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GENOMIC SELECTION

Genomic Prediction in Maize Breeding Populations
with Genotyping-by-Sequencing
José Crossa,*,1 Yoseph Beyene,* Semagn Kassa,* Paulino Pérez,† John M. Hickey,‡ Charles Chen,*
Gustavo de los Campos,§ Juan Burgueño,* Vanessa S. Windhausen,** Ed Buckler,††

Jean-Luc Jannink,†† Marco A. Lopez Cruz,* and Raman Babu*
*International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico DF, Mexico,
†Colegio de Postgraduados, Montecillos, Edo. de Mexico, 56230, Mexico, ‡The Roslin Institute, University of Edinburgh,
Easter Bush, Midlothian, EH25 9RG, United Kingdom, §Department of Biostatistics, School of Public Health, University of
Alabama at Birmingham, Alabama 35294, **Saaten Union Recherche, 163 Avenue de Flandre, 60190 Estrées Saint Denis,
France, and ††USDA—ARS, Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York,
New York 14850

ABSTRACT Genotyping-by-sequencing (GBS) technologies have proven capacity for delivering large
numbers of marker genotypes with potentially less ascertainment bias than standard single nucleotide
polymorphism (SNP) arrays. Therefore, GBS has become an attractive alternative technology for genomic
selection. However, the use of GBS data poses important challenges, and the accuracy of genomic
prediction using GBS is currently undergoing investigation in several crops, including maize, wheat, and
cassava. The main objective of this study was to evaluate various methods for incorporating GBS
information and compare them with pedigree models for predicting genetic values of lines from two
maize populations evaluated for different traits measured in different environments (experiments 1 and 2).
Given that GBS data come with a large percentage of uncalled genotypes, we evaluated methods using
nonimputed, imputed, and GBS-inferred haplotypes of different lengths (short or long). GBS and pedigree
data were incorporated into statistical models using either the genomic best linear unbiased predictors
(GBLUP) or the reproducing kernel Hilbert spaces (RKHS) regressions, and prediction accuracy was
quantified using cross-validation methods. The following results were found: relative to pedigree or marker-
only models, there were consistent gains in prediction accuracy by combining pedigree and GBS data;
there was increased predictive ability when using imputed or nonimputed GBS data over inferred haplotype
in experiment 1, or nonimputed GBS and information-based imputed short and long haplotypes, as
compared to the other methods in experiment 2; the level of prediction accuracy achieved using GBS data
in experiment 2 is comparable to those reported by previous authors who analyzed this data set using SNP
arrays; and GBLUP and RKHS models with pedigree with nonimputed and imputed GBS data provided the
best prediction correlations for the three traits in experiment 1, whereas for experiment 2 RKHS provided
slightly better prediction than GBLUP for drought-stressed environments, and both models provided similar
predictions in well-watered environments.
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Implementation of genomic selection (GS) in plant and animal breed-
ing programs is usually based on genotypes derived from marker
panels discovered using reference samples. The rapid progress of
next-generation DNA sequencing (NGS) technologies, especially those
based on short read sequencing of a fractional genome representation,
have allowed direct and inexpensive single nucleotide polymorphism
(SNP) detection from large and diverse germplasm collections.
Genotyping-by-sequencing (GBS) is an NGS approach that reduces
genome complexity via restriction enzymes (Elshire et al. 2011). GBS
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has been applied to study trait association in a diverse seed bank
collection of maize germplasm (Romay et al. 2013) to identify agri-
culturally important but uncommon alleles (Yan et al. 2010). GBS
has also been used to construct GS models for large and complex
polyploidy wheat breeding materials (Poland et al. 2012).

One biological complication of applying GBS in a maize breeding
program is that maize possesses a dynamic genome with extensive
presence–absence variation (Fu and Dooner 2002), which results in
many regions of the genome not being imputable for a given SNP.
Recent studies suggest 80–90% of the genome shows some presence–
absence variation (Chia et al. 2012). High-depth coverage studies
using GBS suggest that only 75–82% of the sites are present in these
samples, except for the reference genome B73, which exhibits near-
complete coverage.

GBS data are highly dimensional and usually come with a large
percentage of uncalled genotypes; therefore, incorporating this in-
formation into models poses important statistical and computational
challenges that need to be addressed but have not yet been studied in
detail. First, with low sequencing coverage, the proportion of "missing"
marker genotypes can be high (�70–80% or more for 1· sequencing
coverage; Poland et al. 2012), and it is not clear how massive amounts
of GBS information can be incorporated into statistical models for
prediction of performance of unobserved genotypes (as required in
GS). Second, it is unknown how GBS data information can be com-
bined with pedigree information in model prediction. Third, until
now, it is not known how imputation of missing genotype data or
haplotype inferences may affect prediction accuracies when GBS data
are used.

Haplotypes can be used to impute missing data; to perform this
imputation, only a few individuals need to carry a given haplotype in
the data set. However, many more copies of a given haplotype are
required for an accurate statistical estimation of its effect. Longer
haplotypes may be more accurately determined, but by nature they are
carried by fewer individuals, especially when the sample size is small.
Longer haplotypes can directly parameterize presence–absence var-
iants or other types of QTL alleles nested within haplotype alleles,
but SNP markers need to parameterize them indirectly through link-
age disequilibrium (LD). It is not known how the imputation and
prediction with different haplotypes lengths affect genomic prediction.

Most GS research so far has focused on evaluation based on low-
to-intermediate marker panels with a low-to-intermediate proportion
of missing markers (de los Campos et al. 2009, 2010; Crossa et al.
2010, 2011; Pérez et al. 2010, 2012; González-Camacho et al. 2012;
Heslot et al. 2012; Hickey et al. 2012). GBS has attracted great interest
for the application of GS in plant breeding. Poland et al. (2012) re-
cently reported that they successfully applied GBS to a large set of
advanced wheat lines from the semi-arid wheat breeding program of
CIMMYT and predicted breeding values with 0.28 to 0.45 prediction
accuracy for grain yield (GY), an improvement of 0.1 to 0.2 over
another marker platform. The authors concluded that its low cost
makes GBS a good method for GS. The extensive LD of most wheat
populations probably aids the accuracy of imputation of missing ge-
notype data. However, the accuracy of genomic predictions based on
imputed data may be quite different in other species, such as maize,
with much less extensive LD. Although GBS appears promising as
a genotyping method to use in GS, currently, no studies have been
performed that evaluate the use of GBS data for prediction accuracy in
diverse maize breeding populations.

Therefore, the main objective of this research was to quantify the
accuracy of genomic prediction using GBS data in two maize data sets
with different complex (or quantitative) traits evaluated under

differing environmental conditions. Experiment 1 included three
traits evaluated in four environments, as well as pedigree information
regarding the maize lines. Experiment 2 included one trait and two
environments, but no information regarding the pedigree of the maize
lines. The accuracy of genomic predictions using GBS was assessed by
examining the prediction accuracy of three different sources of GBS
information: nonimputed GBS; imputed GBS; and GBS-inferred
haplotypes. In experiment 1, pedigree data were available; therefore,
in this data set, we were able to assess how much prediction accuracy
can be gained by combining pedigree and GBS data, relative to family-
based predictions. Experiment 2 has been analyzed by other authors
using SNP arrays; therefore, in this experiment, we were able to
compare the prediction accuracy that can be attained with GBS data
relative to previous reports using SNP arrays.

In one dimension of this study, the predictions of the different
sources of GBS information are compared. In another dimension, we
examine the prediction accuracy of two statistical models: genomic
best linear unbiased predictor (GBLUP) and reproducing kernel
Hilbert spaces (RKHS) for all three types of GBS information. The last
dimension evaluated in this study, which applies only to experiment 1
(with a family structure), is concerned with the prediction accuracy of
GBLUP and RKHS including or ignoring pedigree information in
combination with the three types of GBS information. A default GBS-
inferred haplotype length consisting of 1000 flanking markers on each
side of the marker being imputed was used for both experiments. For
experiment 2 (with a smaller sample size than experiment 1), we used
two other haplotype lengths, short and long, with 50 and 100 flanking
markers on each side of the marker being imputed, respectively.

MATERIALS AND METHODS
Two compressed files containing phenotypic and genotypic informa-
tion regarding the two data sets used in this study [experiment 1 with
504 maize doubled haploid (DH) lines and experiment 2 with 296
maize lines] can be downloaded from http://repository.cimmyt.org/
xmlui/handle/10883/1380.

Phenotypic data
The phenotypic data set consisted of two different maize data sets,
experiment 1 and experiment 2. The data set from experiment 1 was
a collection of 504 DH lines derived from crossing and backcrossing
eight inbred parents to form 10 full-sib families. The 504 DH were
crossed to a single-cross tester. Basic information regarding the
parents in experiment 1 is provided in Table A1 (see Appendix A).
Data from experiment 2 consisted of a diverse panel of 296 CIMMYT
maize inbred lines, including several breeding populations.

Phenotypic data for 504 DH maize lines (experiment 1): A total of
504 DH maize lines were obtained by crossing and backcrossing eight
parents to form 10 full-sib families of different sizes. Each DH line was
crossed to an elite single-cross hybrid from the opposite heterotic
group to produce 504 test-crosses that were genotyped with GBS.
Traits available in this data set included GY (kg/ha), anthesis date
(AD; days after sowing), and anthesis-silking interval (ASI; days); each
of these traits were evaluated in four environments, three optimum
rain-fed trials and one managed drought trial. The experimental
design in each of the four environments was an alpha-lattice
incomplete block design with two replicates.

Although individual trial prediction analyses were performed for
the three optimum and one drought environment, here we present
results for the four trials combined. Data were balanced across the
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four trials and pre-adjusted using estimates of block and environment
effects derived from a linear model that accounted for the incomplete
block design within environment and for environment effects. Given
that these data had a family structure, pedigree information was
incorporated into the prediction in two forms, as a pedigree model per
se and by including it in the GBLUP and RKHS models.

Broad-sense heritability of the combined analyses across environ-
ments was calculated as h2 ¼ s2

g=ðs2
g þ

s2
ge

e þ s2
e

e· rÞ, where s2
g , s

2
ge, and

s2
e are the genotype, genotype · environment interaction, and error

variance components, respectively, and e and r are the number of
environments and replicates within each environment included in
the corresponding analyses, respectively.

Phenotypic data for the 296 inbred lines (experiment 2): These lines
represent a wide range of germplasm from the global maize breeding
program of CIMMYT and were derived from different breeding
subpopulations. The two trait combinations considered in this study
were GY (kg/ha) evaluated in four severe drought stress (SS) trials and
five well-watered (WW; ample rainfall) trials. All 296 lines were
included in all the trials and pre-adjusted based on estimates of block
and plot effects derived from the linear model, as described for data in
experiment 1; broad-sense heritability of the combined analyses across
environments was calculated as explained in experiment 1. This data
set was also used by Crossa et al. (2010), González-Camacho et al.
(2012), and Windhausen et al. (2012).

Genotypic data

Genotyping-by-sequencing: GBS is a reduced representation ap-
proach that uses restriction enzymes to sample the genome. In this
study, we adopted a GBS protocol commonly used by the maize
research community (Elshire et al. 2011; Romay et al. 2013). DNA was
digested with ApeKI restriction enzyme and 96 samples were multi-
plexed per Illumina flow cell for sequencing.

To increase the genome coverage and read depth for SNP
discovery, raw read data from sequencing the samples were analyzed
together with 19,000 additional maize samples from the CIMMYT
global maize breeding program, USA and Chinese NAM populations,
and the USDA Ames maize collection and teosinte mapping
populations. SNP identification was performed using TASSEL 3.0
GBS Discovery Pipeline with B73 as the reference genome (http://
www.maizegenetics.net/tassel/docs/TasselPipelineGBS.pdf). Briefly,
raw Illumina DNA sequence data (�100 base pair qseq file) were first
trimmed to remove bar codes, and further trimmed or padded with
“A’s on the 39 end to 64 base pair lengths. First, the SNP calling
process was initiated by identifying all distinct 64-base pair tags oc-
curring in more than 0.1% of the overall maize collection (�20,000
lines). Second, the distribution of these tags across all Zea was then
generated, and tags were aligned against the reference genome se-
quence of B73 using the Burrows-Wheeler aligner (Li and Durbin
2009). Third, all tags aligning in the same region of the genome are
aligned with the full multiple sequence alignment of Biojava3 (http://
biojava.org/) (Holland et al. 2008). Finally, a SNP was defined for
every maize sample based on a binomial distribution from the aligned
unique tags.

Because of extensive paralogy in maize, SNPs were then further
filtered based on homozygosity in inbred lines, the biparental error
correction plug-in in Tassel GBS Discovery Pipeline, which was
applied to eliminate SNP with high errors rates (2m · E = 0.01), and
a minimum median r2 (parameter: 2mnPLD = 0.5) for LD with
markers in the local genome region across biparental families. And,

finally, only those that segregate in the mapping populations were used
in this study. Source code and the Tassel GBS discovery pipeline are
available at www.maizegenetics.net and SourceForge Tassel project
(http://sourceforge.net/projects/tassel/). Tassel was also used for com-
puting pairwise measures of LD (r2) between loci for each data set
(experiments 1 and 2) and for each chromosome within the data sets
(Bradbury et al. 2007).

Imputation and haplotype methods
A simple imputation algorithm was developed for the purpose of
imputing the markers that were missing because of technical
limitations with GBS data (not biologically missing). The imputation
algorithm borrowed ideas related to haplotype library imputation
(Hickey et al. 2012). In the variant of the algorithm used in this study,
imputation works by first identifying individuals who are likely to
share a common haplotype. Then, the genotype information from
these individuals is combined to form a consensus haplotype. Finally,
any individuals who share this haplotype have their missing markers
imputed on the basis of this consensus haplotype.

The individuals used in this study were inbred lines and therefore
were homozygous for the majority of markers. The imputation
procedure began by first setting to missing any residual heterozygote
markers. Next, diploid genotype data were formally phased based on
the fact that phase could be directly observed, because markers not
originally missing or set to missing were phased de facto by virtue of
the genotypes being homozygous.

Imputation was performed at each marker using information from
flanking markers, both called and missing, to define the haplotype
allele that each individual carried. At each marker, the genotyped
individuals in the data set were partitioned into clusters, and
individuals in the same cluster were assumed to carry the same
haplotype because they had no opposing homozygote loci. This was
performed by searching a certain number of flanking markers on
either side of the marker of interest for called alleles that disagreed
between pairs of individuals. Pairs of individuals with more than
a threshold with four disagreeing alleles were assumed not to belong
to the same cluster. Individuals belonged to only one cluster, and
the minimum number of individuals in a cluster was one. Individuals
in the same cluster were assumed to carry the same haplotype and,
therefore, the same allele at the marker of interest. If some individuals
in the cluster were missing this allele, but others were not, then it was
assumed that the allele was technically missing (rather than bi-
ologically missing) in individuals in this cluster who were missing the
allele. The missing allele was therefore imputed in those individuals in
whom it was missing. If the allele was missing for all individuals in
a cluster, then it was not imputed because it was assumed to be
biologically missing for these individuals. The algorithm moved along
each chromosome, moving the locus to be imputed and its flanking
markers, one marker at a time.

Haplotype length: The imputation algorithm that was performed at
each marker uses information from flanking markers (that are called
or missing) and defines the haplotype allele that each individual
carries. Therefore, the algorithm imputes not only technically missing
markers but also inferred haplotypes that can be used for genomic
prediction. Explicitly, the inferred haplotypes are, in fact, the clusters
to which each individual belongs.

In the analysis of both data sets, the default imputation method
used 1000 flanking markers on each side of the marker being imputed
to infer the haplotype allele carried. However, because of the small size
of the data set in experiment 2, the long default haplotypes would not
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be informative because too few individuals were present for enough
individuals to share long haplotypes; therefore, two other parameter
values for the imputation method were used to examine the sensitivity
of haplotypes length, one using a short haplotype inference from 50
flanking markers on each side of the marker being imputed and
another using a long haplotype inference from 100 flanking markers.
The haplotype lengths were chosen as a compromise between
computation time and the overall yield of imputed alleles in some
cases and imputation accuracy in other cases. Shorter haplotypes take
more time and generate a greater amount of imputed alleles. Longer
haplotypes have a greater accuracy of imputation, but if they are too
long they are shared by very few individuals and consequently
contribute fewer imputed alleles.

Clusters that were created and used to perform the imputation also
contained information that could be used for genomic prediction
directly. Individuals belonging to the same cluster at each marker
position were assumed to carry the same haplotype at that marker
position. Because there were several clusters at each marker position,
there were also several haplotypes at each marker position. These
clusters/haplotypes may be able to parameterize biologically missing
data more optimally than partially imputed SNP. For example, an
allele that is missing for all individuals in a cluster is not directly
parameterized by SNP because all individuals in this cluster will be
missing for this SNP. However, the cluster/haplotype alleles may be
able to more directly parameterize this because all individuals carry
one of the haplotype alleles, and the biologically missing variant may
be nested within only one or a few haplotype alleles. Longer
haplotypes may be more precise in their definition of the haplotype
allele carried by an individual; however, by virtue of their length, long
haplotypes are not shared by as many individuals as short haplotypes.
Therefore, because more copies of each haplotype allele are present in
the data for short haplotypes, short haplotypes may be more powerful
for genomic prediction.

In essence, there are multiple tradeoffs involved. Longer haplo-
types are more precisely defined, but alleles may not be shared by
many individuals and therefore have reduced power for estimating
their effects. Furthermore, long haplotypes may have greater ability to
capture nonadditive genetic effects or the effects of recent mutations
that are more likely to be shared by very close relatives. Short
haplotypes and SNPs may have greater ability to parameterize additive
effects caused by older mutations.

Statistical models
In an applied breeding program, GS could be applied for two
purposes: predicting breeding values of individuals for rapid selection
cycling or predicting genotypic values of advanced lines that are in the
last stages of testing. Although predicting breeding values necessitates
models for estimating additive effects, predicting the genetic values of
advanced lines requires models that account for additive as well as
nonadditive (i.e., epistatic) genetic effects (Crossa et al. 2013). In
general, linear models such as GBLUP capture additive relationships,
whereas nonlinear models such as RKHS can account for nonadditive
genetic components (e.g., gene · gene effects) (Gianola et al. 2006; de
los Campos et al. 2010; González-Camacho et al. 2012).

Genomic prediction (Meuwissen et al. 2001) can be implemented
using parametric or semi-parametric procedures. Among the para-
metric methods, GBLUP (a ridge-regression–type estimator) is the
most commonly used; among the semi-parametric procedures, RKHS
is the one used most frequently (e.g., de los Campos et al. 2012) and
has consistently shown high prediction accuracy (e.g., de los Campos
et al. 2010; Crossa et al. 2010, 2011; Heslot et al. 2012; González-

Camacho et al. 2012; Pérez et al. 2012). In this study, we considered
using either GBLUP or RKHS regressions.

The GBLUP method uses a genomic relationship matrix computed
using imputed or nonimputed marker information. Furthermore, the
genomic relationship matrix can also be computed on a SNP-by-SNP
basis or on the basis of haplotypes spanning multiple adjacent SNP
(see Appendix A for further details). Haplotypes can be used instead
of imputed GBS markers when constructing genomic relationship
matrices for GBLUP or the reproducing kernel for RKHS regressions
(further details are provided in Appendix A).

The RKHS implementation applied here uses a Gaussian kernel
evaluated on Euclidean distances computed from either imputed or
nonimputed GBS data or from SNP vs. haplotype information. We
implemented the RKHS regression using a multi-kernel approach,
termed kernel averaging (KA), described by de los Campos et al.
(2010). Further details regarding our implementation are given in
Appendix A. For the data set with available pedigree information
(504 DH lines), we evaluated the GBLUP and RKHS models using
genomic information and a combination of genomic and pedigree
information.

We implemented GBLUP and RKHS using the Bayesian frame-
work by assigning appropriate prior probability distributions to
marker effects (see Appendix A). The posterior distributions of all
unknowns in both models were obtained using MCMC techniques.
We used the Bayesian implementation of RKHS described by de los
Campos et al. (2010) with the kernels and prior probability distribu-
tions described in González-Camacho et al. (2012).

Notation of the different models: Concerning the notation of the
models, we appended to either GBLUP or RKHS subscripts that
denote the imputation and haplotype methods used. No subscripts
were used for nonimputed GBS data. For experiments 1 and 2 data
sets, the default marker imputation method (1000 flanking markers) is
denoted by the subscript IM (GBLUPIM, RKHSIM); for the haplotype-
based method, we used H as the subscript (GBLUPH, RKHSH). For
experiment 1, the pedigree model denoted as P is fitted as described in
Appendix A and when combined pedigree and marker information is
used with nonimputed GBS, the notation is PGBLUP and PRKHS.
When imputed (IM) GBS and haplotype-based (H) GBS methods are
used, the notations are PGBLUPIM, PRKHSIM, PRKHSH, and
PRKHSH, respectively.

For experiment 2, when imputed marker data are from short
haplotypes (50 flanking markers; IMS) and long haplotypes (100
flanking markers; IML), the models are denoted as GBLUPIMS,
GBLUPIML, RKHSIMS, and RKHSIML, respectively, and the models
that use the inferred short haplotypes (HS) and long haplotypes
(HL) are named GBLUPHS, GBLUPHL, RKHSHS, and RKHSHL, re-
spectively. Further details regarding the computation of GBLUP and
RKHS are provided in Appendix A.

Cross validation scheme: We quantified prediction accuracy using
a replicated training–testing evaluation. In each replicate, data were
randomly partitioned into training (TRN; with 70% of the observa-
tions) and testing (TST; with 30% of data points) data sets. Models
were fitted to the TRN data set and prediction accuracy was evaluated
in the TST data set. This was replicated 50 times with independent
random assignments into TRN and TST; in this manner, we obtained
50 estimates of the prediction accuracy (one per replicate) for each of
the methods evaluated. Prediction ability was quantified using the
correlation between predicted and observed values in each of the
TST data sets. A scheme similar to this was used by Gianola et al.
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(2011) and González-Camacho et al. (2012); one advantage of this
approach is that in addition to yielding a point estimate of prediction
accuracy, it provides measures of uncertainty of such estimates (e.g.,
variance of predictive correlation across partitions of the data into
TRN and TST data sets).

RESULTS
For each data set, results are presented in relation to general
information on the GBS data as well as information on GBS data in
each experiment data set (number of missing SNPs by chromosome
and distribution of minor allele frequency), and in relation to the
prediction accuracy of the two statistical models (GBLUP and RKHS)
on the three different types of GBS information (imputed, non-
imputed, and haplotype method). For experiment 1, results of the
prediction accuracy of GBS for models with and without pedigree are
examined.

GBS data
Obtained from a large collection of maize samples (�20,000 lines),
approximately 66% of the unique reads mapped to unique positions
in the reference genome; if mapped uniquely, then 80% of the 64 base
pair reads carried at least one polymorphic site among all varieties.
This is the result of sampling a large collection of diverse material, in
which 45% of the SNP sites are polymorphic, plus more from small
indels; the rest of the SNPs (�55%) are classified as rare alleles (with
very low allele frequency). On average, 2.09 billion single base pair
reads can be collected in a single flow cell. At the plex level of 96,
the coverage of GBS SNPs in this study is approximately at 1·, given
the averaged raw read counts for our maize samples being 2.3 million
reads. However, sequence read depth varies greatly across the genome,
especially when samples are run from 1· to 2· coverage (Beissinger
et al. 2013); genome coverage also varies by taxa and SNP sites, and
thus it has been complicated to systematically describe the read depth
variation along the genome and across taxa. At 1·, the Poisson distri-
bution expects 36.8% of missing information. Our data in Table 1 and
Table 2 suggest GBS has a higher than expected missing data ratio.

Based on the repeated samples in this large maize collection
(Romay et al. 2013), the error rate per base was estimated at 0.0018
based on repeated samples, and the average SNP call rate (per sample)
was 42%, with values ranging from 2% to 75%. However, when ana-
lyzing taxa that have deeper coverage, an average of 16–23% of the

sites are missing from any given sample, suggesting a substantial
amount of missing data are attributable to the biology of presence/
absence variation in the maize genome (Springer et al. 2009).

Information on genotypic data for each maize chromosome,
including the number of original markers, the percentage of missing
cells (where cell refers to the value of a locus in an individual line) in
the original marker data, the number of markers after initial filtering,
and the number of markers after imputation, is summarized in Table
1 and Table 2 for experiments 1 and 2, respectively. Filtering was
performed by first removing markers that had more than 80% of lines
with missing values and then deleting markers with MAF #0.05.
Overall, before filtering, we obtained a total of 681,257 SNP directly
from the GBS calling pipeline; after filtering for missing values
and minor allele frequency, 158,281 SNPs were used in experiment
1 (Table 1) and 235,265 SNPs were used in experiment 2 (Table 2).

For experiment 1 (Table 1), the initial GBS data before filtering
had a percentage of missing cells per chromosome ranging from 51.3
to 52.8%; after filtering, this percentage decreased to approximately
43–44% of the total number of cells. Approximately 20% of cells were
missing in the edited GBS information used for prediction after im-
putation (last column in Table 1). These 20% missing genotypes were
replaced by their expected values before performing the prediction.
The distribution of minor allele frequency is depicted in Figure 1A.
Regarding GBS experiment 2 (Table 2), the initial GBS markers for
this data set had approximately 57–58% of missing cells. The percent-
age of missing cells in the edited GBS data was 51–52% (Table 2),
and minor allele frequency distribution is shown in Figure 1B.

Measures of LD at various genetic distances by data set and
chromosome were computed. Plots of r2 vs. distance by chromosome
and data set are depicted in Appendix B (Figure B1, a and b; Figure
B2, a and b; Figure B3, a and b; Figure B4, a and b; Figure B5, a and b;
Figure B6, a and b; Figure B7, a and b; Figure B8, a and b; Figure B9,
a and b; and Figure B10, a and b). The r2 between adjacent markers
decreased very quickly in experiment 2, as expected for maize, and the
median r2 achieved very low values at distances of 0.5 Mb or longer.
The patterns of LD in experiment 1 were very different; here, the
average r2 remained relatively high (values of �0.2) even at very long
distances, and there was great deal of variability in r2 even at long
distances. This occurs because the association of alleles in this data set
is largely driven by family linkage, whereas in experiment 2 the asso-
ciation patterns of alleles are dominated by population LD.

n Table 1 Experiment 1 (504 doubled-haploid maize lines), initial number of markers per chromosome, number of
filtered markers per chromosome, and percentage of missing cells per chromosome after imputation

Chromosome
Initial Number of Markers

(% of Missing Cells Before Filter)
Number of Markers After Filter
(% of Missing Cells After Filter)

% Missing Cells
After Imputation

1 108,292 (51.3) 23,878 (43.37) 19.67
2 82,006 (52.5) 20,191 (44.63) 20.95
3 77,207 (51.9) 18,360 (44.02) 20.52
4 66,512 (52.8) 13,814 (44.58) 20.48
5 77,067 (51.8) 17,784 (43.78) 19.78
6 55,489 (52.4) 13,893 (44.23) 20.84
7 57,504 (52.6) 13,354 (44.52) 20.82
8 58,568 (52.0) 14,903 (43.99) 20.67
9 50,473 (52.2) 10,823 (43.30) 19.53

10 48,139 (52.7) 11,281 (44.72) 20.76
Total 681,257 158,281

Filter of markers consisted of deleting markers that had .80% of lines with missing values and deleting markers whose minor allele frequency
was #0.05.
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Imputation and haplotype

Imputation: GBS experiment 1: For this data set, the default
imputation method had 1000 flanking markers for deriving the
haplotypes, creating several hundred thousand alleles per chromo-
some (i.e., one SNP can be in different haplotypes and this is consid-
ered an allele). The information in Table 1 shows different
information on markers and missing cells (where cell refers to the
value of a locus in an individual line).

Imputation: GBS experiment 2: As previously mentioned for
experiment 2, in data sets with a smaller sample size than in
experiment 1, the LD is likely to be lower than that in the experiment
1 data set, thus making the long default haplotypes (with 1000
flanking markers) much less informative. Therefore, for this data set,
we tested the sensitivity of shortening the flanking markers by
performing imputation with 100 flanking markers [long haplotype
imputation method (IML) that produces long haplotypes (LH)] and

with 50 flanking markers [short haplotype imputation method (IMS)
that produces short haplotypes (SH)] and studied the prediction
accuracy of these cases as well. The percentage of missing cells in the
default imputation method was approximately 48–49%, whereas the
imputation method using 50 flanking markers (SH) produced approx-
imately 24–25% of missing cells, and the imputation method using
100 flanking markers (LH) had approximately 32–33% of the total
number of missing cells replaced by their expected values before
performing the prediction.

Prediction accuracy

Prediction: experiment 1: Estimates of broad-sense heritability and
estimates of prediction accuracy for this experiment are provided in
Table 3. Correlations for the pedigree (P) model were 0.518, 0.589,
and 0.588 for GY, AD, and ASI, respectively. In general, GBLUP
models showed lower predictive correlations than the RKHS regres-
sion models for the three traits. However, for all traits, PGBLUP and

n Table 2 Experiment 2 (296 maize lines), initial number of markers, number of filtered markers per chromosome, percentage of missing
cells in the default imputation method, imputation method for short haplotypes, and imputation method for long haplotypes

Chromosome

Initial Number of
Markers (% of Missing

Cells Before Edit)

Number of Edited
Markers (% of Missing

Cells After Filter)

% Missing Cells
After the Default

Imputation

% Missing Cells After
Imputation Method for

Short Haplotypes

% Missing Cells
After Imputation Method
for Long Haplotypes

1 108,292 (57.44) 37,376 (51.66) 48.71 24.58 33.65
2 82,006 (58.27) 29,283 (52.23) 49.38 25.87 33.95
3 77,207 (58.06) 27,287 (51.85) 48.75 24.93 33.95
4 66,512 (58.80) 20,672 (51.87) 49.27 25.32 33.96
5 77,067 (57.72) 27,453 (51.80) 48.70 25.27 33.14
6 55,489 (58.27) 19,650 (51.92) 48.72 25.03 33.71
7 57,504 (58.40) 19,896 (52.33) 49.55 25.66 32.99
8 58,568 (58.18) 20,248 (51.80) 48.03 24.87 32.67
9 50,473 (58.27) 17,027 (51.95) 49.24 25.14 33.40

10 48,139 (58.84) 16,373 (52.65) 48.95 24.47 33.46
Total 681,257 235,265

Filter of markers consisted of deleting markers that had .80% of lines with missing values and deleting markers whose minor allele frequency was #0.05.

Figure 1 (A) Distribution of minor allele frequency (MAF) for experiment 1. (B) Distribution of minor allele frequency for experiment 2. Data used is
non-imputed genotyping-by-sequencing (GBS).
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PRKHS had very similar prediction accuracies and showed consis-
tently better predictive correlations than their corresponding counter-
parts without pedigree, GBLUP and RKHS. In several instances,
GBLUP and RKHS showed lower prediction correlations than the
pedigree model (i.e., RKHSH for GY and ASI, and all the GBLUPs
for GY and ASI). For trait AD, the increase in prediction accuracy of
all models with GBS information is remarkable as compared with the
pedigree model.

In general, SEs of prediction for GY and ASI were approxi-
mately 0.04–0.05, whereas for AD they were approximately 0.03–0.04.
Exceptions are the SEs of predictions for models fitted using inferred
haplotypes, which are consistently high for all traits. Across imputa-
tion methods, the correlations of the models that used inferred hap-
lotypes (H) gave the lowest prediction accuracy across methods, with
GBS information, traits, and models (GBLUPH, PGBLUPH, RKHSH,
PRKHSH) showing, as already mentioned, the largest SEs. Several
correlations values are within the SE interval; therefore, it is adequate
for describing patterns and trends rather than significances.

These results indicated, at least for this data set, the limited
accuracy of using inferred haplotypes with GBS information.

However, prediction correlation on imputed GBS based on 1000
flanking markers was similar to nonimputed GBS in several, but not
all, cases. For example, PRKHS, PRKHSIM, PGBLUP, and PGBLUPIM
models yielded the best predictive correlations, with gains in predic-
tive correlation relative to the pedigree (P) model of approximately
12% for GY and approximately 23% for AD. Models PGBLUP and
PGBLUPIM had the best predictive correlations for ASI, with gains
relative to the P model of 5.9% and 5.4%, respectively (Table 3).

Figure 2 provides a scatter plot of the 50 correlations obtained
with PRKHSIM vs. those of the P model. A point above the 45-degree
line implies that for that particular partition, the predictive correlation
of the model on the vertical axis (PRKHSIM) is higher than that of the
model on the horizontal axis (P). Although there is great variability in
the correlations, the superior prediction accuracy of PRKHSIM over
the pedigree model is consistent across most partitions (i.e., partitions
that gave correlations of ,0.5, those with correlations between 0.50
and 0.60, and those that produced correlations .0.6).

Prediction in experiment 2: Estimates of broad-sense heritability and
of prediction accuracy for this experiment are given in Table 4. As

n Table 3 Experiment 1 (504 doubled-haploid maize lines), estimated broad-sense heritability and average predictive ability between
observed and predicted values for grain yield, days to anthesis, and anthesis-silking interval for 13 models and their percent change
relative to the pedigree model

Model Grain Yield Days to Anthesis Anthesis-Silking Interval

Estimated broad-sense heritability 0.433 0.676 0.545

Average predictive correlation
P 0.518 (0.045) 0.589 (0.033) 0.588 (0.046)
RKHS 0.553 (0.046) 0.711 (0.036) 0.591 (0.044)
RKHSIM 0.545 (0.045) 0.710 (0.035) 0.585 (0.044)
RKHSH 0.505 (0.050) 0.659 (0.040) 0.561 (0.046)
PRKHS 0.584 (0.044) 0.727 (0.032) 0.620 (0.043)
PRKHSIM 0.582 (0.045) 0.729 (0.031) 0.616 (0.043)
PRKHSH 0.548 (0.047) 0.681 (0.036) 0.598 (0.044)
GBLUP 0.469 (0.050) 0.668 (0.042) 0.563 (0.050)
GBLUPIM 0.475 (0.050) 0.677 (0.040) 0.566 (0.050)
GBLUPH 0.462 (0.052) 0.622 (0.045) 0.549 (0.051)
PGBLUP 0.582 (0.045) 0.727 (0.031) 0.623 (0.042)
PGBLUPIM 0.585 (0.044) 0.731 (0.031) 0.620 (0.043)
PGBLUPH 0.551 (0.047) 0.678 (0.036) 0.599 (0.044)

% Change relative to the P model
RKHS 6.7 20.7 0.6
RKHSIM 5.2 20.6 20.6
RKHSH 22.6 11.9 24.7
PRKHS 12.7 23.4 5.3
PRKHSIM 12.3 23.8 4.6
PRKHSH 5.7 15.6 1.6
GBLUP 29.5 13.4 24.3
GBLUPIM 28.3 14.9 23.8
GBLUPH 210.8 5.6 26.7
PGBLUP 12.4 23.4 5.9
PGBLUPIM 13.0 24.2 5.4
PGBLUPH 6.4 15.1 1.8

SE shown in parentheses. Average correlations are across 50 random partitions of the data with 70% in the training set and 30% in the validation set. Fitted models
were pedigree (P), reproducing kernel Hilbert spaces regression without imputed GBS (RKHS), reproducing kernel Hilbert spaces regression with imputed GBS
(RKHSIM), reproducing kernel Hilbert spaces regression with haplotype inference from imputed GBS (RKHSH), GBLUP without imputed GBS, GBLUPSIM with imputed
GBS, GBLUPH with haplotype inferred from imputed GBS, pedigree reproducing kernel Hilbert spaces regression without imputed GBS (PRKHS), pedigree reproduc-
ing kernel Hilbert spaces regression with imputed GBS (PRKHSIM), pedigree reproducing kernel Hilbert spaces regression with haplotype inference from imputed GBS
(PRKHH), pedigree GBLUP without imputed GBS (PGBLUP), pedigree GBLUPSIM with imputed GBS (PGBLUPSIM), and pedigree GBLUPH with haplotype inferred from
imputed GBS (PGBLUPH). GBLUP, genomic best linear unbiased predictors; GBS, genotyping-by-sequencing.

Volume 3 November 2013 | Genomic Prediction Using Genotyping-by-Sequencing | 1909



expected, estimates of broad-sense heritability and prediction accuracy
were lower under drought stress conditions with a larger SE of the
predictive correlation (0.088–0.107) than those obtained under WW
(ample rainfall) conditions (0.057–0.071). In general, the correlation
values are within the SE boundaries; therefore, we discuss prediction
trends within the context of nonsignificant differences.

For GY-SS, the prediction accuracy of GBLUP was consistently
lower than that of RKHS models across all imputation methods, and it
displayed larger SEs. Prediction differences within GBLUP and RKHS
for the different imputation methods were very small. The best
predictive models for GY-SS were for the imputed GBS models
RKHSIML and RKHSIMS. However, for GY under optimum conditions
(GY-WW), prediction differences within GBLUPs and RKHSs for the
different imputation methods were larger than for GY-SS. Models
RKHS (with nonimputed GBS) and imputed GBS model RKHSIM
were the best predictors, closely followed by GBLUPIMS and
GBLUPIML.

The variability of estimates of predictive correlation across data
partitioned into training and testing sets was particularly high under
severe stress (GY-SS), reflecting the lower precision obtained in field
experiments under severe drought (also reflected in the lower broad-
sense heritability and lower prediction accuracy). This dispersion of
the actual differences in correlations between RKHSIMS vs. GBLUPIMS

is shown in the scatter plots of the 50 random cross-validations in
Figure 3. Most variability is attributable to the different partitions, and
the prediction for RKHSIMS surpassed those from GBLUPIMS for most
of the partitions. Results indicated that some random partitions picked
subsets of training data that had lower correlations with observed
values in the validation set (#0.3), whereas other random partitions
had closer relationships between the training and validation sets
($0.5).

It is interesting to examine the dispersion among predictive
correlations between short and long haplotype imputation methods
for GY-SS (Figure 4 depicts RKHSIMS vs. RKHSIML). As in Table 4,
results from Figure 4 indicate that predictions of kernel models de-
rived from 50 (short) and 100 (long) SNPs as flanking markers are
very similar across all range of correlations (from,0.3 to almost 0.7).
Furthermore, similar results indicate not much difference in predic-
tion ability between short and long haplotype inference when using
the GBLUPIMS model for both GY-SS and GY-WW.

DISCUSSION
The overall aim of the study was to assess the prediction accuracy of
GBS using two maize populations evaluated for different traits
measured in different environments. Four specific questions were
considered. How does the prediction accuracy of genomic models
using GBS data compare with that of pedigree methods? Does the
inclusion of pedigree information in the genomic model increase
prediction accuracy? What is the impact of using imputation methods
on the prediction accuracy attained by genomic models using GBS
data? What is the prediction difference between the parametric
GBLUP and the semi-parametric RKHS models?

Using GBS, one can obtain large numbers of markers at a relatively
low cost and with potentially less ascertainment bias than that present
in commercially available SNP arrays. There are concerns about using
GBS markers in general regarding the cost of informatics, the error
rate, and missing data issues. However, as modern SNP discovery
pipelines such as Tassel, GBS Discovery Pipeline, SAMtools (Li et al.
2009), and SNVer (Wei et al. 2011) become available, many of the
informatics requirements have been addressed for the users. Romay
et al. (2013) compared GBS-SNP calls with Illumina array-based

genotype values and estimated a mean discrepancy rate of 0.0118
between these two genotyping platforms. When analyzing maize in-
bred materials that are closely related to the B73 reference genome,
such as our DH lines, excluding heterozygote calls further reduces the
discrepancy rate to 0.0058, suggesting the reliability of GBS when
reference genome information is available. However, interpreting
missing data from GBS markers attributable to the low coverage might
still be challenging for some applications, especially genome-wide
association analysis and GS. Further, incorporating GBS data in ge-
nomic prediction is not free of hurdles and, to our knowledge, no
empirical evaluation has yet been performed regarding the use of GBS
genotypes for genomic-enabled prediction.

Dealing with missing genotypes in GBS data
Typically, GBS data contain high proportions of missing genotypes,
which poses a real challenge. In this study, we proposed and evaluated
two approaches to face that challenge. First, we proposed models
based on called genotypes only circumventing imputation. Second, we
developed and implemented several imputation methods for GBS data
and evaluated the performance of prediction approaches using
imputed data. Phasing was greatly facilitated by the fact that the data
were from pure lines, given that the imputation of genotypes with
large percentages of heterozygous loci is considerably more
challenging.

Results from experiment 1 indicated, for the three traits, a very
slight increase in prediction (not significant) of models using imputed
GBS as compared to those with uncalled GBS, but not for models with
inferred haplotypes. Results from experiment 2 indicated no pre-
diction improvement on the imputed GBS. The average gains in

Figure 2 Plots of the predictive correlation for each of 50 cross-
validation partitions for grain yield (GY) in experiment 1. When the
best model is pedigree reproducing kernel Hilbert spaces regression
with imputed genotyping-by-sequencing (PRKHSIM), this is repre-
sented by s; when the best model is pedigree (P), this is represented
by d. The histograms depict the distribution of the correlations in the
testing set obtained from 50 partitions for two models. The horizontal
and vertical dashed lines represent the averages of the correlations for
the testing sets in the 50 cross-validation partitions for the models
shown in the Y axis and in the X axis, respectively. The solid line
represents Y = X (when both models have the same prediction ability).
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prediction accuracy varied greatly across traits and imputation
methods, and in some cases methods that use imputed genotypes or
inferred haplotypes were outperformed by methods based on called
genotypes only. Clearly, if GBS is to become a common genotyping
approach in breeding programs, then further research of developing
and calibrating imputation methods for GBS data are needed.

Prediction accuracy using GBS data
Successful prediction accuracies in models using GBS data in wheat
were recently reported (Poland et al. 2012). In this study, we provide
the first extensive evaluation of genomic-enabled prediction using
GBS on real maize phenotypic data. We considered two maize data
sets: three traits were evaluated in experiment 1 and one trait was
evaluated under three environmental conditions in experiment 2. Im-
portantly, these two data sets have very different genetic structures
and, therefore, represent very different prediction problems. Experi-
ment 1 comprises full-sib and other related families, whereas experi-
ment 2 includes a diverse panel of lines from the global maize
breeding program of CIMMYT, some of which are distantly related.

Prediction accuracy with family data
In experiment 1, results show that combining GBS with pedigree data
yields consistent gains in prediction accuracy, relative to pedigree-
based predictions. These gains ranged from modest (2–5%) to sub-
stantial (10–24%), depending on the trait (regardless of whether GBS
genotypes were imputed) and on the statistical method used to in-
corporate GBS data (either GBLUP or RKHS). Our results are in
agreement with previous reports of consistent gains in prediction

accuracy when pedigree was combined with genomic information
derived from hybridization-based genotyping methods in maize and
wheat (e.g., de los Campos et al. 2009; Crossa et al. 2010; Burgueño
et al. 2012; Heslot et al. 2012). The fact that combining GBS and
pedigree data leads to higher prediction accuracy than using pedigree
data alone indicates that GBS data capture information beyond what
can be captured by the pedigree only, which in the case of experiment
1 reduces to the mean of the family. Unlike pedigree information, the
use of marker data allows capturing within-family differences and, to
some extent, bridging the signal of genetic similarity detected by
genetic markers, which might have been overlooked by pedigree
information.

It should be mentioned that prediction from the pedigree GBLUP
model operates not only within family means but also between
families by capturing family structure. Furthermore, GBLUP and
RKHS captured population structure and substructures (because of
different parental relationships), as well as within and between family
means, because regressing the phenotypic values on all marker values
is equivalent to regressing phenotypes on all marker-derived principal
components (de los Campos et al. 2010; Janss et al. 2012).

Models using GBS data with no pedigree information were
systematically outperformed by those combining pedigree and GBS
data. Similar results were reported before using low-density markers
in wheat data (de los Campos et al. 2009; Crossa et al. 2010). However,
other studies have shown that as marker density increases, the benefits
of combining pedigree and genotype information diminish, relative to
models using marker information only, until a point is reached at
which, above a given marker density, combining pedigree and markers

n Table 4 Experiment 2 (296 maize lines), estimated broad-sense heritability and estimated average predictive ability
between observed and predicted values for grain yield under drought stress and grain yield under well-watered
conditions for 14 models

Trait–Environment

Average Predictive Correlation of GY-SS
Average Predictive

Correlation of GY-WW

Model
RKHS 0.438 (0.093) 0.616 (0.059)
RKHSIM 0.442 (0.093) 0.616 (0.059)
RKHSIMS 0.454 (0.093) 0.606 (0.060)
RKHSIML 0.454 (0.093) 0.606 (0.060)
RKHSH 0.417 (0.087) 0.543 (0.060)
RKHSHS 0.449 (0.070) 0.595 (0.060)
RKHSHL 0.443 (0.094) 0.609 (0.057)
GBLUP 0.373 (0.103) 0.590 (0.071)
GBLUPIM 0.367 (0.107) 0.606 (0.070)
GBLUPIMS 0.385 (0.100) 0.612 (0.070)
GBLUPIML 0.385 (0.100) 0.612 (0.070)
GBLUPH 0.377 (0.088) 0.534 (0.064)
GBLUPHS 0.385 (0.100) 0.602 (0.070)
GBLUPHL 0.380 (0.100) 0.608 (0.065)

Estimated broad-sense heritability 0.380 0.441

SE shown in parentheses. Average correlations are across 50 random partitions of the data with 70% in the training set and 30% in the
validation set. Fitted models were reproducing kernel Hilbert spaces regression without imputed GBS (RKHS), reproducing kernel Hilbert
spaces regression with imputed GBS (RKHSIM), reproducing kernel Hilbert spaces regression with haplotype inference form imputed GBS
(RKHSH), reproducing kernel Hilbert spaces regression with imputed GBS for short haplotypes (RKHSIMS), reproducing kernel Hilbert spaces
regression with haplotype inference from imputed GBS with short haplotypes (RKHSHS), reproducing kernel Hilbert spaces regression with
GBS imputation from long haplotypes (RKHSIML), reproducing kernel Hilbert spaces regression with haplotype inference from imputed GBS
with long haplotypes (RKHSHL), GBLUP without imputed GBS, GBLUP with imputed GBS (GBLUPIM), GBLUP with haplotype inference from
imputed GBS (GBLUPH), GBLUP with imputed GBS from short haplotypes (GBLUPIMS), GBLUP with haplotype inference from imputed GBS
with short haplotypes (GBLUPHS), GBLUP with GBS imputation from long haplotypes (GBLUPIML), and GBLUP with haplotype inference from
imputed GBS with long haplotypes (GBLUPHL). GBLUP, genomic best linear unbiased predictors; GBS, genotyping-by-sequencing; GY-SS,
grain yield under drought stress conditions; GY-WW, grain yield under well-watered conditions.
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yields a prediction accuracy similar to the one obtained with markers
only (Vazquez et al. 2010).

Populations with extensive LD are also expected to gain high
prediction accuracy because of the linkage between tagged SNPs with
the unobserved casual genetic polymorphism (or QTL) (Zhong et al.
2009; Brito et al. 2011). The maize genome reportedly suggests rapid
LD decay in both tropical and temperate germplasm (Lu et al. 2011;
Romay et al. 2013), indicating a higher number of genetic markers are
needed to arrive at the same prediction power. When applying geno-
mic prediction models to closely related breeding materials (such as the
families in experiment 1), in theory, considerable prediction accuracy
can be expected because family linkages, low levels of diversity, small
number of meiosis, and relatively large LD occurred in the genome.

Prediction accuracy in a diverse panel
Experiment 2 comprises a collection of maize lines with no close
family relationships. However, these lines have different degrees of
genetic similarity that could be described as a combination of population
structure, substructure, and cryptic relationships, all of which are
captured by markers and consequently accounted for in genomic
regressions such as GBLUP (Janss et al., 2012) or RKHS (de los
Campos et al. 2010).

In this experiment, pedigree information is not available; therefore,
comparing marker vs. pedigree prediction is not possible. However,

our results can be compared with those of others who used this data
set for genomic-enabled prediction using SNP arrays (e.g., Crossa et al.
2010; González-Camacho et al. 2012; Windhausen et al. 2012). In our
study, prediction accuracy using GBS data for GY under WW con-
ditions ranged from 0.544 to 0.624, depending on the model and
depending on whether GBS data were imputed. Windhausen et al.
(2012) used 55,000 SNPs and experiment 2 data with the GBLUP
model, and achieved a prediction accuracy of 0.50 for GY in optimum
environments. Crossa et al. (2010), using experiment 2 with only 1148
SNPs, reported predictions of approximately 0.51 for GY-WW for
RKHS, Bayesian-LASSO, and GBLUP; however, González-Camacho
et al. (2012), using experiment 2 data with 55,000 SNPs, obtained
predictions of approximately 0.55 for GY-WW using linear and non-
linear models. Regardless of the prediction model, GBS information
seemingly performs better than other genotyping platforms with or
without imputation for traits under WW conditions.

In experiment 2, the prediction accuracy of GY under stressed
conditions ranged from 0.373 to 0.4541, depending on whether GBS
data were imputed and depending on the statistical model used. These
correlations are considerably lower than those obtained under WW
conditions and are consistent with previously reported results for this
trait under these conditions. For instance, using this same data set but
only 1,148 SNPs, Crossa et al. (2010) found prediction accuracies
ranging from 0.42 to 0.45 for GY-SS.

Part of the differences across studies may be attributable to the
specifics of the validation designs used; however, the similarities of
results across traits, environmental conditions, and studies allow us to
conclude that, at a minimum, prediction accuracy with GBS-imputed

Figure 3 Plots of the predictive correlation for each of 50 cross-
validation partitions for grain yield (GY) in the severe drought
environment (SS; GY-SS) of experiment 2. When the best model is
reproducing kernel Hilbert spaces regression with genotyping-by-
sequencing (GBS) imputation from short haplotypes (RKHSIMS), this is
represented by s; when the best model is genomic best linear un-
biased predictors with imputed GBS from short haplotypes (GBLU-
PIMS), this is represented by d. The histograms depict the
distribution of the correlations in the testing set obtained from the
50 cross-validation partitions for two models. The horizontal and ver-
tical dashed lines represent the averages of the correlations for the
testing sets in the 50 cross-validation partitions for the models shown
in the Y axis and in the X axis, respectively. The solid line represents
Y = X (when both models have the same prediction ability).

Figure 4 Plots of the predictive correlation for each of 50 cross-
validation partitions for grain yield (GY) in the severe stress environ-
ment (SS; GY-SS) of experiment 2. When the best model is reproducing
kernel Hilbert spaces regression with genotyping-by-sequencing
(GBS) imputation from short haplotypes (RKHSIMS), this is repre-
sented by d; when the best model is reproducing kernel Hilbert
spaces regression with GBS imputation from long haplotypes
(RKHSIML), this is represented by s. The histograms depict the dis-
tribution of the correlations in the testing set obtained from the 50
cross-validation partitions for two models. The horizontal and vertical
dashed lines represent the averages of the correlations for the test-
ing sets in the 50 cross-validation partitions for the models shown in
the Y axis and in the X axis, respectively. The solid line represents Y = X
(when both models have the same prediction ability).
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data are on par with that of 55,000 SNPs, with the advantage that GBS
data are less expensive.

Parametric vs. semi-parametric methods
In our study, we compared two ways of incorporating GBS data into
models: parametric method (GBLUP) and semi-parametric method
(RKHS). In general, no single method appeared to be clearly superior.
Overall, in models using GBS data only (i.e., without pedigree infor-
mation), RKHS performed slightly better than GBLUP, with the only
exception of GY under WW conditions in experiment 2. However,
when GBS data were combined with pedigree information, prediction
accuracy increased and the difference between the methods (GBLUP
vs. RKHS) diminished. Overall, our results are in agreement with
those of other authors who reported only small differences in the
predictive performance of different statistical methods (Heslot et al.
2012). However, still other authors (Crossa et al. 2010; González-
Camacho et al. 2012) have found differences across methods depend-
ing on the genetic architecture of the trait and depending on marker
density. In many previously published studies, low marker density was
pointed out as a possible reason for the lack of differences across
methods; essentially, poor LD between markers and QTL at low
marker density acts as a factor limiting overall prediction accuracy
and the ability of each method to express its potential. Here, we have
much higher density; however, because of the large proportion of
imputed genotypes, rapid LD decay and weak LD between GBS-
derived markers and causal loci may limit overall prediction accu-
racy and the ability for each of the models to show differences.

Including all pairwise (or higher-order) interactions among
markers in linear models continues to be a difficult problem because
there are thousands of cryptic gene · gene interactions with very small
effects. Although parametric linear regression imposes a linear rela-
tionship between markers and phenotype, nonparametric models do
not impose any assumptions on the phenotype–genotype relationship,
therefore making it possible to capture interactions among loci. The
results of this study using GBS in two maize data sets show that linear
regression and nonparametric models provided similar prediction
correlations for most trait–environment combinations, except for
GY under drought conditions (GY-SS), in which GBLUP predictions
were lower than those from RKHS. However, this trend changed un-
der WW conditions (GY-WW), in which both models performed very
similarly in terms of prediction accuracy.

CONCLUSIONS
Our results indicate that prediction of the performance of inbred
maize lines using GBS data combined with pedigree information
outperforms the prediction accuracy of pedigree-based methods and,
at a minimum, can yield prediction accuracies comparable to those
obtained with low-density to mid-density SNP arrays. The relatively
low cost of GBS data further makes GBS a competitive alternative for
improving the efficiency of breeding programs. Regarding the models,
we found no clear differences in the prediction accuracy of the two
models; however, even though RKHS was slightly better than GBLUP
when using GBS alone, both models performed similarly with pedigree
information. Dealing with missing genotypes poses an important
challenge when using GBS data, and in this study we propose several
ways of confronting that challenge. Results of this study indicated that
prediction based on imputed SNPs and/or inferred haplotypes does
not significantly improve predictions based on nonimputed SNPs.
Further research is needed to develop and calibrate effective
imputation methods for GBS data and to compare their predictive
ability with those of models that use only uncalled GBS.
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APPENDIX A
n Table A1 Number of doubled-haploid lines in each cross (P1·P2) and backcross, and pedigree of the eight parents
(A, B, C, D, E, F, G, and H) included in experiment 1

Size P1 P2 BC Parent Pedigree

64 A B B A La Posta Seq C7-F96-1-2-1-1-B-B-B-B
78 A C C B CML395 (IITA)
29 A D D C CML444 (population 43 cycle 9)
37 E F F D CML488 (CIMMYT-ZIMBABWE line)

108 E B B E La Posta Seq C7-F71-1-2-1-2-B-B-B-B
83 E C C F MAS[MSR/312]-117-2-2-1-B�4-B-B-B
29 E D D H La Posta Seq C7-F102-1-3-1-2-B-B-B-B
49 G B B G [M37W/ZM607#bF37sr-2-3sr-6-2-X]-8-2-X-1-BB-B-xP84c1

F27-4-3-3-B-1-B] F29-1-2-2 · [KILIMA ST94A]-30/MSV-03-
101-08-B-B-1xP84c1 F27-4-1-4-B-3-B] F2-1-2-1-1-1-B ·
CML486]-1-1-B

9 H B B
18 H D D

Statistical models
The methods used in this study (including pedigree methods), GBLUP, and RKHS can all be cast within a general class of Gaussian random
effects models. The general form of these models can be described as follows:(

yi ¼ gi þ ei

ei �iid Nð0;s2
e Þ;

[1]

where yi is the phenotype of the ith individual (i=1,. . .n), gi is a genetic value, and ei represents model residuals, all following the same normal
distribution. For ease of notation, we have ignored the intercept and other nongenetic effects. Extensions used to accommodate nongenetic
effects are straightforward.

In the model described in equation [1], the separation of signal ðgiÞ from noise ðeiÞ is achieved by assigning different distributions to the
vector of model residuals and the vector of genetic values. All the models used in this study share the sampling model described by equation [1].
In vector notation, we have

pðy��g;s2
e Þ ¼ Nðy��g; Is2

e Þ; [2]

where y ¼ fyig  and   g ¼ fgig are vectors of phenotypes and genetic values, respectively. However, the different models differ regarding the
prior probability distributions assigned to genetic values. In its most general formulation, and following the study by de los Campos et al.
(2010), the vector of genetic values can be represented as the sum of Nk random effects as follows

g ¼
XNk

k¼1

gk; [3]

where each of these random effects follow independent normal distributions of the form

gk � Nð0;s2
gkKkÞ; [4]

where Kk is the n·n covariance matrix computed either from markers or from pedigree. Combining expressions [2] through [4], we find that
the joint distribution of the phenotypes and of the random effects is given by

pðy; g1; :::; gNk

��s2
e ;s

2
g1 ; ::;s

2
gNk

Þ¼ N

 
yj
XNk

k¼1

gk; Is
2
e

!YNk

k¼1

N
�
gk
��0;Kks

2
gk

�
; [5]

The fully Bayesian model is completed by assigning a prior density for variance parameters. Following the standard assumption, we assigned
scaled-inverse chi-squared densities to each of the variance parameters

p
�
y; g1; :::; gNk

;s2
e ;s

2
g1 ; ::;s

2
gNk

���H�¼ N

 
yjPNk

k¼1
gk; Is

2
e

!
x22

�
s2
e

��dfe; Se�
·
QNk

k¼1
N
�
gk
��0;Kks

2
gk

�
x22

�
s2
gk

���dfk; Sk�;
[6]
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where H denotes all hyperparameters indexing the prior probability distributions. The models used in this study are all special cases of the model
described in equation [6]. Table A2 lists all models used, the number of random effects included in each model, and the covariance matrices used.

COMPUTATION OF COVARIANCE MATRICES

Pedigree model
In the pedigree model, the matrix A is a numerator relationship matrix (twice the matrix of kinship coefficients) computed from a pedigree.

GBLUP
In standard GBLUP (VanRaden 2007, 2008), the entries of the genomic relationship matrix, Gii9, represent proportions of allele sharing between
pairs of individuals (ii9), realized at markers. Commonly, these are computed using cross-products of marker genotypes of the form

Gii9¼
Pp

j¼1

�
xij 2 qj

��
xi9j 2 qj

�
Pp

j¼1qj
�
12 qj

� ; [7]

where xij 2 f0; 1g represents the marker covariates (i=1,...,n individuals and j=1,...,p markers) and qj is the estimated allele frequency
computed from nonmissing genotypes. Let zij ¼ xij 2 qj;    i ¼ 1; :::; n; j ¼ 1; :::; p; then, equation [7] in matrix notation can be expressed
as G ¼ ZZ9=

Pp
j¼1qjð12 qjÞ. This formulation assumes that all genotypes are available. With GBS data, there is a large proportion of marker

genotypes that are missing. To circumvent this problem we considered imputation, but even after imputation uncalled genotypes were still
present, so the missing genotypes were replaced by their expected values and the proportion of missing genotypes for each individual was
taken into account using a modified version of equation [7] given by VanRaden (2008):

G ¼ WZZ9WP
j¼1

p
qjð12 qjÞ

; [8]

where W is a diagonal matrix whose entries are given by wii ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j¼1

p

qjð12 qjÞP
j2Si

qjð12 qjÞ

vuuut where Si denotes the set of markers for which genotypes were
observed at individual i.

Reproducing kernel Hilbert spaces models with kernel averaging
In this implementation, we used three random effects. The covariance structures used were computed by means of a Gaussian kernel; therefore,
the (ii9) of the kernels were given by Kk;ii9¼expf2 hkd2ii9g, where hk is a bandwidth parameter peculiar to the kth reproducing kernel and d2ii9 is
the genetic distance between lines i and i9 computed as follows: d2ii9 ¼

Pp
j¼1ðxij2xi9jÞ2. The bandwidth parameters were chosen to have an

extremely local kernel (i.e., one in which the covariance function declines very fast as genetic distance increases), one intermediate kernel, and
one kernel in which the covariance function gives a high degree of resemblance even between distantly related lines. Specifically, we chose
h1 ¼ 5=q0:05;       h2 ¼ 1=q0:05;     h3 ¼ 1 =

5

q0:05
, where is the fifth percentile of d2ii9.

As with GBLUP, the computation of the Gaussian kernel requires observed marker genotypes at pairs of lines. With GBS, several marker
genotypes are missing and, even after imputation, uncalled genotypes are still present. To cope with missing genotypes, the computation of
distances was based only on observed genotypes, that is: ~d

2
ii9 ¼

P
j2Sii9 ðxij2xi9jÞ2=pii9 where pii9 represents the number of observed genotypes for

lines i and i9.

Implementation
Samples from the posterior distribution, equation [6], were obtained using the Gibbs sampler described by de los Campos et al. (2010). The
software was implemented in R (R Core Team 2013) and is available on request. The degree-of-freedom parameters of the scaled inverted chi-
squared distributions were 5, and the scale parameters were chosen to match a heritability of 0.5, that is: Se ¼ 0:5 · ðdf 2 2ÞVy and
Sk ¼ 0:5 · ðdf 2 2ÞVy

Nk
; where Vy is the sample variance of fyi; i ¼ 1; :::; ng. Posterior means were estimated using 30,000 samples obtained after

discarding 5000 that were taken as burn-in.

n Table A2 Models, number of random effects for each model, and covariance matrices associated with the
random effects

Model Number of Random Effects ðNkÞ Covariance Matrices

Pedigree 1 A
GBLUP 1 G
PGBLP 2 A, G
RKHS 3 K1, K2, K3

PRKHS 4 K1, K2, K3, A

A, numerator relationship matrix derived from a pedigree; G, genomic relationship matrix derived from either imputed markers using cross-
products of marker genotypes; Kk (k = 1, 2, 3), Gaussian kernel computed from marker genotypes.
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Figure B1 (A and B) Graphs of the box plot of r2 and linkage disequilibrium decay at different marker distances in the (A) 504 DH maize lines
(experiment 1) and (B) 296 maize lines (experiment 2). The r2 and linkage disequilibrium decay are shown at different marker distances for
chromosome 1.
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Figure B2 (A and B) Graphs of the box plot of r2 and linkage disequilibrium decay at different marker distances in the (A) 504 DH maize lines
(experiment 1) and (B) 296 maize lines (experiment 2). The r2 and linkage disequilibrium decay are shown at different marker distances for
chromosome 2.
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Figure B3 (A and B) Graphs of the box plot of r2 and linkage disequilibrium decay at different marker distances in the (A) 504 DH maize lines
(experiment 1) and (B) 296 maize lines (experiment 2). The r2 and linkage disequilibrium decay are shown at different marker distances for
chromosome 3.
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Figure B4 (A and B) Graphs of the box plot of r2 and linkage disequilibrium decay at different marker distances in the (A) 504 DH maize lines
(experiment 1) and (B) 296 maize lines (experiment 2). The r2 and linkage disequilibrium decay are shown at different marker distances for
chromosome 4.
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Figure B5 (A and B) Graphs of the box plot of r2 and linkage disequilibrium decay at different marker distances in the (A) 504 DH maize lines
(experiment 1) and (B) 296 maize lines (experiment 2). The r2 and linkage disequilibrium decay are shown at different marker distances for
chromosome 5.
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Figure B6 (A and B) Graphs of the box plot of r2 and linkage disequilibrium decay at different marker distances in the (A) 504 DH maize lines
(experiment 1) and (B) 296 maize lines (experiment 2). The r2 and linkage disequilibrium decay are shown at different marker distances for
chromosome 6.
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Figure B7 (A and B) Graphs of the box plot of r2 and linkage disequilibrium decay at different marker distances in the (A) 504 DH maize lines
(experiment 1) and (B) 296 maize lines (experiment 2). The r2 and linkage disequilibrium decay are shown at different marker distances for
chromosome 7.
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Figure B8 (A and B) Graphs of the box plot of r2 and linkage disequilibrium decay at different marker distances in the (A) 504 DH maize lines
(experiment 1) and (B) 296 maize lines (experiment 2). The r2 and linkage disequilibrium decay are shown at different marker distances for
chromosome 8.

1924 | J. Crossa et al.



Figure B9 (A and B) Graphs of the box plot of r2 and linkage disequilibrium decay at different marker distances in the (A) 504 DH maize lines
(experiment 1) and (B) 296 maize lines (experiment 2). The r2 and linkage disequilibrium decay are shown at different marker distances for
chromosome 9.
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Figure B10 (A and B) Graphs of the box plot of r2 and linkage disequilibrium decay at different marker distances in the (A) 504 DH maize lines
(experiment 1) and (B) 296 maize lines (experiment 2). The r2 and linkage disequilibrium decay are shown at different marker distances for
chromosome 10.
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