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Higher levels of taxonomic and evolutionary diversity are expected to maximize 80 

ecosystem function, yet their relative importance in driving variation in ecosystem 81 

function at large scales in diverse forests is unknown. Using 90 inventory plots 82 

across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 83 

526 angiosperm genera, we investigated the association between taxonomic and 84 

evolutionary metrics of diversity and two key measures of ecosystem function - 85 

aboveground wood productivity and biomass storage. While taxonomic and 86 

phylogenetic diversity were not important predictors of variation in biomass, both 87 

emerge as independent predictors of wood productivity. Amazon forests that contain 88 

greater evolutionary diversity and a higher proportion of rare species have higher 89 

productivity. Whilst climatic and edaphic variables are together the strongest 90 

predictors of productivity, our results demonstrate that the evolutionary diversity of 91 

tree species in diverse forest stands also influences productivity. As our models 92 

accounted for wood density and tree size, they also suggest that additional, 93 

unstudied, evolutionarily correlated traits have significant effects on ecosystem 94 

function in tropical forests. Overall, our pan-Amazonian analysis shows that greater 95 

phylogenetic diversity translates into higher levels of ecosystem function: tropical 96 

forest communities with more distantly related taxa have greater wood productivity.  97 
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Main text 98 

Higher levels of taxonomic and phylogenetic diversity play important and 99 

independent roles in determining ecosystem function1–3. In experimental studies of 100 

temperate grasslands, higher levels of taxonomic and evolutionary diversity are 101 

associated with greater biomass and productivity2–4. In particular, the structure of 102 

evolutionary diversity, measured by the variability in evolutionary history shared 103 

within a group of species, is often a better predictor of productivity than the number 104 

of species2–4, consistent with the hypothesis that evolutionary dissimilarity is related 105 

to niche complementarity1–5. However, although the results of a range of biodiversity 106 

experiments2–7 suggest that communities with distantly related lineages have greater 107 

carbon stocks and productivity, the effect of phylogenetic diversity on measures of 108 

ecosystem function remains controversial. Positive relationships are common, but 109 

not a rule, and negligible effects of evolutionary diversity on productivity and biomass 110 

have been reported in some cases8,9. Therefore, it is still unclear whether these 111 

relationships can be generalised, and the extent to which evolutionarily diverse 112 

communities maximize function is unknown, particularly at large scales relevant to 113 

conservation planning. 114 

The total amount of phylogenetic diversity represented by species within a 115 

community may be valuable for understanding how diversity affects ecosystem 116 

function because these properties tend to reflect variation in the functional diversity 117 

of these communities. This is because evolutionary relationships can capture 118 

information about multiple traits5,10–12, including those that are difficult to measure. 119 

For instance, in an experimental study of grassland communities, evolutionary 120 

diversity was a better predictor of productivity than some easily measured, or ‘soft’, 121 

functional traits (e.g. specific leaf area, seed weight and height), suggesting that 122 
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unmeasured traits that are significantly related to phylogenetic relationships, such as 123 

root architecture, root morphology, resource requirements or other critical functional 124 

differences, could contribute to maximizing productivity3. Evolutionary diversity 125 

metrics that encompass the full breadth of functional diversity may be more 126 

informative about how much species contribute to ecosystem function, particularly in 127 

hyperdiverse communities such as tropical forests where the links between soft 128 

traits, such as specific leaf area and wood density13,14, and ecosystem functions, 129 

such as productivity, are typically weak15. 130 

The evolutionary diversity of a community can be measured in different ways to 131 

reflect distinct aspects of biodiversity11,16,17, and these metrics may all relate in 132 

different ways to variation in functional traits, life-history strategies, and, as a result 133 

ecosystem function2,3,5,18. Phylogenetic diversity (PD) is the sum of the total 134 

evolutionary history, or amount of the tree of life present in a given community and is 135 

quantified as the sum of the branch lengths, which are measured in units of time, 136 

from a phylogeny that represents all species in a given community (total lineage 137 

diversity)16. A second aspect of evolutionary diversity is the extent to which 138 

communities are dominated by closely related species (neighbour lineage diversity), 139 

which can be quantified by mean nearest taxon distance (MNTD)11,12. Finally, 140 

another dimension of the evolutionary history of a community is whether it contains a 141 

balanced proportion of the major lineages of organisms (basal lineage diversity)19,20, 142 

which can be represented by the mean phylogenetic distance (MPD) between all 143 

pairs of species11. MPD is strongly affected by branch lengths at the deepest nodes 144 

of the phylogeny and the relative abundance of major clades in the community20. All 145 

of these metrics attain higher values in communities comprised of more distantly 146 

related individuals. 147 
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Amazonian forests provide an ideal context for exploring the link between tree 148 

diversity and ecosystem functioning because these forests include some of the most 149 

species-rich ecosystems on earth21 and contain a wide variety of angiosperm 150 

lineages20. They also play a key role in regulating planetary biogeochemical cycles, 151 

including fixing as much carbon annually as the human economy emits globally22, 152 

and storing an order of magnitude more23. Here, we construct a pan-Amazon 153 

angiosperm phylogeny and use this in conjunction with data from 90 long-term 154 

monitoring plots across Amazonia (Figure 1) to investigate the relationships between 155 

tree diversity and ecosystem function. We investigate the role of taxonomic and 156 

evolutionary diversity in promoting aboveground wood productivity (hereafter 157 

productivity) and aboveground biomass (hereafter biomass). 158 

Evolutionary diversity was estimated as total, neighbour and basal lineage diversity. 159 

As these metrics show strong relationships with the total taxonomic richness of 160 

communities20,24, the effect of which we were also interested in estimating, we 161 

calculated the degree to which communities show greater or less PD, MPD and 162 

MNTD than expected given their richness (i.e. standardized phylogenetic diversity 163 

metrics)17. Taxonomic richness and diversity were estimated as the sum of identified 164 

genera per area, Shannon diversity, Simpson Index and Fisher’s alpha. Because 165 

taxonomic and standardized phylogenetic diversity metrics represent different 166 

dimensions of biodiversity17, with genus richness being decoupled from evolutionary 167 

diversity (i.e. gains in richness are poor predictors of gains in phylogenetic 168 

diversity)24, we expect that they may have independent effects on ecosystem 169 

function. Changes in taxonomic diversity influence the number of functionally distinct 170 

lineages present in a community, which may influence ecosystem function via either 171 

sampling effects or complementarity. As the degree of evolutionary relatedness 172 
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among tropical tree species reflects similarity in their ability to process and store 173 

carbon (i.e. closely related taxa have more similar wood density, potential tree size, 174 

growth and mortality rates)10, we expect that communities with greater evolutionary 175 

diversity may maximize productivity and carbon storage due to complementarity in 176 

resource use. As evolutionary diversity may summarize information about a wide 177 

range of traits, species richness and composition in a single index5, we hypothesize 178 

that evolutionary diversity would be a stronger predictor of ecosystem function than 179 

taxonomic measures of diversity2. 180 

As environmental factors25,26, stand structure and mean functional composition 181 

(number of stems, wood density and potential tree size)15 are also associated with 182 

both productivity and biomass, we account for variation in these factors in all our 183 

analyses using available climate data27, locally collected soil data28 and stand 184 

structural and functional characteristics10,29. We explore the effects of taxonomic and 185 

evolutionary diversity metrics on ecosystem function using partial correlations, and in 186 

linear models of productivity and biomass that account for the influence of climate, 187 

soil, forest structure and functional composition, as these variables might obscure 188 

any underlying effect of diversity on ecosystem function (see Methods for details). 189 

We focus our results and discussion on the influence of standardized phylogenetic 190 

diversity metrics17,30 and on two common taxonomic metrics of diversity: taxon 191 

richness and Simpson Index. Taxon richness was chosen because it is widely used 192 

in comparative studies and Simpson Index because it was included in the best model 193 

that explained the greatest variance in the data. Analyses incorporating Shannon 194 

Index, Fisher’s Alpha and raw phylogenetic diversity metrics gave broadly similar 195 

results and are presented in the supplementary information. All the analyses were 196 

conducted at the genus-level due to the resolution of the phylogeny. 197 
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Results 198 

Individually, both taxonomic and evolutionary measures of diversity showed strong 199 

positive, bivariate relationships with productivity (Figure 2; Supplementary Table 3). 200 

Because climate, soil, forest structure, functional composition and spatial 201 

autocorrelation might obscure the underlying effect of diversity on wood productivity 202 

we also controlled for variation in these variables by including them as model 203 

covariates. Using linear models, we found that the best statistical model of 204 

productivity (based on AIC values) contained both evolutionary (sesMNTD) and 205 

taxonomic (Simpson index) measures of diversity (R2 = 0.47; ΔAIC = -2.5 in relation 206 

to the model excluding both taxonomic and evolutionary diversity metrics; Figure 3; 207 

Table 1). This shows that these metrics reflect distinct aspects of diversity that are 208 

both important for understanding patterns of productivity (Supplementary Figure 10). 209 

Partial correlation analysis produced similar results to the model selection approach 210 

(Supplementary Table 4): sesMNTD (τ=0.15; p=0.044) and Simpson’s index (τ=0.15; 211 

p=0.046) both showed significant partial correlations with productivity after 212 

accounting for other variables (Supplementary Table 4). In contrast, genus richness 213 

had no effect on productivity after accounting for environmental and structural 214 

factors, using either the model selection approach (p=0.51) or partial correlation 215 

analysis (p=0.57) (Table 1, full coefficients from the models are shown in Appendix 216 

4). 217 

Climatological and soil variables were also associated with variation in productivity 218 

(Figure 3; Supplementary Figure 4 and Supplementary Table 4). Mean annual 219 

temperature, climatic water deficit, soil total phosphorus, magnesium, and potassium 220 

were all associated with productivity25 (Figure 3), with higher rates of wood growth 221 

typical of areas in the western Amazon with low water deficit and greater nutrient 222 
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availability (i.e. total phosphorus and magnesium). Although the standardized effect 223 

size of some environmental variables, such as water deficit, was large, the effect 224 

sizes of biodiversity variables in the best model were similar to some other individual 225 

environmental variables commonly considered to control variation in productivity in 226 

tropical forests, such as soil phosphorus concentrations (Figure 3; Supplementary 227 

Table 4). 228 

Bivariate correlations indicated significant negative associations between biomass 229 

and all diversity metrics (Supplementary Figure 5; Supplementary Table 3). 230 

However, biodiversity and biomass were almost completely unrelated after 231 

accounting for variation in climate, soil, forest structure and mean functional 232 

composition (Figure 3; Supplementary Table 5), in contrast to the positive, significant 233 

biodiversity-productivity relationships (Supplementary Table 4). Instead, biomass 234 

was largely determined by variation in wood density (Figure 3 and Supplementary 235 

Figure 7; Supplementary Table 5). The model selection approach also suggested 236 

that variation in temperature, stem density and magnesium concentration had a 237 

small, significant effect on biomass (Figure 3; Appendix 4), but these results were 238 

not supported by the partial correlation analysis (Supplementary Table 5). 239 

Discussion 240 

This study demonstrates that there is a positive, small and significant effect of both 241 

taxonomic (Simpson Index) and evolutionary (sesMNTD) measures of diversity on 242 

wood productivity, but not aboveground biomass, in tree communities across 243 

lowland, terra firme, Amazonian forests, after accounting for the influence of 244 

environmental factors, stand structural variables and spatial autocorrelation (Figures 245 

2 and 3; Table 1; Supplementary Table 4). Although the effects of diversity on 246 

productivity were small, the strength of these effects was similar to previous studies 247 
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at small experimental scales in grassland ecosystems2–4 and is comparable to the 248 

effect of some environmental variables within this analysis, such as soil phosphorus 249 

(Figure 3). 250 

A range of mechanisms may underlie the significant relationships between neighbour 251 

lineage diversity (sesMNTD), Simpson index and productivity (Figure 2, Table 1 and 252 

Supplementary Table 4) including both sampling effects (i.e. the presence of 253 

particular species with relevant functional traits within a community) and functional 254 

complementarity. In general, the contribution of sesMNTD and Simpson index to 255 

explaining variation in productivity, even after accounting for two major stand 256 

structural attributes (wood density and tree size), suggests that among lineages, 257 

there are additional functional characteristics that are related to phylogenetic 258 

relationships among taxa that promote productivity within plots. Since the 259 

evolutionary relationships among species tend to reflect their similarity in functional 260 

traits10,31,32 and because evolutionary diversity explicitly incorporates species 261 

differences, the effect of sesMNTD on productivity is likely to be a result of increased 262 

functional complementarity among lineages1,2. Higher values of the Simpson index, 263 

which indicate a more even distribution of abundances among genera33, may also 264 

increase niche complementarity. Alternatively, the weak positive effects of sesMNTD 265 

and Simpson index on productivity could be due to sampling effects, but this is 266 

unlikely as tropical forests are sufficiently diverse at the 1 ha plot scale such that 267 

sampling effects saturate; these diverse forests comprise taxa from the entire 268 

phylogeny at this scale, and include genera that have both fast and slow 269 

demographic traits26. Moreover, lineages that contribute disproportionately to the 270 

diversity/productivity relationship8 are scattered across the phylogeny and there is no 271 

phylogenetic signal for the contribution of different lineages to the effect of Simpson 272 
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Index or sesMNTD on wood productivity (see Supplementary text and 273 

Supplementary Figure 12). These results suggest that greater phylogenetic diversity 274 

is not related to a higher probability of sampling functionally dominant lineages that 275 

would in turn disproportionally contribute to the relationship between evolutionary 276 

and taxonomic diversity, and productivity. Because of this, complementarity appears 277 

to be the most likely mechanism to explain the positive biodiversity effects we 278 

observe (see Supplementary Information for further analyses and discussion).  279 

One potentially key unmeasured trait that may underlie an increase in functional 280 

complementarity and productivity in more diverse communities is variation in canopy 281 

structure. Canopy structure is a key determinant of productivity in temperate forests34 282 

and experiments with young trees35 demonstrate that mixtures of species with 283 

complementary crown morphologies and branching patterns have denser 284 

canopies35–37, because species distribute their branches and leaves in 285 

complementary height layers of the canopy. As a result, both light interception and 286 

productivity are enhanced36. In Amazonian forests, there is a wide range of canopy 287 

architecture among species and complementarity in crown shape may enable trees 288 

to utilize canopy space more efficiently. For example, for 2457 trees in Madre de 289 

Dios in the Peruvian Amazon38,39 crown architecture varies widely among families 290 

(Supplementary Figure 8). Differences in crown architecture among genera from 291 

different families may enhance canopy space filling and resource uptake. There may 292 

also be variation among communities in other unstudied, evolutionarily correlated 293 

traits such as below ground resource allocation, tree height/diameter allometry, 294 

hydraulic traits or functional groups (e.g. nitrogen/non-nitrogen fixers) that may affect 295 

productivity. 296 
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The effect of sesMNTD and Simpson index on productivity could also reflect 297 

pathogen dilution in more diverse communities. Host ranges of most tree pests and 298 

pathogens show a clear phylogenetic signal, with co-occurring, closely related plant 299 

lineages being more vulnerable to similar natural enemies than distant relatives40,41. 300 

A community with greater sesMNTD (i.e. comprising more distantly related lineages) 301 

is therefore expected to be less susceptible to disease pressure41, and thus needs 302 

fewer resources invested in defence, which in turn allows faster growth rates42. In 303 

tropical regions, where strong conspecific negative density dependence is observed, 304 

individual trees tend to have lower performance (e.g. growth and survival) when 305 

growing near closely related neighbours43. At the community level, a species may 306 

therefore perform better in forests that contain fewer close relatives. Similar 307 

arguments may also apply to communities with higher values of Simpson’s index: a 308 

greater proportion of rare species may reduce the probability of an individual tree 309 

being attacked by species-specific pathogens and/or herbivores, and increase 310 

community-level productivity. 311 

The similar, but independent, effects of taxonomic and phylogenetic diversity for 312 

explaining variation in productivity is contrary to our initial prediction. Perhaps both 313 

variation in the relative abundance distribution among communities, best captured by 314 

Simpson’s index, and the functional distinctiveness of taxa, best captured by 315 

sesMNTD, are important for determining the strength of functional complementarity 316 

within communities. In contrast, a recent subtropical biodiversity experiment found 317 

that phylogenetic diversity did not explain additional variation in rates of carbon 318 

accumulation, compared to measures of taxonomic diversity44. However, both the 319 

metrics of phylogenetic diversity and the overall level of diversity of the communities 320 

in the experimental study differ from our pan-Amazon study. Understanding the 321 
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specific functional differences among genera within a community that contribute to 322 

maximizing productivity in diverse tropical forests is an important area for further 323 

research, to strengthen the links between causative mechanisms and the 324 

correlations that we report here. 325 

Both taxonomic and evolutionary diversity had no effect on aboveground biomass in 326 

intact forests in Amazonia. These results are supported by a previous pan-tropical 327 

study that used an overlapping dataset to investigate the role of taxonomic diversity 328 

on biomass26, and a recent study that investigated the role of evolutionary diversity 329 

on biomass during forest succession and found that despite a positive effect of 330 

phylogenetic diversity on biomass in early successional forests, there is no effect at 331 

later stages of forest succession45. Not surprisingly, but contrary to the positive effect 332 

of taxonomic and evolutionary diversity on productivity, biomass was strongly 333 

determined by functional characteristics (Figure 3; Supplementary Table 5), with 334 

variation in wood density being the most important variable in controlling patterns of 335 

biomass in these forests15,26,46. To a much lesser extent and consistent with previous 336 

findings47, the number of stems had a marginal and positive effect on biomass 337 

(Figure 3). These results corroborate a recent meta-analysis in tropical forests, which 338 

found that stand structural (e.g. number of stems) and community mean functional 339 

trait (e.g. wood density) variables are more important than taxonomic diversity for 340 

predicting variation in biomass48. In general, as variation in stem mortality rates is a 341 

better predictor of variation in stand biomass among plots than productivity49 and 342 

tree death is a highly stochastic process50, any positive effect of tree diversity on 343 

biomass through increased productivity is likely obscured by the impact of variation 344 

in stem mortality rates among plots. 345 
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Overall, our results suggest that multiple facets of diversity have a small, positive 346 

effect on present-day functioning of the world’s largest tropical forest. In particular, 347 

this study provides evidence that evolutionary diversity is weakly, but significantly, 348 

related to ecosystem functioning at large scales in natural ecosystems. While 349 

evolutionary diversity has previously been suggested as a factor to consider in the 350 

identification of priority areas for conservation because of its role in enhancing 351 

ecosystem function2–5, this study provides quantitative evidence for this assertion in 352 

tropical forests. Our results therefore indicate that there is a synergy between 353 

preserving diverse forests that encompass greater evolutionary heritage, and 354 

protecting ecosystem function. 355 

Methods 356 

Tree community data 357 

To investigate the relationship between biodiversity and ecosystem functioning, we 358 

estimated diversity, wood productivity and aboveground biomass using data from 90 359 

long-term forest inventory plots in the Amazon and adjacent lowland forests from the 360 

RAINFOR (Amazon Forest Inventory) network (Figure 1; Appendix 1). Data were 361 

extracted from the ForestPlots.net database, which curates tree-by-tree records from 362 

RAINFOR and other networks51,52. Plots were all 1 ha in size (except for two plots of 363 

0.96 ha) and located in structurally intact and old-growth closed-canopy forest. Our 364 

analyses were restricted to continuous lowland, terra firme, moist Amazonian forests, 365 

- excluding plots in montane, swamp, seasonally dry and white-sand forests, and 366 

savannas. The ecological characteristics that influence resource uptake and thus 367 

underlie any potential relationship between ecosystem function and phylogenetic 368 

diversity may differ widely among biomes with distinct evolutionary histories53. For 369 
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example, clades restricted to areas outside moist forests may have evolved very 370 

different unmeasured traits (e.g. higher root:shoot ratios to tolerate drought), which 371 

could lead to different relationships between evolutionary diversity and ecosystem 372 

function in comparisons across biomes. Restricting our analyses to a single biome 373 

and therefore a relatively coherent pool of genera, with similar evolutionary histories 374 

and proven ability to disperse and mix across Amazonia over geological 375 

timescales54, allowed us to limit the potentially confounding effect of large, cross-376 

biome differences in phylogenetic composition on the relationship between diversity 377 

and ecosystem function. 378 

Plots were established between 1975 and 2010 and monitored for an average 16.1 379 

years in total (range 2.0 to 28.6 years), with regular recensuses. All trees and palms 380 

with diameter at breast height (dbh) greater than 10 cm were included in the 381 

analyses. In the dataset, all recorded species and genus names were checked and 382 

standardized using the Taxonomic Name Resolution Service55. Across all plots 383 

94.9% of stems were identified to the genus level, with a minimum of 70% identified 384 

to genus per plot. We excluded all individuals not identified to genus-level (5.1%) 385 

from biodiversity metric calculations. 386 

Phylogenetic tree 387 

To calculate metrics of evolutionary diversity, we constructed a large pan-Amazon 388 

phylogeny, including 526 genera based on two chloroplast DNA gene regions: rbcL 389 

and matK, following protocols from Gonzalez et al.56. Full details of the temporally 390 

calibrated, ultrametric phylogeny construction can be found in the Supplementary 391 

Material. Our analyses included only those genera where we have phylogenetic 392 

data: 90.4% of the total number of genera in the plots, which encompass 98.0% of all 393 

identified stems. 394 
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Biodiversity metrics 395 

To represent the different aspects of biodiversity, we calculated ten genus-level 396 

diversity metrics, including taxonomic diversity indices and metrics that incorporate 397 

the evolutionary history within communities (Supplementary Table 1). Because 398 

different metrics can reflect similar dimensions of diversity17 (Supplementary Figure 399 

10) we present, in the main text, the results from five diversity metrics: (1) taxonomic 400 

richness, a common and widely used diversity metric, here evaluated as the sum of 401 

all identified genera in a given community; (2) Simpson index of diversity, a common 402 

diversity metric that incorporates genus abundance, representing the probability that 403 

two stems randomly selected from a community belong to different genera; (3) total 404 

lineage diversity, the standardized effect size of phylogenetic diversity (sesPD), 405 

estimated as the sum of all branch lengths including genera within a community16, 406 

whilst controlling for the effect of genus richness; (4) neighbour lineage diversity, 407 

which is quantified as the standardized effect size of mean nearest taxon distance 408 

(sesMNTD), whilst controlling for the effect of genus richness, which is more 409 

sensitive to relatedness near to the tips of the phylogeny11,12 and (5) basal lineage 410 

diversity, which is quantified by mean pairwise distance (sesMPD)11,12, whilst also 411 

controlling for the effect of genus richness and reflects phylogenetic structure at the 412 

deepest nodes20 (see Supplementary Information for results that include all metrics). 413 

Because the null expectation for the evolutionary diversity metrics of communities 414 

(i.e. PD, MNTD and MPD) necessarily shows strong relationships with the total 415 

taxonomic richness of communities, we quantified their standardized values: the 416 

degree to which communities show greater (+) or less (-) PD, MNTD or MPD than 417 

expected given their genus richness. We calculated the standardised effect sizes, 418 

sesPD, sesMNTD and sesMPD by first generating a null expectation via randomly 419 
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shuffling genera tip labels in the phylogeny 999 times. The effect size was then 420 

calculated as the difference between the observed and expected values, the latter 421 

being the mean across randomizations, and dividing this difference by the standard 422 

deviation of values across the randomisations. These standardized metrics represent 423 

the residuals from the relationship between each evolutionary diversity metric and 424 

genus richness within each plot and allow us to identify areas with high or low 425 

evolutionary diversity whilst accounting for the effect of richness.  426 
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Wood productivity and aboveground biomass 427 

Aboveground wood productivity was estimated as the rate of gain in biomass during 428 

each census interval. Because longer census intervals increase the proportion of 429 

productivity that cannot be directly detected due to trees growing and dying during 430 

the census interval57, productivity was corrected for varying census interval lengths. 431 

Following the methodology developed by Talbot et al.58 estimates of annualized 432 

productivity per plot were computed as: i) the sum of tree growth alive in the first and 433 

in the last censuses, ii) growth of trees that recruited during the census interval, iii) 434 

estimates of unobserved growth of trees that died during the census interval and iv) 435 

estimates of unobserved trees that both recruited and died between census periods. 436 

Census-interval length is expected to affect the estimates of productivity, while plots 437 

monitored over short total census lengths are more likely to be affected by stochastic 438 

changes over time and measurement errors59. Productivity estimates were weighted 439 

by the cubic root of census-interval length (details in Supplementary Information). 440 

Aboveground biomass per stem was estimated using a pan-tropical, three parameter 441 

equation 𝐴𝐺𝐵 = 0.0673 ∗ (𝑤𝑑 𝐷2 𝐻)0.976, from Chave et al.60, where wd is the stem 442 

wood density (in g.cm3) from the Global Wood Density29,61, D is the tree diameter (in 443 

cm) at 1.3 m or above the buttress and H tree height (in m). Tree height was 444 

estimated based on regional diameter-height Weibull equations62. Similar to 445 

productivity, in order to reduce the influence of potential stochastic changes and due 446 

to variation in census interval within plots, we estimated biomass per plot using a 447 

weighted average across multiple censuses (details in Supplementary Information). 448 

We extracted wood density from the Global Wood Density database29,61.  449 
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Environmental variables 450 

Because variation in both productivity and biomass in Amazonian forests is expected 451 

to be mediated by soil and climate25, we included environmental variables as 452 

covariates in our models. For climate data, to avoid collinearity among explanatory 453 

variables, we selected mean annual temperature (MAT ºC), extracted from the 454 

WorldClim dataset at 30’ (≈ 1km) resolution27 and maximum climatic water deficit 455 

(CWD), a measure of water stress, extracted from a global gridded layer60. For soil 456 

data, we used average values for each plot, calculated at 0-30 cm depth, for soil 457 

texture, total phosphorus (mg kg-1), potassium, magnesium, calcium, and sodium 458 

concentrations (mmoleq kg-1) collated at ForestPlots.net and based on intensive soil 459 

sampling from each RAINFOR plot that used standardised field and analytical 460 

protocols25,28. Because silt, clay and sand content (%) are strongly correlated, soil 461 

texture was expressed as the first two axes of a principal component analysis (PCA). 462 

The first axis was negatively strongly related with sand content and the second 463 

negatively with clay (Supplementary Table 2). 464 

Stand structure variables 465 

We also included descriptors of stand structure as covariates in our models, 466 

including mean wood density, mean potential tree size and number of stems, all of 467 

which have been shown to shape productivity and biomass in tropical tree 468 

communities15. We extracted wood density data from the Global Wood Density 469 

database29,61 selecting data for Mexico, Central America and South America. The 470 

data were matched to each stem in the plot data at the species-level, and in cases 471 

where this information was unavailable, matched to the average of species values 472 

for that genus. We then calculated the mean wood density value across all stems in 473 

a plot. To estimate potential tree size, we used data from Coelho de Souza et al.10 474 
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spanning 577 single census plots from across Amazonia, for the potential size that 475 

each genus could achieve. These values were assigned to each individual tree 476 

based on its identity. We then derived mean potential tree size for each plot, 477 

averaged across stems. The number of stems per plot was calculated as the 478 

average number of individuals with dbh greater than 10 cm across multiple 479 

censuses. 480 

Statistical analyses 481 

To investigate the strength of the relationship between each measure of ecosystem 482 

functioning (i.e. productivity and biomass) and the set of diversity metrics in each 483 

plot, we conducted: (1) bivariate Kendall’s τ non-parametric correlation tests; (2) 484 

generalised least squares modelling (GLS) and (3) Kendall’s τ pairwise partial 485 

correlation tests. For bivariate correlations, as testing the relationships for the range 486 

of biodiversity metrics involved ten tests for each dependent variable, P-values were 487 

adjusted for multiple comparisons using the false discovery rate63 (Supplementary 488 

Table 3). 489 

Environmental variables also influence the diversity of an ecosystem20,64 and its 490 

ability to process and store carbon25, and may therefore obscure relationships 491 

between diversity and ecosystem functioning. In order to account for the effect of 492 

multiple environmental variables we constructed generalised least square models 493 

where ecosystem functioning was modelled as a function of metrics related to 494 

diversity, climate, edaphic conditions, functional composition and structural variables. 495 

To avoid multicollinearity amongst variables in the model, we confirmed that variance 496 

inflation factors (VIFs) were less than five65 for each explanatory variable. We 497 

account for spatial autocorrelation in the GLS analyses by specifying a Gaussian 498 

spatial autocorrelation structure, which is consistent with the shape of the 499 
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semivariograms for biomass and productivity across this network of plots49. We 500 

created separate models for productivity, biomass and each diversity metric. For 501 

each response variable (productivity and biomass), we generated a set of models 502 

including all possible combinations of variables related to climate, soil, functional 503 

composition and stand structure, and selected the best model (referred to as the 504 

climate-soil-structure model) based on the Akaike Information Criterion (AIC). To 505 

investigate the additional contribution that diversity made to explain variation in both 506 

productivity and biomass, each single diversity metric was then added individually to 507 

the climate-soil-structure model. We then compared the climate-soil-structure model 508 

with models also including each single diversity metric: models with a difference in 509 

AIC greater than 2 when compared to the climate-soil-structure model, indicate 510 

models with improved support. Finally, we added pairs of diversity metrics, 511 

representing both taxonomic and evolutionary diversity (Supplementary Figure 10) 512 

into a single model to investigate whether a more complex model provides better 513 

predictive ability over single diversity metric models. Phosphorous and cation 514 

concentrations were log transformed prior to analysis. To allow comparisons of the 515 

strength of significance of the explanatory variables, they were all standardised to a 516 

mean of zero and a standard deviation of one. 517 

We also examined the effect of the diversity metrics on wood productivity and 518 

aboveground biomass using partial correlation analyses including the variables 519 

selected in the best performing climate-soil-structure model. Partial correlation 520 

analyses are used to determine the correlation between two variables while 521 

eliminating the effect of potentially confounding variables66.  522 

Analyses were performed in the R Statistical software v3.1.167 using the vegan68, 523 

picante69, BiomasaFP70, nlme71 and ppcor66 packages. 524 
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Figure 1. Location of 90 one-hectare permanent inventory plots shown on the forest 525 

cover map72 produced from Global Land Cover73. Plots are all located in lowland 526 

moist forests on well-drained soils across the Amazon Basin (please see methods 527 

for details). 528 

Figure 2. Bivariate relationships between aboveground wood productivity (AGWP) 529 

and the diversity variables included in the best performing model: A) Simpson Index 530 

and B) Neighbour lineage diversity from 90 single hectare plots across Amazonia. 531 

Shaded area represents 95% confidence interval. Relationships for the other 532 

taxonomic and phylogenetic diversity metrics are included in the Supplementary 533 

Information. 534 

Figure 3. Standardised effect sizes for the best fit generalised least square model 535 

across plots for both aboveground wood productivity (AGWP) and aboveground 536 

biomass (AGB) as a function of diversity metrics, structural attributes, climate and 537 

soil variables selected based on the lowest AIC values and largest proportion of the 538 

variance explained (R2). The best model for AGWP includes neighbour lineage 539 

diversity and Simpson index as biodiversity metrics, mean annual temperature, 540 

climatic water deficit, total phosphorus, magnesium and potassium. Greater 541 

productivity is found in plots with lower mean annual temperature, higher water 542 

availability and on soils with greater amounts of soil phosphorus, magnesium and 543 

lower amounts of potassium. The best model for AGB included wood density, 544 

number of stems, magnesium, and mean annual temperature. The relationship 545 

between AGB and WD is non-linear and in all AGB analyses, WD was specified with 546 

linear and quadratic terms, but for clarity, in the graph, effect size is shown only for 547 

the quadratic term. For each variable in the model, dots represent the standardized 548 

effect size and lines one standard error. In some cases, error lines are unobserved 549 



23 
 

due to very small standard errors. See Supplementary Figures 4 and 7 for detailed 550 

bivariate correlations and Appendix 4 for all the coefficients of the models. 551 

Table 1. Results for generalised least square (GLS) models across 90, one ha plots 552 

for aboveground wood productivity (AGWP) and aboveground biomass (AGB) as a 553 

function of diversity metrics, structural and compositional attributes, climate, soil 554 

variables, and accounting for spatial autocorrelation (Gaussian correlation structure). 555 

The best models for both AGWP and AGB are highlighted in bold - full coefficients 556 

from the models shown in Appendix 4. Results are shown for the best-fit model, with 557 

lowest AIC values, incorporating environmental variables (climate and soil), 558 

functional attributes (mean wood density, potential tree size and number of stems), 559 

and spatial autocorrelation. Delta AIC values refer to the comparison between each 560 

model that includes the diversity variables and the climate-soil-structure model, 561 

which excludes diversity. For AGWP, the climate-soil-structure model includes mean 562 

annual temperature, climatic water deficit, total phosphorus, magnesium and 563 

potassium. For AGB, the climate-soil-structure model includes wood density, number 564 

of stems, magnesium, and mean annual temperature. 565 
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