter values, which would be
consistent with the results of Bundschuh et al. What is
clear from these studies is that more work is needed to
identify the precise regions of parameter space in which
the heuristic reduced master equation of gene regulatory
networks can be safely used; the study reported in this
article identifies such regions and hence fills a gap in
the literature.

The structure of this article is as follows. In Model
Reduction for Nonbursty Feedback Loops, we obtain the
steady-state solution of the heuristic reduced master equa-
tion with Hill-type protein production propensities for a
non-bursty genetic feedback loop and prove that it is
different from the solution of the master equation of the
non-bursty genetic feedback loop in the limit of fast pro-
moter switching. It is then shown that the differences be-
tween the probability distributions of protein numbers
predicted by the two master equations tend to zero when
the rate of DNA-protein binding is much smaller than the
unbinding rate. In contrast, the differences maximize
when the rate of DNA-protein binding is much larger
than the unbinding rate. The results are confirmed by sto-
chastic simulations across large swathes of parameter
space. In Model Reduction for Bursty Feedback Loops,
we extend the analysis to bursty feedback loops. We finish
with conclusions, providing a discussion and then by
concluding our results.
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METHODS

Model reduction for non-bursty feedback loops

Deterministic description and reduction

The reaction scheme for a genetic non-bursty feedback loop is given by

G/
ru
GþP; P/

1
B; Pþ G#

sb

su
G�; G�/

rb
G� þ P: (1)

This models the production of proteins, their degradation, and DNA-

protein binding and unbinding. For simplicity, we do not have an

mRNA description (though this will be added in Model Reduction for

Bursty Feedback Loops). The gene can be in one of two states: an un-

bound state G and a bound state G*. The rate of protein production de-

pends on the gene state. Note that here, we have scaled all parameters by

the protein degradation rate. Of course, given that there is only one copy

of the gene, one expects fluctuations to be important and a stochastic

model to be the most appropriate mathematical description. However,

for the moment, we shall ignore the inherent stochasticity and analyze

the system using a deterministic approach. The deterministic rate equa-

tions are

dhgðtÞid
dt

¼ � sbhgðtÞidhnðtÞid þ su

�
1�hgðtÞid

�
; (2)

dhnðtÞi � �

d

dt
¼ � sbhgðtÞidhnðtÞid þ su 1�hgðtÞid

þ ruhgðtÞid þ rb
�
1�hgðtÞid

�� hnðtÞid;
(3)

where hnðtÞid denotes the mean number of molecules of protein P at time

t, hgðtÞid denotes the mean number of molecules of gene G at time t, and

hg�ðtÞid denotes the mean number of molecules of gene G* at time t.

Because the gene can only be in either the bound or unbound state at

any one time, one may also interpret hgðtÞid and hg�ðtÞid as the mean

fraction of time spent in either gene state, respectively. These mean

molecule numbers are calculated within the deterministic approximation

(hence the subscript d) and will generally be different from the mean

molecule numbers of the system obtained from a stochastic description

of the system (43). Note that we have used the relation hgðtÞid þ
hg�ðtÞid ¼ 1, i.e., there is one gene copy. Note also that t is nondimen-

sional time, i.e., actual time multiplied by the protein degradation rate. It

can also be shown (see Appendix A) that the deterministic equations Eqs.

2 and 3 agree with those from the chemical master equation under the

assumption of independence of fluctuations in the protein and gene

numbers.

By the fast equilibrium approximation, it follows that vthgðtÞidz 0 (and

vthg�ðtÞidz0) for all times, which implies, from Eq. 2, that hgðtÞid ¼
L=ðLþhnðtÞidÞ where L ¼ su/sb. The definition of L is used frequently

throughout the text. Substituting the latter in the right-hand side of Eq. 3

and suppressing the time dependence (for notational convenience), we

obtain

dhnid
dt

z
Lru þ rbhnid
Lþ hnid

� hnid: (4)

This is an effective time-evolution equation for the protein numbers

within the deterministic approximation. This corresponds to a system

with two reactions: an effective zero-order reaction modeling the tran-

scriptional regulation of protein production and a first-order protein

degradation reaction. The rate of protein production is a function of

the mean number of proteins, and three special cases can be distin-

guished: 1) if ru > rb, then the rate of protein production decreases
with increasing hnid; this is the case of negative feedback. 2) If ru <

rb, then the rate of protein production increases with increasing hnid;
this is the case of positive feedback. 3) If ru ¼ rb, then the rate of pro-

tein production is independent of hnid , and effectively, there is no

feedback.

Intuitively, one would expect the solution of Eq. 4 to be an excellent

approximation to the time evolution of the protein in the full model

given by Eqs. 2 and 3 in the limit of fast promoter switching, i.e.,

minðsu; sbÞ[maxð1; ru; rbÞ. This can be explicitly verified by calcu-

lating the ratio of gene and protein timescales as follows. Replacing

su by su/e and sb by sb/e and taking the limit of e / 0, it is straight-

forward to show that to leading order, the two eigenvalues of the Jaco-

bian matrix of the rate equations Eqs. 2 and 3 evaluated at steady state

are given by

l1 ¼ �
�hgi2d þ L

�
sb

ehgid
þ O

�
e0
�
;

l2 ¼ �Lþ hgi2dðru � rbÞ
hgi2d þ L

þ OðeÞ;
(5)

where hgid is the steady-state mean gene number given by

hgid ¼
Lþ rb �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� rbÞ2 þ 4Lru

q
2ðrb � ruÞ

: (6)

For completeness and because we will use it later, the steady-state mean

protein number is given by

hnid ¼ 1

2

�
rb � Lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� rbÞ2 þ 4Lru

q �
: (7)

Note that l1;2 are negative, and hence, the steady state of the sys-

tem is stable to small perturbations. Furthermore, Eq. 5 shows that as

e / 0, l1/�N and l2 tends to a constant. Because the timescales

of decay of transients in the mean protein and gene numbers are

given by the absolute of the inverse of the eigenvalues, it follows

that there is clear timescale separation in the limit of fast promoter

switching. Note that in the calculation above, we assumed that

rusrb; a similar calculation for the equality case also leads to time-

scale separation.

Hence, to summarize, a deterministic rate equation analysis shows that

in the limit of fast promoter switching, the reaction scheme (Eq. 1)

composed of five reactions (four first-order reactions and a bimolecular

reaction) reduces to just two reactions: an effective zero-order reaction

for the production of proteins with a rate that is a function of the

mean number of proteins and a first-order reaction modeling protein

degradation.

Heuristic stochastic model reduction

As mentioned in the Introduction, one of the most popular stochastic model

reduction approaches consists of directly writing the chemical master equa-

tion for the reduced reaction scheme deduced from the deterministic anal-

ysis in Deterministic Description and Reduction. In particular, given there

are n proteins in the system, then we define the effective propensities as

follows:

TþðnÞ ¼ Lru þ rbn

Lþ n
;

T�ðnÞ ¼ n;

(8)
Biophysical Journal 117, 1–20, October 1, 2019 3
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where Tþ(n)dt is the probability, given n proteins, that a protein produc-

tion reaction increasing the number of proteins by one, will occur in the

time interval [t, t þ dt) and T�(n)dt is the probability, given n proteins,

that a protein degradation event reducing the number of proteins by one

will occur in the time interval [t, t þ dt). These probabilities are deduced

directly from the form of the effective rate equation Eq. 4. Essentially, the

probability per unit time for a particular reaction is taken to be the same as

the reaction rate in the effective deterministic rate equation with hni re-

placed by n. The chemical master equation for this reduced reaction

scheme is then given by

dPaðn; tÞ
dt

¼ Tþðn� 1ÞPaðn� 1; tÞ þ T�ðnþ 1ÞPaðnþ 1; tÞ
� �

TþðnÞþ T�ðnÞ�Paðn; tÞ:
(9)

Note that we have labeled the solution of this approximate heuristic mas-

ter equation Pa to distinguish it from the solution of the full master equation

P, which we discuss in Exact Stochastic Model Reduction. The equations

for the mean number of protein hnðtÞia ¼
P

nnPaðn; tÞ can be derived

from the master equation

dhnia
dt

¼ �
TþðnÞ�

a
� �

T�ðnÞ�
a
;

¼
	
Lru þ rbn

Lþ n



a

� hnia;

z
Lru þ rbhnia
Lþ hnia

� hnia:

(10)

Note that in the last line, we have made use of the fact that in the

limit of small protein number fluctuations, n can be replaced by its

average. Hence, although the selection of the propensities stems from

a heuristic rule with no fundamental microscopic basis, nevertheless,

it guarantees equivalence between the effective equation for the time

evolution of the mean protein numbers of the heuristic master equation

and the reduced deterministic rate equation in the limit of small protein

number fluctuations (because Eqs. 4 and 10 are the same upon inter-

changing hnid by hnia). Note that, however, for the general case of

nonvanishing protein fluctuations, the mean of the heuristic stochastic

model is different than that predicted by the deterministic rate

equations.

The exact solution of the one-variable master equation Eq. 9 in steady-

state conditions can be obtained using standard methods (44) and is given

by
PaðnÞz

8>>><
>>>:

1

1þ NðexpðrbÞ � 1Þ; if n ¼ 0;

expð�rbÞrnb
n!

�
1þ N � 1

1þ NðexpðrbÞ � 1Þ
�
; if nR1:

(17)
PaðnÞ ¼ Pað0Þ
Yn
y¼ 1

Tþðy� 1Þ
T�ðyÞ ¼ rnb½LN�n

n!½L�nMðLN; L; rbÞ
; (11)
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where N ¼ ru/rb, [x]n ¼ x(x þ 1)...(x þ n � 1) (the Pochhammer symbol),

andM is the Kummer confluent hypergeometric function. The definition of

N is used frequently throughout the text. To obtain insight into the discrep-

ancies introduced by the heuristic approach, we now study two limiting

cases.

The limit of large L. This is the limit in which the rate at which proteins

bind DNA is much smaller than the unbinding rate. In this limit, the propen-

sities given by Eq. 8 reduce to the simpler form

TþðnÞzru;
T�ðnÞ ¼ n:

(12)

Hence, in this limit, the propensity Tþ(n) is independent of n, and the

steady-state solution of Eq. 9 is simply a Poisson with mean ru:

PaðnÞzexpð�ruÞrnu
n!

: (13)

Note that this derivation is intuitive but not formally precise because we

have implicitly assumed the exchange of two limits: limL/Nlimt/NPa(n,

t) ¼ limt/NlimL/NPa(n, t). A formal proof of this result starting from the

exact solution Eq. 11 can be found in Appendix C.

The limit of small L. This is the limit in which the rate at which proteins

bind DNA is much larger than the unbinding rate. In this limit, the propen-

sities given by Eq. 8 reduce to the simpler form:

TþðnÞzðru � rbÞdð0; nÞ þ rb;
T�ðnÞ ¼ n;

(14)

where d(0, n) is the Kronecker delta. Substituting these in the heuristic

reduced master equation Eq. 9, multiplying throughout by zn, and taking

the sum over n on both sides of this equation, we get the corresponding

generating function equation

dGðz; tÞ
dt

z ððru � rbÞGð0; tÞþ rbGðz; tÞÞðz� 1Þ

þ ð1� zÞ dGðz; tÞ
dz

;

(15)

where GðzÞ ¼ P
nz

nPaðn; tÞ. In steady state, this equation has the solution

GðzÞ ¼ rb þ ruðexpðrbzÞ � 1Þ
rb þ ruðexpðrbÞ � 1Þ : (16)

Hence, the steady-state probability distribution is given by
Although intuitive, this proof suffers from the same looseness with ex-

change of limits as in The Limit of Large L. An alternative rigorous proof

of this result starting from the exact solution Eq. 11 can be found in Ap-

pendix C. Eq. 17 is clearly not a Poisson when there is positive or
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negative feedback ðNs1Þ. Note that when N ¼ 1, the solution is a Pois-

son, but this case is biologically unimportant because it implies that the

rate of protein production is independent of the state of the promoter

(bound or free), and consequently, there is effectively no feedback mech-

anism at play.

Conditions for the validity of heuristic stochastic model
reduction

To obtain further insight into the conditions under which the heuristic

model reduction is correct, we consider the stochastic description of the

non-bursty feedback loop (Eq. 1) but ignoring fluctuations in the protein

numbers stemming from the reversible binding of protein to gene. The ne-

glection of protein binding fluctuations corresponds to the following reac-

tion scheme:

G/
ru
GþP; P/

1
B; G#

sb

su
G�; G�/

rb
G� þ P; (18)

where n in the reaction rate denotes the number of free proteins. This is a

common approximation in the literature (36,45,46), the rationale being

that because protein numbers are typically much larger than one, the

gain or loss of one molecule via the gene binding reactions can be safely

ignored. Given this assumption, the chemical master equation of the non-

bursty feedback loop (1) can be conveniently written as a set of two

coupled equations:
dP0ðn; tÞ
dt

¼ ruðP0ðn� 1; tÞ � P0ðn; tÞÞ þ ððnþ 1ÞP0ðnþ 1; tÞ � nP0ðn; tÞÞ þ suP1ðn; tÞ � sbnP0ðn; tÞ;
dP1ðn; tÞ

dt
¼ rbðP1ðn� 1; tÞ � P1ðn; tÞÞ þ ððnþ 1ÞP1ðnþ 1; tÞ � nP1ðn; tÞÞ � suP1ðn; tÞ þ sbnP0ðn; tÞ;

(19)
where P0(n, t) is the probability that at time t, there are n proteins and the

gene is in state G, whereas P1(n, t) is the probability that at time t, there

are n proteins and the gene is in state G*. Note that time t is nondimen-

sional and equal to the actual time multiplied by the protein degradation

rate. The probability of n proteins is then given by P(n, t) ¼ P0(n, t) þ
P1(n, t). Defining the generating functions G0ðz; tÞ ¼

P
nz

nP0ðn; tÞ and

G1ðz; tÞ ¼ P
nz

nP1ðn; tÞ, the generating function differential equations cor-
responding to Eq. 19 are given by

vG0ðz; tÞ
vt

¼ ruðz� 1ÞG0ðz; tÞ � ðz� 1Þ vG0ðz; tÞ
vz

þ suG1ðz; tÞ � sbz
vG0ðz; tÞ

vz
;

(20)
vG1ðz; tÞ vG1ðz; tÞ

vt

¼ rbðz� 1ÞG1ðz; tÞ � ðz� 1Þ
vz

� suG1ðz; tÞ þ sbz
vG0ðz; tÞ

vz
:

(21)
We can solve for the total generating function G(z) ¼ G0(z) þ G1(z) as

follows. At steady state vGi(z, t)/vt ¼ 0 and utilizing the relation G1(z) ¼
G(z) � G0(z), we can use the sum of Eqs. 20 and 21 to find G0(z) ¼
G0(G(z), G

0(z), z) and G0
0ðzÞ ¼ G0

0ðG0ðzÞ;G00ðzÞ; zÞ below:
G0 ¼ 1

rb � ru
ðrbG�G0Þ; G0

0 ¼ 1

rb � ru
ðrbG0 �G00Þ;

(22)

where we suppress the z dependence for brevity. We then substitute Eq. 22

into Eq. 20, again using G1 ¼ G � G0, to give a second-order linear differ-

ential equation in terms of G,

ðð1þ sbÞz� 1ÞG00 þ ððsu þ rb þ ruÞ� ðru þð1þ sbÞrbÞzÞG0

þ ruðrbz� su � rbÞG ¼ 0:

(23)

This differential equation has two singularities, a regular singularity at

z ¼ 1/(1þ sb) and an irregular singularity at z ¼N, and hence, its solution

is amenable to the 1F1(a; b; z) hypergeometric function (otherwise known

as the Kummer function M(a; b; z)). Using a change of variable and an

exponential transformation, we confirm this, and the solution is given as

GðzÞ ¼ exp

�
ruðz� 1Þ
1þ sb

� M
�
a; b;

gðzð1þ sbÞ � 1Þ
sb

�

Mða; b;gÞ ;

(24)
where

a ¼ rusbðrbð1þ sbÞ � ru þ suð1þ sbÞÞ
ð1þ sbÞ2ðrb � ru þ rbsbÞ

; b

¼ su þ sbðru þ suÞ
ð1þ sbÞ2

; g ¼ sbðrb � ru þ rbsbÞ
ð1þ sbÞ2

: (25)

In the limit of fast promoter switching, i.e., replacing su by su/e and sb by

sb/e and taking the limit of e/ 0, one can show that the leading-order term

in the series expansion of Eq. 24 in powers of e is given by

GðzÞ ¼ M½LN; L; rbz�
M½LN; L; rb�

; (26)

where we remind the reader of the definitions L¼ su/sb and N¼ ru/rb. It is

easy to show that P(n) ¼ (1/n!)dnG(z)/dznjn ¼ 0 precisely equals Eq. 11.

Hence, we have shown that if protein number fluctuations due to revers-

ible binding can be ignored, then the stochastic description agrees with that

of the heuristic master equation in the limit of fast promoter switching. This

indeed gives some credibility to the use of the heuristic master equation and

explains the widespread belief, based on stochastic simulations, that the

heuristic master equation is correct in the limit of fast promoter switching.

This result is, however, surprising when one considers that the heuristic is

often justified from deterministic arguments and that the deterministic treat-

ment ignores the sizable fluctuations associated with gene switching.
Biophysical Journal 117, 1–20, October 1, 2019 5
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Exact stochastic model reduction

The master equation we solved in the previous section is not the exact master

equation because we have ignored protein binding fluctuations. In what fol-

lows, we properly take these into account. For the non-bursty feedback loop

(1), the stochastic description is given by the chemical master equation,

which can be conveniently formulated as a set of two coupled equations:
dP0ðn; tÞ
dt

¼ ruðP0ðn� 1; tÞ � P0ðn; tÞÞ þ ððnþ 1ÞP0ðnþ 1; tÞ � nP0ðn; tÞÞ þ suP1ðn� 1; tÞ � sbnP0ðn; tÞ;
dP1ðn; tÞ

dt
¼ rbðP1ðn� 1; tÞ � P1ðn; tÞÞ þ ððnþ 1ÞP1ðnþ 1; tÞ � nP1ðn; tÞÞ � suP1ðn; tÞ

þsbðnþ 1ÞP0ðnþ 1; tÞ:

(27)
Note that these equations are the same as Eq. 19 except for the terms

describing protein-gene binding, i.e., those proportional to sb and su. In

the limit of fast promoter switching, i.e., replacing su by su/e and sb by

sb/e and taking the limit of e/ 0, one can show that the steady-state solu-

tion of Eq. 27 (to leading order in e) is given by

PðnÞ ¼ ð1þ LÞNrnbðnrb þ LðLþ nþ NrbÞÞ½1þ LN�n
AMð1þ LN; 1þ L; rbÞ þ BMð2þ LN; 2þ L; rbÞ

;

(28)

where

A ¼ ðLNþ nÞn!ð1þ LÞðLþðN� 1ÞrbÞ½1þ L�n; (29)

B ¼ ðLNþ nÞn!ð1þ LNÞrb½1þ L�n: (30)
See Appendix B for the details of the derivation. Comparing Eq. 28 with

the solution of the heuristic reduced master equation Eq. 11, it is immedi-

ately obvious that the two are not equal. Hence, it follows the heuristic

reduced master equation is generally different than the solution of the

full master equation under fast promoter switching conditions, contradict-

ing a major assumption in the literature (as discussed in the Introduction).

It is straightforward to verify that the two agree only if N¼ 1, in which case

the protein production rate is the same in state G or G*, and hence, there is

no effective feedback mechanism.

To understand the nature of the differences between Eqs. 11 and 28,

we consider two limiting cases of small and large L. Although results

in these limits can be obtained directly from consideration of Eq. 28

(see Appendix C), it is both simpler and instructive to consider a

different approach that does not need the exact solution of the master

equation. The advantage of this approach is that as we shall see later

on, it can be easily extended to the analysis of more complex feedback

systems.

Because hgi is the fraction of time spent in state G for the full stochastic

model, it follows that in the limit of small L, hgi is also very small, the gene

spends most of its time in stateG*, and consequently, the principal reactions

determining the protein dynamics are G�/
rb
G� þ P;P/

1
B. Similarly, it can

be argued that in the limit of large L, hgiz1 (the gene spends most of its

time in state G), and hence, the principal reactions determining the protein

dynamics are G/
ru
Gþ P;P/

1
B. The master equation for both sets of prin-

cipal reactions is trivial to solve and implies that the steady-state protein

number distribution in both limits is a Poisson:
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PðnÞz expð�ruÞrnu
n!

; if L/N; (31)
expð�rbÞrnb
PðnÞz
n!

; if L/0: (32)
A formal derivation of these results starting from the solution Eq. 28 can

be found in Appendix C.

Comparison of heuristic and exact reduction for small and
large L

Comparing Eqs. 31 and 32 with Eqs. 13 and 17, it is immediately clear that

the heuristic method of stochastic model reduction gives the correct answer

in the limit of fast promoter switching for large L but the incorrect answer

for small L. Note that timescale separation exists in both cases of small and

large L (as can be verified using Eq. 5), and hence, the lack of agreement of

the heuristic and exact reduction is not expected. In Fig. 1, we verify that the

heuristic and exact reductions agree with each other and with the finite state

projection (FSP) of the full master equation for large L, provided the fast

promoter switching limit (large su and sb compared to all other parameters)

is also met. This is the case for both positive and negative feedback. Note

that FSP is a computationally efficient non-Monte-Carlo method that solves

the master equation to any desirable degree of accuracy (47).

To further understand the differences between the two protein distribu-

tions in the limit of small L, we now look at the mean protein numbers,

the Fano factor (FF), and the coefficient of variation (CV) of protein number

fluctuations:

hni ¼ rb; hnia ¼ rb þ
ðN � 1Þrb

1þ NðexpðrbÞ � 1Þ; (33)

rbð1� NÞ

FF ¼ 1; FFa ¼ 1þ

1þ NðexpðrbÞ � 1Þ; (34)

1 1� ð1þ r Þð1� N�1Þexpð�r Þ

CV2 ¼

rb
;CV2

a ¼ b b

rb
: (35)

Note that the subscript a denotes calculation using Eq. 17, whereas no

subscript implies calculation using Eq. 32.

From Eq. 33, we deduce that hnia < hni for N< 1 and hnia > hni forN> 1.

This means that the solution of the approximate heuristic master equation un-

derestimates the mean for positive feedback (N < 1) and overestimates the

mean for negative feedback (N> 1). Because the deterministic rate equations

also predict a steady-state protein mean of rb for the case L/ 0 (see Eq. 7), it

then follows that the approximate heuristic master equation also leads one to

believe in noise-induced shifts of themean that actually do not exist. FromEq.

34, we deduce that the approximate heuristic master equation artificially pre-

dicts sub-Poissonian (FFa< 1) fluctuations in molecule numbers for negative



FIGURE 1 Plots comparing the probability distributions of proteins as predicted by the heuristic reduced master equation (Pa(n)), the exact reduced master

equation (P(n)), and the full master equation in the limit of large L (PFSP(n)). L is kept constant throughout the figure. Shaded regions indicate the solution of

the full master equation Eq. 27 using FSP, dashed red lines indicate the heuristic probability distribution from Eq. 11, and black solid lines indicate the exact

solution in the fast promoter switching limit from Eq. 28. Throughout the study, FSP is used as the benchmark for our analytic results, with a state space

truncation chosen such that the probability distributions are indistinguishable from SSA. Going from left to right, one can observe how Eqs. 11 and 28

correctly describe the large L limit (here L ¼ 25) when both sb and su are themselves large, i.e., the fast promoter switching limit. The top row of plots

show this for the case of positive feedback (ru ¼ 0.5 and rb ¼ 25), and the bottom row of plots show this for negative feedback (ru ¼ 25 and rb ¼ 0.5).

To see this figure in color, go online.
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feedback (N > 1) and super-Poissonian (FFa > 1) fluctuations in molecule

numbers for positive feedback (N < 1). These deviations from Poissonian

behavior are most pronounced for intermediate rb because for small and large

rb, FFa z 1. From Eq. 35, we deduce that CV2
a >CV2 for N < 1 and CV2

a <
CV2 for N> 1, i.e., the approximate heuristic master equation overestimates

the size of the protein number fluctuations for positive feedback and underes-

timates them for negative feedback. These observations are confirmed for pos-

itive feedback loops in Fig. 2. In particular, note that in Fig. 2 A, the heuristic

reducedmaster equation predicts switch-like behavior as rb is increased (from

zero for rb approximately below 5 to larger than zero for rb> 5), whereas the

exact reducedmaster equation predicts no such transition for this set of param-

eters—the lack of reliability in predicting the switching characteristics of pos-

itive feedback loops is notable because previous studies (33) have used the

heuristic reduced master equation to study switching phenomena.

We can also show that generally positive feedback leads to larger devia-

tions of the heuristic from the exact stochastic model reduction than is the

case for negative feedback. Consider strong positive feedback ru � rb
ðN � 1Þ with the additional constraint ru � rb expð� rbÞ. From Eq.

33, it can then be shown that hni ¼ rb;hniaz0. If we now reverse the values

of ru and rb such that we have strong negative feedback, rb is very small,

and N[ 1, then hni ¼ rb;hniaz1. Clearly,
��hni�hnia

�� is much larger for

positive feedback than negative feedback (with ru, rb interchanged), and

this difference is evident in the distributions as well. Finally, we compute

the conditions for the existence of a mode of the probability distribution

at n ¼ 0 using Eqs. 17 and 32, respectively:

Pð1Þ
Pð0Þ< 10rb < 1;

Pað1Þ
Pað0Þ< 10Nrb ¼ ru < 1:

(36)

This implies that if ru < 1, rb >1 (a special case of positive feedback),

the approximate heuristic master equation predicts an artificial mode at
n ¼ 0, whereas if ru > 1, rb < 1 (a special case of negative feedback),

the approximate heuristic master equation fails to predict an actual mode

at n ¼ 0. These predictions, contrasting the differences between the heuris-

tic and exact model reduction for positive and negative feedback loops, are

illustrated in Fig. 3. Note that multiple peaks in the protein distribution are

often thought to describe switching between different phenotypes and

hence are of importance to understanding cellular decision-making

(48,49)—the lack of accuracy in the heuristic model predictions for the

bimodality of the protein distribution shows that use of this model can

lead to incorrect biological predictions.

The differences between the heuristic and exact model reduction can be

explained using the results of Conditions for the Validity of Heuristic Sto-

chastic Model Reduction. There, we showed that the heuristic master equa-

tion has the same solution, in the limit of fast promoter switching, as the

master equation, which ignores protein fluctuations due to the reversible

protein-DNA binding reaction.

First, consider the case of positive feedback (Fig. 3 A). When proteins are

present in the system, there will be rapid switching between the G and G*

states. However, in the rare case of an extinction of proteins in the G* state

and in which protein binding fluctuations are neglected, a transition from the

bound state G* to unbound state G does not release a protein (reaction

scheme shown in Eq. 18). The system then must wait for a protein to be pro-

duced via the low ru firing rate if it is to leave state G. Hence, the waiting

time for a protein to be produced at the low ru firing rate dominates the

steady-state dynamics, leading to the mode at zero (Fig. 3 A, red curve).

However, when protein binding fluctuations are included (reaction scheme

shown in Eq. 1), a transition from the G* to G states does release a protein

that can immediately bind to G (because of the high sb firing rate, meaning

L � 1), and hence, the system does not so readily encounter an extinction of

proteins (black curve, Fig. 3 A). We note that even for the black curve, there

exists a (nonvisible) mode at zero, which accounts for the long waiting times

in the extremely rare event (again, note sb [ 1) that the protein released

from the G* state decays before binding to G; clearly, however, this is not

the dominating feature when protein binding fluctuations are taken into

consideration.
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FIGURE 2 Plots showing the breakdown of the heuristic reduced master equation for fast promoter switching in the limit of small L and positive feed-

back in steady-state conditions. The plots show the mean protein number (A), the FF of protein number fluctuations (B), and the CV squared (C) as a

function of rb. In (D), we show the probability distribution of protein numbers corresponding to two different values of rb. The rest of the parameters

are fixed to su ¼ 102, sb ¼ 105, and ru ¼ 0.0002; this implies L ¼ 10�3. Note that minðsu; sbÞ[maxð1; ru; rbÞ, and hence, fast promoter switching

is ensured. Note that hnia, FFa and CV2
a in (A)–(C) are calculated using the solution of the heuristic master equation Eq. 11, whereas their non-subscript

versions are calculated using the solution of the exact reduced master equation Eq. 28. These are in good agreement with the moments calculated in the

limit of small L and given by Eq. 33, 34, and 35. The distributions Pa(n) and P(n) in (D) are calculated using Eqs. 17 and 32, respectively. The plots verify

the large differences between the heuristic and exact reduced master equation for positive feedback loops (see text for discussion), as well as showing

agreement between the theoretical distribution for the exact reduced master equation and that obtained using FSP of the full master equation Eq. 67.

To see this figure in color, go online.
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Now, consider the case of strong negative feedback (Fig. 3 B). This im-

plies that when a protein is produced in the active G state (now ru is large,

rb is very small), the rapid promoter-protein binding reaction will occur,

forcing the system into the G* state. When protein binding fluctuations

are neglected, no protein is removed upon binding, and hence the number

of free proteins is still 1; the system will then flip back and forth between

the G and G* states, spending (on average) more time in the G* state
feedback loops, the differences amount to the order of a single molecule. The

L ¼ 10�3), whereas the values of ru and rb are stated on the figure. FSP dist

the figure. To see this figure in color, go online.
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because sb [su, and hence, it is unlikely more than 1 protein will ever

be present (because of very small rb and sb [ 1); hence, the mode at

n ¼ 1 for the red curve in Fig. 3 B. In the event of a protein extinction,

the unbound state G will quickly produce another protein in the G state.

For strong negative feedback, including the binding fluctuation, the rapid

promoter-protein binding reaction will instead remove a protein from the

system. Again, because it is unlikely the system will contain more than
FIGURE 3 Plots comparing the steady-state pro-

tein distributions predicted by the heuristic and

exact reduced master equations for strong positive

feedback (A) and strong negative feedback (B) for

the case of small L. Pa(n) is calculated using Eq.

11, whereas its subscript version is calculated using

the solution of the exact reduced master equation

Eq. 28. Note that the heuristic distribution (Pa(n))

predicts an artificial mode at zero for positive feed-

back and misses the prediction of a mode at zero for

negative feedback, in line with the conditions in Eq.

36. Note also that as predicted by theory, the differ-

ences between P(n) and Pa(n) are most significant

for positive feedback loops because for negative

parameters su ¼ 102 and sb ¼ 105 are fixed across both plots (implying

ributions are indistinguishable from the theoretical distributions shown in



FIGURE 4 Plots comparing the time evolution of the heuristic reduced master equation Eq. 9 and the exact master equation Eq. 67 for fast promoter switching

conditions, positive feedback, and small L (0.1). In (A), we show the switching characteristics of the positive feedback loop as a function of rb for the two master

equations in steady-state conditions. Here, dotted lines define the values of r
ðsÞ
b (subscript s for small) and r

ðlÞ
b (l for large) used throughout the rest of the figure.

In (B), we plot three independent trajectories from the SSA corresponding to the two master equations. Each trajectory shown is downsampled 1:100 for visual

clarity. The top row corresponds to rb ¼ r
ðsÞ
b , and the bottom row corresponds to rb ¼ r

ðlÞ
b . In (C), we plot the mean number of proteins as a function of time as

predicted by the exact and heuristic reduced master equations (shown as solid lines and denoted by the subscript s in the legend) and by the deterministic rate

equations (shown as dashed lines and denoted by the subscript d in the legend). The shaded regions show one SD about the mean. The moments were calculated

over 2 � 103 SSA trajectories. All plots compare two different parameter sets, one for small rb (for which at steady state, the heuristic and exact differ consid-

erably) and one for large rb (for which at steady state, the differences are negligible), as indicated in (A). Note that minðsu;sbÞ[maxð1;ru;rbÞ, and hence, fast
promoter switching is ensured for both parameter sets. See text for discussion. To see this figure in color, go online.
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one protein (bound or otherwise) and because the system spends much more

time in the G* state ðsb [suÞ the probability distribution for the number

of free proteins will have a mode at zero (black curve, Fig. 3 B).

The results stated thus far are for steady-state conditions. It would also

be interesting to understand the difference between the heuristic reduced

master equation Eq. 9 and the exact master equation Eq. 67 for finite

time. Because this is analytically intractable, we use stochastic simula-

tions to explore this question. Fig. 4 summarizes the results of such sim-

ulations for two different parameter sets: 1) rb ¼ r
ðsÞ
b ¼ 10, in which

case the heuristic predicts a very different steady-state mean number

of proteins than the exact reduced master equation; and 2) rb ¼
r
ðlÞ
b ¼ 15, in which the heuristic and exact reduced master equations

are indistinguishable at steady state (see Fig. 4 A). In Fig. 4 B, we

show three independent trajectories of the SSA corresponding to the

exact and heuristic reduced master equations for the two parameter

choices; the vast difference between the trajectories of the heuristic

and the exact for rb ¼ r
ðsÞ
b are particularly striking. In Fig. 4 C, we

show the mean number of proteins as a function of time for the exact

and heuristic reduced master equations (solid lines) and compare with

the same predicted from the deterministic equations (dashed lines).

Two observations can be made: 1) for both parameter sets, the determin-

istic reaches steady state at a much earlier time than the stochastic

models; and 2) for rb ¼ r
ðsÞ
b , the heuristic predicts that the differences

from the deterministic do not decrease with time, whereas the exact pre-
dicts that the differences from the deterministic decrease with time

(compare top two plots in Fig. 4 C). In contrast, for rb ¼ r
ðlÞ
b both master

equations predict that differences from the deterministic decrease with

time. Taken together, the results indicate that the full time-dependent so-

lution of the heuristic reduced master equation is an accurate reflection of

the exact reduced master equation provided rb, the protein production

rate in state G*, is large enough that we are far away from the switching

point of the positive feedback loop.

Numerical computation of the distance measure between
steady-state distributions

To further understand the regions of parameter space where the heuristic

and exact reduced master equations differ, we numerically compute the

Hellinger distance (HD) between the exact steady-state solution of the heu-

ristic master equation Eq. 11 and the exact steady-state solution of the mas-

ter equation Eq. 73 for a large region of parameter space for the positive

feedback loop: N varying between 10�5 and 1 and L varying between

10�4 and 1. The results are shown as a heatmap in Fig. 5 A. Note that the

HD is a distance measure between two probability distributions; it is conve-

nient for interpretation because the distance is a fraction, i.e., an HD value

of 0 means that two distributions are identical, and an HD value approach-

ing 1 means that the distributions are very different from one another. Spe-

cifically, a maximal distance 1 is achieved when one of the distributions
Biophysical Journal 117, 1–20, October 1, 2019 9



FIGURE 5 Quantifying the differences between the steady-state protein distributions predicted by the exact master equation Eq. 73, the heuristic reduced

master equation Eq. 11, and the exact reduced master equation Eq. 28 for positive feedback loops. Pe(n) denotes the exact steady-state solution of the exact

master equation (i.e., the exact solution of the reaction scheme from Eq. 1; see derivation in Appendix B), and Pa(n) denotes the distribution from the heuristic

reduced master equation. We note that Pe(n) takes the role of PFSP used in previous figures. In (A), we show the Hellinger distance (HD) between the pre-

dictions of the exact master equation and heuristic reduced master equation. In (B), we show the HD between the predictions of the exact master equation and

exact reduced master equation (denoted as exact fast). (C) shows the absolute difference between the probability of zero protein molecules predicted by the

exact master equation and the probability of zero protein molecules predicted by the heuristic reduced master equation. (D) shows the absolute difference hni
and hn jGi computed using the exact master equation. (E) shows that the whole region of parameter space chosen has suitable deterministic timescale sep-

aration in which tg ¼ 1=l1;tp ¼ 1=l2, and li are the eigenvalues of the Jacobian of the deterministic rate equations Eqs. 2 and 3 evaluated at steady state.

Note that it is expected from Fig. 4 that the stochastic timescale separation will be much greater than the deterministic. Parameters su ¼ 100, ru ¼ 2 � 10�4

are fixed throughout the figure, with sb varying in the range 100–10
6 (small L) and rb varying in the range 2 � 10�4–25 (positive feedback). Numbered stars

in (A) indicate the two points in parameter space whose corresponding probability distributions of protein numbers we show in (F). See text for discussion. To

see this figure in color, go online.
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assigns probability zero to every set to which the other distribution assigns a

positive probability. In Fig. 5 B, we calculate the HD between the steady-

state solution of the exact reduced master equation Eq. 28 and the exact

steady-state solution of the master equation Eq. 73. Note that there is clear

timescale separation across the whole region of parameter space used for

the heatmaps as demonstrated in Fig. 5 E, and hence, based on conventional

wisdom, one would expect the heuristic reduced master equation to be ac-

curate at all points in this space. However, Fig. 5 A shows this is not the

case—the HD between the distributions predicted by the exact and heuristic

reduced master equations varies widely between 0 and 1. In contrast, Fig. 5

B shows that the HD between the distributions predicted by the exact and

exact reduced master equations is very close to zero across all of parameter

space, thus verifying that the latter is the correct form of the reduced master

equation under fast promoter switching conditions. From Fig. 5 A, we see

that there is a trend for the HD between the heuristic and exact master equa-

tions to decrease with increasing L, which agrees with the theoretical pre-

diction in previous sections that the differences are significant for very

small L and disappear in the limit of large L. As well, there is a trend for

the HD to decrease with increasing N and to be particularly small close

to N ¼ 1; this agrees with the theoretical prediction that for N ¼ 1, the heu-

ristic and exact precisely agree because in this case, there is no effective

feedback mechanism.
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In Fig. 5 F, we plot the protein distributions predicted by the heuristic

and exact master equations for the star points labeled 1 and 2 in Fig. 5 A,

which are positioned in regions of high and low HD, respectively. Note

that for point 1, the heuristic predicts that the probability that the protein

numbers are zero is high, whereas the exact predicts the probability that

the protein numbers are zero is very small. Inspired by this observation,

as well as the theoretical prediction of modes at zero for small L given

by Eq. 36, in Fig. 5 C, we plot a heatmap of the absolute difference be-

tween the height of the zero modes of the exact master equation and the

heuristic reduced master equation and find that this heatmap is in very

good agreement with the heatmap for the HD shown in Fig. 5 A. This ver-

ifies our intuition that the differences between the protein distributions of

the two master equations is mostly due to differences in their prediction of

the probability of zero proteins at steady state. Inspired by the result in

Appendix A that the deterministic time-evolution equations can be ob-

tained from the full master equation under the assumption hn jGizhni
(which is equivalent to independence of protein and gene fluctuations),

we plot in Fig. 5 D a heatmap of jhn jGi�hni j that also shows broad sim-

ilarity to that in Fig. 5 A.

In Fig. 6, we show the results of the same analysis as in Fig. 5, but

now for the case of negative feedback loops. As before, the largest

HD between the heuristic reduced master equation and the exact master



FIGURE 6 Quantifying the differences between the steady-state protein distributions predicted by the exact master equation Eq. 73, the heuristic reduced

master equation Eq. 11, and the exact reduced master equation Eq. 28 for negative feedback loops. In (A), we show the HD between the predictions of the

exact master equation and heuristic reduced master equation. In (B), we show the HD between the predictions of the exact master equation and exact reduced

master equation. (C) shows the absolute difference between the probability of zero protein molecules predicted by the exact master equation and the prob-

ability of zero protein molecules predicted by the heuristic reduced master equation. (D) shows the absolute difference hni and hn jGi computed using the

exact master equation. (E) shows that the whole region of parameter space chosen has suitable deterministic timescale separation in which tg ¼ 1=l1;tp ¼
1=l2, and li are the eigenvalues of the Jacobian of the deterministic rate equations Eqs. 2 and 3 evaluated at steady state. Note that it is expected from Fig. 4

that the stochastic timescale separation will be much greater than the deterministic. Parameters su ¼ 100 and rb ¼ 2 � 10�4 are fixed throughout the figure,

with sb varying between 100 and 10
6 (small L) and ru varying between 2� 10�4 and 25 (negative feedback). Numbered stars in (A) indicate the two points in

parameter space whose corresponding probability distributions of protein numbers we show in (F). See text for discussion. To see this figure in color, go

online.
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equation is found for N far away from the trivial case of N ¼ 1 and

for small L, in line with the theoretical predictions of the previous sec-

tion. Both the heatmaps of the absolute difference between the heights of

the zero modes (Fig. 6 C) and of the absolute difference between the pro-

tein mean and the conditional protein mean (Fig. 6 D) show high corre-

lation with the HD heatmap in Fig. 6 A. The differences between the

heuristic and exact protein distributions for the large HD and small

HD in Fig. 6 A (star points 1 and 2, respectively) are shown in Fig. 6

F. Note that the differences between the two cases amount to the order

of a single molecule and are far smaller than the differences found for

positive feedback (compare Fig. 5 F), verifying the theoretical predic-

tions of the previous section, namely that the heuristic fails worst for

positive feedback.

Extending results to the case of multiple protein binding

Here, we briefly treat the more general case in which multiple protein mole-

cules can bind the promoter, a common case in nature often associated with

cooperative behavior. The reaction scheme is an extension of Eq. 1 and reads

G/
ru

Gþ P; P/
1
B;

Pþ G#
sb

su
G�; Pþ G� #

db

du
G��;

G��/
rb

G�� þ P:

(37)
Writing the deterministic rate equations for this system and making the

assumption of fast promoter switching such that vthgidz0, vthg�idz0,

and vthg��idz0, it is straightforward to show that the effective determin-

istic time-evolution equation for the protein numbers has the form

dhnid
dt

z
LRru þ rbhni2d�

Lþ hnid
�
Rþ hni2d

� hnid; (38)

where L ¼ su/sb and R ¼ du/db. It follows by the same reasoning as in Heu-

ristic Stochastic Model Reduction that the corresponding heuristic reduced

master equation for protein dynamics is given by Eq. 9, with the effective

propensities

TþðnÞ ¼ LRru þ rbn
2

ðLþ nÞRþ n2
;

T�ðnÞ ¼ n:

(39)

In the limit of small L and R, Eq. 39 reduces to the effective propen-

sities given by Eq. 14, whereas in the limit of large L and R, Eq. 39 re-

duces to the effective propensities given by Eq. 12. Hence, the solutions

of the heuristic master equation in these two limits are given by Eqs. 13

and 17.
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By inspection of the reaction scheme (Eq. 37), it is obvious that for

small L and R, the gene will be mostly in state G**, and hence, the prin-

cipal reactions determining the protein dynamics are G��/
rb
G�� þ P;

P/
1
B. By the same reasoning, it follows that for large L and R, the

gene will be mostly in state G, and the principal reactions are G/
ru
Gþ

P; P/
1
B. Hence, the solution of the exact master equation of (37) in

the limit of small and large L, R is Poisson and given by Eqs. 31 and

32, respectively. Hence, all the conclusions previously reached regarding

the differences between the heuristic reduced master equation and the

exact master equation for single protein binding for the case of small

and large L also hold for multiple protein binding for the cases of small

and large L, R. Note that the derivations here assume the exchangeability

of the limits of large or small L, R and large time; hence, the proof here

presented is not formal, but the results are the expected ones and are

confirmed by simulations (see later).

It is interesting to find the general conditions under which the heuristic

reduced master equation generally agrees with the exact. For the case of

single promoter binding, we showed in Appendix A that the deterministic

rate equations agreed with the mean of the exact master equation when

hni ¼ hn jGi. Next, we derive a similar condition for the case of multiple

protein binding. We start by noting that under fast promoter switching

conditions, the reactions Pþ G#
sb

su
G�;Pþ G� #

db

du
G�� are in equilibrium,

and hence the deterministic rate equations yield

hgid ¼ LR

hni2d þ
�
Lþ hnid

�
R
;

hg��id ¼ hni2d
hni2d þ

�
Lþ hnid

�
R
:

(40)

Next, we derive equations for the same quantities but from the exact mas-

ter equation (denoted hgi, hg�i, and hg��i). Writing the master equation for

the same two reversible reactions in equilibrium, one can deduce the

moment equations:

vthgi ¼ 0 ¼ �sbhgi þ suð1�hgi� hg��iÞ; (41)

vthg��i ¼ 0 ¼ dbhnð1� g� g��Þi � duhg��i; (42)
from which we can deduce

hgi ¼ LðRþ hn jG��i � hniÞ
hn jGiðRþ hn jG��iÞ þ LðRþ hn jG��i � hn jGiÞ;

�
g��

� ¼ Lðhni � hnjGiÞ þ hnihn jGi
hnjGiðRþ hn jG��iÞ þ LðRþ hnjG��i � hn jGiÞ;

(43)

where we used the definitions of conditional means: hn jGi ¼ hngi=hgi and
hn jG��i ¼ hng��i=hg��i. Comparing Eqs. 40 and 43, we see that they can

only be equal if the following condition is true:

hnjGi ¼ hn jG��i ¼ hni: (44)

By means of the definition of the mean in terms of conditional means

hni ¼ hn jGihgiþ hn jG�ihg�iþ þ hn jG��ihg��i, one can deduce the final
condition required for the agreement of the time-evolution equations for the

mean protein number according to the deterministic rate equations and the

exact master equation:

hn jGi ¼ hn jG�i ¼ hn jG��i ¼ hni: (45)
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Because the heuristic is based on the deterministic, we expect that this

condition is also an indicator of when the heuristic and exact master

equations agree. In Fig. 7, we verify this intuition using simulations:

when the above condition is approximately met, then the heuristic and

exact master equations predict very similar distributions of protein

numbers (see Fig. 7, A and C), whereas the largest differences between

the two master equations (see Fig. 7, B and D) correlate with significant

differences between the three conditional mean protein numbers hn jGi;
hn jG�i; hn jG��i.
Model reduction for bursty feedback loops

In this section, we consider model reduction for feedback loops in

which there is an implicit mRNA description. It has been rigorously

shown that when mRNA degrades much quicker than proteins (a com-

mon situation for bacteria and yeast cells), then the mRNA does not

need to be explicitly described but rather implicitly manifests

through protein bursts (50). Studies have elucidated the implications

of taking into account protein bursting on downstream pathways and

shown its importance (51). Hence, we now consider a feedback loop

with an implicit mRNA description that has the effective reaction

scheme

G/
ru
GþwP; P/

1
B; Pþ G#

sb

su
G�; G�/

rb
G� þ wP; (46)

where w is the protein burst size, which is a random positive integer

drawn from the geometric distribution with mean b ¼ k/dM, k is the

rate at which mRNA is translated into proteins and dM is the mRNA

degradation rate. Note that the geometric form of the protein burst distri-

bution has been shown theoretically (52) and verified experimentally

(53).

Heuristic stochastic model reduction

We are interested in a reduced description of protein fluctuations in the limit

of fast promoter switching. Clearly, the effective master equation has to

have the general form

dPaðn; tÞ
dt

¼
XN
i¼ 0

�
Tþ
i ðn� iÞPaðn� i; tÞ� Tþ

i ðnÞPaðn; tÞ
�

þ T�ðnþ 1ÞPaðnþ 1; tÞ � T�ðnÞPaðn; tÞ;
(47)

where Ti
þ(n)dt is the probability, given n proteins, that a protein burst of

size i will occur in the time interval [t, t þ dt) and T�(n)dt is the prob-

ability, given n proteins, that a protein degradation event reducing the

number of proteins by one will occur in the time interval [t, t þ dt).

Next, we use the deterministic rate equations to guess the equations

for Ti
þ(n) and T�(n). The deterministic rate equations corresponding to

(46) are given by

dhgðtÞid
dt

¼ � sbhgðtÞidhnðtÞid þ su

�
1�hgðtÞid

�
; (48)

dhnðtÞid � �

dt

¼ � sbhgðtÞidhnðtÞid þ su 1�hgðtÞid
þ rubhgðtÞid þ rbb

�
1�hgðtÞid

�� hnðtÞid:
(49)



FIGURE 7 Plots comparing the heuristic master

equation (Eq. 9 with Eq. 39) and exact master equa-

tion predictions for the protein number distributions

of a positive feedback loop (ru ¼ 0.5, rb ¼ 20) with

multiple protein binding (37). All calculations done

using FSP. Fast promoter switching is enforced by

choosing minðsu; sb; du; dbÞ[maxð1; ru; rbÞ. In
(A)–(C), parameter values are fixed to su ¼ 104,

sb ¼ 104, and du ¼ 104, and db is varied in the range

102–104. Plot (A) shows a case in which the system

spends most of its time in state G; in (B), we show a

case for which all states G, G*, and G** are

frequently accessed by the system; and in (C), we

show a case in which the state G** dominates. (D)

shows a case in which the system spends most of

its time in state G*. Note that the differences be-

tween the heuristic and exact master equation are re-

flected in the differences between the values of the

mean number of proteins conditional on each state,

with the smallest differences occurring for cases (A)

and (C), in agreement with the condition given by

Eq. 45. To see this figure in color, go online.
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Note that these equations are the same as the deterministic rate equations for

the non-bursty case given byEqs. 2 and 3, except that ru is replaced by rub and

rb is replaced by rbb; this directly follows from the definition of b as the mean

protein burst size. Assuming fast promoter switching, vthgðtÞidz0, it follows

that an effective reduced rate equation for the mean protein numbers is

dhnid
dt

z
Lru þ rbhnid
Lþ hnid

b� hnid: (50)
The form of this effective equation, combined with the fact that we know

that burst size is distributed according to a geometric distribution with mean

b, suggests a one-variable master equation of the form Eq. 47 with effective

propensities

Tþ
i ðnÞ ¼ Lru þ rbn

Lþ n
ji;

T�ðnÞ ¼ n;

(51)
where ji is the probability that a burst has size i, which is given by bi/(1 þ
b)i þ 1. If we denote the angled brackets with subscript a as the statistical

averages calculated using the heuristic master equation Eq. 47 with propen-

sities given by Eq. 57, then it follows that
dhnia
dt

¼
XN
i¼ 0

i
�
Tþ
i ðnÞ

�
a
� �

T�ðnÞ�
a
;

¼ b

	
Lru þ rbn

Lþ n



a

� hnia;

z
Lru þ rbhnia
Lþ hnia

b� hnia:

(52)
Note that this equation is the same as the reduced rate equation Eq. 50

(upon replacing hnia by hni) and hence verifies that the form of the effective

propensities given by Eq. 51 guarantees equivalence between the effective

equation for the time evolution of the mean protein numbers of the heuristic

master equation and the reduced deterministic rate equation in the limit of

small protein number fluctuations when hniazn.

The heuristic stochastic model given by Eqs. 47 and 51 is difficult to

solve exactly in steady state because there are no known general solutions

for one species reaction systems with multistep reactions, i.e., reactions

leading to the production of more than one molecule at a time (44). How-

ever, as we now show, provided we can assume exchangeability of the limits

of large or small L and large time, then closed-form solutions can be ob-

tained for the steady-state distributions of protein numbers.

The limit of large L. In this limit, Eq. 51 reduces to the simpler form
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Tþ
i ðnÞzruji;

T�ðnÞ ¼ n:
(53)

Substituting these in the heuristic reduced master equation Eq. 47, multi-

plying both sides by zn, and taking the sum over n on both sides of this equa-

tion, we get the generating function equation

dGðz; tÞ
dt

z ruGðz; tÞ
�

1

1þ bð1� zÞ� 1

�
þ ð1� zÞ dGðz; tÞ

dz
;

(54)

where Gðz; tÞ ¼ P
n
znPaðn; tÞ. This equation can be solved in steady state,

yielding GðzÞ ¼ ð1� bðz� 1ÞÞ�ru , which implies that

PaðnÞ ¼ 1

n!

dnGðzÞ
dzn

jz¼ 0z

�
b

1þ b

�n�
1� b

1þ b

�ru

� Gðru þ nÞ
Gðnþ 1ÞGðruÞ

¼ NB

�
ru;

b

ð1þ bÞ
�
;

(55)

where NB(x, y) stands for a negative binomial distribution with parameters

x, y and mean xy/(1 � y).

The limit of small L. In this limit, Eq. 51 reduces to the simpler form

Tþ
i ðnÞzððru � rbÞdð0; nÞ þ rbÞji;

T�ðnÞ ¼ n;
(56)

where d(0, n) is the Kronecker delta. Substituting these in the heuristic

reduced master equation Eq. 47, multiplying both sides by zn, and taking

the sum over n on both sides of this equation, we get the corresponding

generating function equation

dGðz; tÞ
dt

z ððru � rbÞGð0; tÞþ rbGðz; tÞÞ

�
�

1

1þ bð1� zÞ� 1

�
þ ð1� zÞ dGðz; tÞ

dz
: (57)

In steady state, this equation has the solution

GðzÞ ¼ 1þ N
�� 1þ ð1þ bÞrbð1� bðz� 1ÞÞ�rb

�
1þ Nð � 1þ ð1þ bÞrbÞ : (58)

Hence, the steady-state probability distribution is given by
PaðnÞz 1

n!

dnGðzÞ
dzn

jz¼ 0 ¼

8>>><
>>>:

1

1þ Nðð1þ bÞrb � 1Þ; if n ¼ 0;

NB

�
rb;

b

1þ b

�
N

N � ðN � 1Þð1þ bÞ�rb
; if nR1:

(59)
Exact stochastic model reduction

To determine how accurate the heuristic model reduction is, we need to

compare it with the reduction done on the exact model in the limit of fast

promoter switching. Unlike the case of a non-bursty feedback loop, the

exact solution of the chemical master equation for the reaction scheme in

Eq. 46 is unknown. However, by taking the same approach as we did in
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Model Reduction For Nonbursty Feedback Loops, it is easy to find the so-

lution of the chemical master equation for the case of fast promoter switch-

ing and L being either very small or very large.

The limit of fast promoter switching implies that the reaction

Pþ G#
sb

su
G� in the reaction scheme in Eq. 46 is approximately in equilib-

rium for all times. From the chemical master equation for this reversible re-

action, one finds that the fraction of time that the gene is on is given by Eq.

71. Hence it follows that in the limit of small L, hgi is also very small, the

gene spends most of its time in state G*, and consequently, the only effec-

tive reactions determining the protein dynamics are

G�/
rb
G� þwP;P/

1
B; (60)

where w is the protein burst size, which is a random positive integer drawn

from the geometric distribution with mean b. The chemical master equation

for these two reactions can be easily solved in steady state, leading toa negative

binomial distribution, P(n)zNB(rb, b/(1þ b)). In the opposite limit of large

L, hgi is approximately1, thegene spendsmost of its time in stateG, and conse-

quently, the only effective reactions determining the protein dynamics are

G/
ru
GþwP;P/

1
B: (61)

Solving the chemical master equation in steady state (using the gener-

ating function method) for these two reactions leads to another negative

binomial solution, P(n) z NB(ru, b/(1 þ b)).

Hence, summarizing the results of Heuristic Stochastic Model Reduction

andExactStochasticModelReduction,we can state that the heuristic and exact

stochastic model reduction in the limit of fast promoter switching agree for

large L (both predict a negative binomial distribution, P(n) ¼ Pa(n) ¼
NB(ru, b/(1þ b))) but disagree for smallL: the exact reduction predicts a nega-

tive binomial distribution, P(n) z NB(rb, b/(1 þ b)), whereas the heuristic

reduction predicts thedifferent distributiongivenbyEq. 59.These results qual-

itatively parallel those previously obtained for a non-bursty feedback loop.

To further understand the differences between these two distributions for

small L, we now look at the mean protein numbers, the FF, and the CV of

protein number fluctuations:

hni ¼ brb; hnia ¼ brb þ
bðN � 1Þrb

1þ ðð1þ bÞrb � 1ÞN; (62)

bð1� NÞrb
FF ¼ 1þ b; FFa ¼ 1þ bþ
1þ ðð1þ bÞrb � 1ÞN;

(63)
2 1þ b

CV ¼

brb
;

CV2
a ¼ 1þ b

brb
� ð1þ bÞ�rbð1� N�1Þð1þ bþ brbÞ

brb
: (64)
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Hence, for N < 1 (positive feedback), the heuristic underestimates the

mean protein number and overestimates the FF and the CV of protein

number fluctuations, and the opposite occurs when N > 1 (negative

feedback). The deterministic rate equations predict a mean of brb
(can be deduced from Eq. 50 in limit of small L), which agrees with

hni but not with hnia, and hence, the heuristic artificially predicts

noise-induced deviations from the deterministic mean. These are the

same conclusions that we reached in Exact Stochastic Model Reduction

for the case of a non-bursty feedback loop. The exact reduction predicts

super-Poissonian fluctuations (FF > 1), whereas the heuristic predicts

the same for N < 1 and either super- or sub-Poissonian fluctuations

for N > 1 (FFa > 1 and FFa < 1, respectively). We note that the pre-

diction of sub-Poissonian fluctuations is a surprising illogical output

of the heuristic model because naturally, the production of proteins in

bursts has to lead to number distributions that are wider than Poisson.

The theoretical predictions for the mean, FF, and CV are corroborated

using FSP in Fig. 8, A–C.

The relative errors (made by the heuristic reduction method) for the

mean, FF, and CV2 can be computed using em ¼ ��hni � hnia
�� =hni,

eFF ¼ jFF � FFaj/FF, and eCVs ¼ ��CV2 � CV2
a

�� =CV2, respectively.

The errors for the bursty feedback loop (computed using Eqs. 62,

63, and 64) are smaller than the errors for the non-bursty feedback

loop (computed using Eqs. 33, 34, and 35), provided the mean burst

size b[ 1. Hence, a major prediction of our theory is that bursts

in protein expression generally reduce the size of the discrepancies

between heuristic and exact stochastic model reduction in the limit

of small L. This theoretical prediction is verified using FSP in

Fig. 8 D.
FIGURE 8 Plots showing the breakdown of the heuristic reduced master equa

feedback loop. The plots show the mean protein number (A), the FF of protein n

mean burst size b. In these plots, we compare the FSP solution of the full mas

solution of the heuristic reduced master equation Eq. 47 with Eq. 51; the latter

agreement with the moments calculated in the limit of small L and given by E

very well approximated by hni ¼ brb. In (D), we show the relative error in the he

eFF ¼ jFFe � FFaj/FFe. Note that the relative error decreases with increasing mea

such that L is small, there is positive feedback, and fast promoter switching is
Finally, we compute the conditions for the existence of a mode of the

probability distribution at n ¼ 0 using the distribution obtained from the

exact method P(n) z NB(rb, b/(1 þ b)) and the distribution from the heu-

ristic reduction Eq. 59, respectively:

Pð1Þ
Pð0Þ< 10rb <

1þ b

b
; (65)

Pað1Þ 1þ b
Pað0Þ < 10Nrb ¼ ru < b
: (66)

This implies that if ru < (1 þ b)/b, rb > (1 þ b)/b (a special case of pos-

itive feedback), the approximate heuristic master equation predicts an arti-

ficial mode at n ¼ 0, whereas if ru > (1 þ b)/b, rb < (1 þ b)/b (a special

case of negative feedback), the approximate heuristic master equation mis-

ses predicting an actual mode at n ¼ 0.
RESULTS AND DISCUSSION

In this work, we have conclusively shown that heuristic sto-
chastic models with Hill-type propensities for transcrip-
tional regulation are not generally valid under fast
promoter switching conditions, as commonly assumed.
Rather, we show that they are valid only over a subset of
tion for fast promoter switching in the limit of small L for a bursty positive

umber fluctuations (B), and the CV squared (C) as a function of rb and the

ter equation corresponding to the reaction scheme in Eq. 46 with the FSP

is distinguished from the former by the subscript ‘‘e.’’ These are in good

q. 62, 63, and 64—for example, the means of the exact solution in (A) are

uristic reduced master equation’s FF computed using the data in (B), where

n burst size b. In all cases, ru ¼ 0.0002, su ¼ 100, and sb ¼ 105 were chosen

guaranteed. To see this figure in color, go online.
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parameter space consistent with the fast promoter switching
assumption, namely when the rate of protein-DNA binding
reaction is much less than the unbinding reaction. Our work
shows that when this condition is not met, the protein distri-
butions predicted by the heuristic models can be consider-
ably different from the true protein distributions. These
differences exist for both negative and positive feedback
loops but are particularly pronounced for the latter—in
this case, we have shown that the heuristic model can predict
an artificial mode at zero proteins, an incorrect switching
point from low to high protein expression as a parameter
is varied, artificial deviations of the mean number of pro-
teins from that predicted by the rate equations, and a huge
overestimation of the size of protein number fluctuations
and of the FF. Surprisingly, we found that the heuristic solu-
dP0ðn; tÞ
dt

¼ ruðP0ðn� 1; tÞ � P0ðn; tÞÞ þ ððnþ 1ÞP0ðnþ 1; tÞ � nP0ðn; tÞÞ þ suP1ðn� 1; tÞ � sbnP0ðn; tÞ;
dP1ðn; tÞ

dt
¼ rbðP1ðn� 1; tÞ � P1ðn; tÞÞ þ ððnþ 1ÞP1ðnþ 1; tÞ � nP1ðn; tÞÞ � suP1ðn; tÞ

þsbðnþ 1ÞP0ðnþ 1; tÞ;

(67)
tion exactly corresponds to the fast gene switching limit of
the autoregulatory system that ignores protein number fluc-
tuations due to the protein-promoter binding reaction. Our
work further builds on previous work by other authors
(40,41,54) but has the advantage of using theory to precisely
deduce the region of validity of the heuristic approach.

A number of open answered questions remain: 1) is there
a simple way of constructing a different type of reduced sto-
chastic model that avoids the pitfalls of the common heuris-
tic models and that also avoids the use of sophisticated
mathematical analysis to derive it? The requirement of
simplicity is essential because typically only such methods
are widely adopted, and indeed, this is a main reason why
the problematic heuristic reduced stochastic models treated
in this work are so widespread; 2) what would be the differ-
ences between heuristic and correctly reduced stochastic
spatial models of genetic feedback loops in the limit of
fast gene switching? Would the differences between the
two models increase or decrease with the diffusion coeffi-
cient of protein molecules? Spatial modeling of such sys-
tems is relatively rare, but recent work in this direction
(55–59) shows that these models are richer in complex
behavior than their nonspatial counterparts, and, of course,
they are closer to reality; 3) say one used a heuristic reduced
stochastic model to construct a likelihood function and then
use the latter within a Bayesian approach to infer parameters
of autotranscriptional feedback loops from experimental
data: how would these differ from parameters inferred using
16 Biophysical Journal 117, 1–20, October 1, 2019
a likelihood built from a nonreduced model? A recent study
(60) shows that inference from moment-based approaches is
very sensitive to the type of approximation used to construct
the likelihood function and hence suggests large differences
between the parameters inferred using heuristic reduced or
exact master equations. In conclusion, our study shows
that care must be exerted in the interpretation of the results
of heuristic stochastic models.
APPENDIX A: RELATIONSHIP BETWEEN THE
DETERMINISTIC AND STOCHASTIC MODELS

For the non-bursty feedback loop (Eq. 1), the stochastic description is given

by the chemical master equation, which can be formulated as a set of two

coupled equations:
where P0(n, t) is the probability that at time t, there are n proteins and the

gene is in state G, whereas P1(n, t) is the probability that at time t, there are

n proteins and the gene is in state G*. Note that time t is nondimensional

and equal to the actual time multiplied by the protein degradation rate.

The probability of n proteins is then given by P(n, t) ¼ P0(n, t) þ P1(n,

t). Using these equations, it is straightforward to show the time-evolution

equations for the first moments:

dhgi
dt

¼ � sbhngi þ suð1�hgiÞ; (68)
dhni

dt

¼ � sbhngi þ suð1�hgiÞ þ ruhgi
þ rbð1�hgiÞ � hni;

(69)
where hni ¼ P
n
nPðnÞ is the mean numbers of proteins, hgi ¼ P

n
P0ðnÞ is

the fraction of time the gene is in the on state (or equivalently, the average

number of genes in the on state), and hngi ¼ P
n
nP0ðnÞ. Note that we have

here suppressed the time dependence for convenience. A comparison of

Eqs. 2 and 3 with Eqs. 68 and 69 shows that the two are the same if

hngi ¼ hnihgi, i.e., the deterministic and exact stochastic models agree

in the means if the fluctuations in the gene and protein numbers are indepen-

dent of each other.

We next show that in the limit of fast promoter switching and when there

is a nonzero correlation between the fluctuations of protein and gene, the

exact stochastic model gives a time-evolution equation for the protein num-

ber mean which is different than that given by the deterministic analysis.

The limit of fast promoter switching implies that dhgi=dtz0, and hence,

using Eq. 68, it follows that the mean number of proteins conditional on

the gene being in state G can be written as



Reduction of Stochastic Models

Please cite this article in press as: Holehouse and Grima, Revisiting the Reduction of Stochastic Models of Genetic Feedback Loops with Fast Promoter
Switching, Biophysical Journal (2019), https://doi.org/10.1016/j.bpj.2019.08.021
hn jGi ¼
PN
n¼ 0

nP0ðnÞ
PN
n¼ 0

P0ðnÞ
¼ hngi

hgi zL
ð1� hgiÞ

hgi ; (70)

from which we obtain, after rearrangement,

hgiz L

Lþ hn jGi: (71)

Substituting in Eq. 69, we obtain an effective equation for the time evo-

lution of the protein numbers under the condition of fast promoter switching:

dhni
dt

z
Lru þ rbhnjGi
Lþ hn jGi � hni: (72)

Contrasting this equation with the effective equation obtained through

the deterministic approach, Eq. 4, we see that the two are generally

different. They are only the same when hn jGi ¼ hni, i.e., the mean number

of proteins conditional on the gene being in state G is equal to the mean

number of proteins, which occurs when gene and protein number fluctua-

tions are independent.
APPENDIX B: EXACT STEADY-STATE SOLUTION
OF NON-BURSTY FEEDBACK LOOP IN LIMIT OF
FAST GENE SWITCHING

The exact steady-state solution of Eq. 67 has been previously reported in the

literature (7,61) and is given by

PeðnÞ ¼ 1

n!

dðG0ðzÞ þ G1ðzÞÞn
dzn

jz¼ 0; (73)

�1

�
1þ sb a
G0ðzÞ ¼ A expðrbðz� 1ÞÞ
sb ru

Mð1þa; b;wðzÞÞ

� a

ru � rb
Mða; b;wðzÞÞ

�
;

(74)

G1ðzÞ ¼ A�1 expðrbðz� 1ÞÞMða; b;wðzÞÞ; (75)
with the definitions

A ¼ 1þ sb

sb

a

ru
Mð1þa;b;wð1ÞÞ þMða; b;wð1ÞÞ

�
�
1� a

ru � rb

�
; (76)

suðru � rbÞ

a ¼

ru � rbð1þ sbÞ; (77)

su þ sb
ru
b ¼ 1þ 1þsb

1þ sb

; (78)
and

wðzÞ ¼ ðru � rbð1þ sbÞÞ ð1þ sbÞz� 1

ð1þ sbÞ2
: (79)

Note that M(x, y, z) is the Kummer confluent hypergeometric function

and Gi(z) is the generating function
P

nz
nPiðnÞ. Replacing su by su/e and

sb by sb/e and taking the limit of e / 0 (the fast switching limit), we

find that G(z) becomes a function of only three nondimensional parameters

L ¼ su/sb, N ¼ ru/rb, and rb, and the corresponding steady-state distribu-

tion of protein numbers (to leading order in e) has the form

PðnÞ ¼ ð1þ LÞNrnbðnrb þ LðLþ nþ NrbÞÞ½1þ LN�n
AMð1þ LN; 1þ L; rbÞ þ BMð2þ LN; 2þ L; rbÞÞ

;

(80)

where

A ¼ ðLNþ nÞn!ð1þ LÞðLþðN� 1ÞrbÞ½1þ L�n; (81)

B ¼ ðLNþ nÞn!ð1þ LNÞrb½1þ L�n: (82)
APPENDIX C: LIMITS OF SMALL AND LARGE L
FROM EXACT STEADY-STATE SOLUTIONS

Interchanging the sum and the limit

Here, we prove a result that will be used in The Limit of Large L and The

Limit of Small L for the purpose of interchanging limits of L with the infin-

ite sum that defines the Kummer function (for example, that in Eqs. 11 and

28). For reference, the Kummer function is defined through the sum

Mða; b; xÞ ¼
XN
n¼ 0

½a�n
½b�n

xn

n!
: (83)

We will prove that

lim
L/A

XN
n¼ 0

½aþLN�n
½aþL�n

rn
b

n!
¼ PN

n¼ 0

lim
L/A

½aþLN�n
½aþL�n

rn
b

n!
; (84)

where A is some real number.

Let fn ¼ [aþ LN]n/[a þ L]n, which implies fn þ 1 ¼ fn(a þ nþ LN)/(a þ
nþ L). Consider first the case NR 1. Because (aþ nþ LN)/(aþ nþ L)%
N, then if fn % Nn, this implies that fn þ 1 % Nn þ 1. Also, it is easy to check

that f1 % N. Hence, by induction, it follows that if N R 1, then fn % Nn.

Similarly, it is straightforward to prove by induction that if N < 1, then

fn < 1. It then follows that

XN
n¼ 0

½aþ LN�n
½aþ L�n

rnb
n!
% expðNrbÞ; NR1; (85)

XN ½aþ LN� rn
n¼ 0

n

½aþ L�n
b

n!
%expðrbÞ; N < 1: (86)
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Because the sums are bounded by a finite value, it follows by the domi-

nated convergence theorem that the limit and sum can be switched, i.e., Eq.

84 holds.
The limit of large L

Making use of a standard result (62),

lim
x/N

GðxþnÞ
GðxÞxn ¼ 1; cn˛Z; (87)

and [x]n ¼ G[x þ n]/G[x], we have that for any a˛R
lim
L/0

PaðnÞ ¼

8>>><
>>>:

1

1þ NðexpðrbÞ � 1Þ; if n ¼ 0;

expð�rbÞrnb
n!

�
1þ N � 1

1þ NðexpðrbÞ � 1Þ
�
; if nR1;

(90)
lim
L/N

½aþLN�n
½aþL�n ¼ Nn; lim

L/N
Mðaþ LN; aþ L; rbÞ

¼ PN
n¼ 0

lim
L/N

½aþLN�n
½aþL�n

rn
b

n!
¼ expðNrbÞ: (88)

Note that here, we have used the interchange of sum and limit as

given by Eq. 84. Using Eq. 88 and N ¼ ru/rb, it follows that in the

limit of large L, the steady-state distribution of molecule numbers,

as predicted by the reduced master equation Eq. 11 and by the full

master equation in the limit of fast promoter switching Eq. 28, is a

Poissonian with mean ru:

lim
L/N

PðnÞ ¼ lim
L/N

PaðnÞ ¼ rnu expð�ruÞ
n!

: (89)

The limit of small L

Using the definition of the Pochhammer symbol and the standard result G(x)

approximately 1/x as x / 0, one can show that

lim
L/0

½aþLN�n
½aþL�n ¼ lim

L/0

GðaþLNþnÞGðaþLÞ
GðaþLNÞGðaþLþnÞ ¼ 1; cn if as0

and

lim
L/0

½LN�n
½L�n ¼ lim

L/0

GðLNþnÞGðLÞ
GðLNÞGðLþnÞ ¼


1; if n ¼ 0;
N; if nR1:

Using these two results, it then follows that

lim
L/0

Mðaþ LN; aþ L; rbÞ ¼
XN
n¼ 0

lim
L/0

½aþLN�n
½aþL�n

rn
b

n!

¼ expðrbÞ if as0
18 Biophysical Journal 117, 1–20, October 1, 2019
and

lim
L/0

MðLN; L; rbÞ ¼
XN
n¼ 0

lim
L/0

½LN�n
½L�n

rn
b

n!

¼ 1þ NðexpðrbÞ� 1Þ if a ¼ 0:

Note that here, we have used the interchange of sum and limit as

given by Eq. 84. Using these results, it is straightforward to show

that in the limit of small L, the steady-state distribution of

molecule numbers predicted by the heuristic master equation Eq. 11

reduces to
whereas the steady-state distribution of molecule numbers predicted by

the master equation in the limit of fast promoter switching Eq. 28 reduces to

lim
L/0

PðnÞ ¼ rn
b
expð�rbÞ
n!

: (91)

Clearly, PðnÞsPaðnÞ because the latter is not Poissonian and hence

shows that in the small L limit, the approximate heuristic master equation

gives the incorrect answer.
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