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ABSTRACT

Climate records over the last millennium place the twentieth-century warming in a longer historical
context. Reconstructions of millennial temperatures show a wide range of variability, raising questions
about the reliability of currently available reconstruction techniques and the uniqueness of late-twentieth-
century warming. A calibration method is suggested that avoids the loss of low-frequency variance. A new
reconstruction using this method shows substantial variability over the last 1500 yr. This record is consistent
with independent temperature change estimates from borehole geothermal records, compared over the
same spatial and temporal domain. The record is also broadly consistent with other recent reconstructions
that attempt to fully recover low-frequency climate variability in their central estimate.

High variability in reconstructions does not hamper the detection of greenhouse gas–induced climate
change, since a substantial fraction of the variance in these reconstructions from the beginning of the
analysis in the late thirteenth century to the end of the records can be attributed to external forcing. Results
from a detection and attribution analysis show that greenhouse warming is detectable in all analyzed
high-variance reconstructions (with the possible exception of one ending in 1925), and that about a third of
the warming in the first half of the twentieth century can be attributed to anthropogenic greenhouse gas
emissions. The estimated magnitude of the anthropogenic signal is consistent with most of the warming in
the second half of the twentieth century being anthropogenic.

1. Introduction

Climate records over the last millennium provide ob-
servational information on natural climate variability
on time scales of multiple decades and centuries. It is
from this backdrop of natural climate variability that
anthropogenic changes need to be distinguished (e.g.,
Mitchell et al. 2001; International Ad Hoc Detection
and Attribution Group 2005). Reconstructions of pre-
instrumental surface temperature have employed
“proxy” information derived from historical records,
tree rings, ice cores, marine and terrestrial sediments

(see review in Jones and Mann 2004; also Mann et al.
1999; Crowley and Lowery 2000; Cook et al. 2004;
Moberg et al. 2005) and subsurface temperatures mea-
sured in boreholes (Huang et al. 2000; Harris and Chap-
man 2001; Beltrami 2002). A number of recent studies
have used this information to estimate Northern Hemi-
spheric temperature changes during the last 500–1000
years; these studies indicate a difference between the
peak of the cold period in the seventeenth-century and
the mid-twentieth-century warming that ranges from
about 0.4° to 1.0°C.

Concern about the reliability of reconstructions of
past temperature arises from a climate model–based
evaluation of one of the reconstruction methods (von
Storch et al. 2004), which suggests that calibration
methods that are based on ordinary least squares re-
gression may fail to recover some of the low-frequency
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variance in the model’s true hemispheric temperature.
However, the magnitude of the variance loss may be
smaller than estimated by von Storch et al. (Mann et al.
2005; see also Wahl et al. 2006) and depends on the
properties of the noise (von Storch et al. 2006).

A further concern is that some tree-ring data, which
dominate the input to most high-resolution surface
proxy composites, may not adequately recover low-
frequency centennial–millennial-scale variability unless
standardized to preserve low-frequency information
(Cook et al. 1995; Briffa et al. 2001; Esper et al. 2002).
These concerns are emphasized by the discrepancy be-
tween most surface proxy reconstructions and Northern
Hemispheric borehole composites (see Jones and Mann
2004). One exception involves a recent reconstruction
that bases its low-frequency variability on lower-
resolution sediment data from lake and ocean cores,
and adjusts the variance to instrumental data during the
calibration interval (Moberg et al. 2005).

In this paper we propose a simple calibration method
that does not lose variance. It is based on a total least
squares fit that allows for proper accounting of noise in
both proxy and instrumental data during calibration,
yielding a reconstruction with realistic amplitude and
uncertainty ranges. When applied to model-generated
“pseudoproxies” that are sampled over the same loca-
tions, and show similar correlations to local tempera-
tures, our approach captures the full range of past cli-
mate variability and provides a reliable estimate of un-
certainty. We use this technique to reconstruct a
decadal record over the past 1450 yr. Over the last 500
yr, this new record is consistent with borehole results
over the same time and space domains, and shows simi-
lar levels of Little Ice Age cooling and Medieval Warm
Period warming as other reconstructions using data and
methods that aim at fully recovering low-frequency
variance.

Since the twentieth-century trend stands out less
from trends in previous centuries in reconstructions
with higher variance, high-variance reconstructions
have sometimes been used to question the importance
of anthropogenic forcing. However, natural influences
on climate, such as changes in volcanism and possibly
solar radiation, are responsible for a substantial frac-
tion of past climate variations (e.g., Robock and Free
1995; Crowley 2000; Hegerl et al. 2003; Bertrand et al.
2002; Weber 2005; Stendel et al. 2005). By quantifying
the influence of external forcing on these high-variance
reconstructions, we find that high variability does not
prevent confident detection and attribution of anthro-
pogenic climate change.

The paper is structured as follows. Section 2 intro-

duces our reconstruction method, and section 3 dem-
onstrates the reliability of this method with climate
model data. Section 4 compares our reconstruction with
other high-variance reconstructions and borehole data.
A detection and attribution method is applied in sec-
tion 5 to quantify the influence of external forcing on
our reconstruction and other high-variance reconstruc-
tions. We summarize results in section 6.

2. Reconstruction of hemispheric temperature
variability

Our new reconstruction of decadal Northern Hemi-
spheric mean temperature is related to an earlier re-
construction based on a simple average approach
(Crowley and Lowery 2000), but uses updated records,
a modified reconstruction method, and a new calibra-
tion technique. The reconstruction consists of three in-
dividual segments. A baseline reconstruction uses 12
decadal records and covers the period to 1505. One
longer, less densely sampled land temperature recon-
struction, which we call CH-blend (long), is based on
seven records back to A.D. 946, and CH-blend (Dark
Ages) consists of five records back to A.D. 558. The
three reconstructions are each based on equally long
proxy records or regional proxy reconstructions based
on multiple records that are distributed across the ex-
tratropical Northern Hemisphere (NH). Using only
data covering the entire length of each individual re-
construction largely avoids inhomogeneity in the vari-
ability of reconstructions that arises due to changes in
spatial sampling density over time (see Crowley and
Lowery 2000).

a. Construction of proxy time series

We use decadal or decadally smoothed proxy records
since information about low- frequency variability is
crucial to separate natural climate variability from
greenhouse warming, and because fewer records are
needed to reliably sample decadal and hemispheric
temperature variability (global decadal mean surface
temperature is estimated to have effectively 8–16 spa-
tial degrees of freedom, see Jones et al. 1997; Zwiers
and Shen 1997). Since almost all long proxies are lo-
cated in the mid- to high northern land areas, the re-
construction is calibrated to 30°–90°N temperature. A
second version of the reconstruction is calibrated to
land and ocean regions north of 30°N, which is used for
the detection study (see below) and a study estimating
climate sensitivity (Hegerl et al. 2006). The tree-ring
data have mostly been processed in a manner that pre-
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serves low-frequency variance (Briffa et al. 2001; Esper
et al. 2002; details are given in appendix A).

The primary reconstruction for the time interval
since 1505 is based on 12 well-spaced sites, some of
which are area averages based on multiple records (Fig.
1, for individual sites see appendix A). The first step of
the reconstruction technique is to scale the individual
proxy records to unit standard deviation, weigh them
by their correlation with decadal NH 30°–90°N tem-
perature (land or land and ocean, depending on the
target of reconstruction) during the period 1880–1960,
and then average them. This yields a unitless paleo time
series �̂pal(t) that shows high correlations with the in-
strumental data during the calibration period 1880–
1960 (0.97 for land only and 0.92 for land and ocean
temperatures, correlations become 0.82 for land and
0.75 for land and ocean after detrending).

Such a weighted average is mathematically equiva-
lent to a multiple regression of proxy data onto the
target of reconstruction for uncorrelated individual
records (our records have only modest correlations
with each other), but is much less prone to overfitting
than full multiple regression. This is important because
the shortness of the common period of the decadal in-
strumental and proxy data (1880–1960, prior to that, the
spatial sampling of instrumental data is very inhomo-
geneous), does not allow a formal separation of the
period of overlap into a calibration and a validation
period. Note that the only information from instrumen-
tal data used for computing �̂pal(t) is the correlation
weight, which has only a small influence on the result-
ing time series; an unweighted, and hence fully inde-
pendent, average of the sites correlates r � 0.96 (0.79
detrended) with instrumental land data compared to
the correlations of the weighted average of 0.97 (0.82
detrended).

b. Calibration to Northern Hemispheric
temperature

The next step is to calibrate the proxy time series
�̂pal(t) against the average NH 30°–90°N (land or land
and ocean) instrumental temperature record T̂inst(t), us-
ing a conversion factor � (hats denote the estimated
time series). This is accomplished by fitting a statistical
model of the form

Tinst�t� � �inst�t� � ���pal�t� � �pal�t��, �1�

where 	inst refers to realizations of sampling error and
random measurement error in instrumental data, and
	pal to realizations of sampling error and nontempera-
ture variability in proxy records. Often, � is estimated
by an ordinary least squares (OLS) fit, neglecting the
considerable uncertainty 	pal, which leads to a low
bias of the scaling factor � (see, e.g., von Storch et al.
2004; Allen and Stott 2003) and thus underestimates
past temperature ranges in the scaled proxy time se-
ries. The loss of variance is largest if the correlation
between T̂inst and �̂pal is low, as tends to be the case
when annual data are reconstructed. To avoid this
problem, some reconstructions use less rigorous cali-
bration methods, such as adjusting to the variance of
instrumental data or qualitatively scaling the low-
frequency component. However, if a total least squares
(TLS) fit is used, in which noise in both instrumental
and proxy data is considered, the shared signal with the
instrumental time series is scaled to the same amplitude
(Adcock 1878; Allen and Stott 2003) This method has
previously been used for estimating the amplitude of
noisy fingerprints from observations in optimal finger-
printing (Stott et al. 2003). Note that if the uncertainties
in the paleoreconstruction are much larger than in in-
strumental data, an alternative is the use of inverse

FIG. 1. Regions used for the paleoreconstruction (pink, yellow, and blue areas) and for the borehole recon-
struction (blue triangles). The data shown in pink are used only for the reconstruction extending to A.D. 1505.
Shaded blue regions are used in the short reconstruction and the long reconstructions to 946, of these, only the
Mongolian and Alberta (Canada) records drop out in the longest reconstruction to 558. The Scandinavian record
shown in yellow is used in both long and short reconstructions, as there is only a small correlation between this
record and the large-scale European record that encompasses it.
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regression, neglecting error in instrumental data (Co-
elho et al. 2004).

The TLS fit requires an estimate of the ratio of the
variances of 	pal to 	inst. The variance of 	inst is esti-
mated from subsampled climate model data (von
Storch et al. 2004; Zorita et al. 2003) yielding an error
estimate that is consistent with earlier published esti-
mates of uncertainty associated with sampling error in
decadally averaged instrumental data for the entire NH
(Jones et al. 1997). Note that we assume that systematic
instrumental errors are small relative to sampling er-
rors. This may not be strictly correct for sea surface
temperature data, which may be affected by systematic
biases such as the correction for using canvas buckets in
earlier temperature measurements (Folland et al. 2001,
Brohan et al. 2006). The latter are, however, only used
in the land and ocean reconstruction.

Since the variance of 	pal is unknown, we account for
this uncertainty by determining the scaling factor � and
its confidence interval for a wide range of plausible
variance ratios for 	pal to 	inst. For each, the likelihood
of the regression residual being drawn from errors with
variances of 	pal and 	inst is determined. We then aver-
age these regression results, weighted by the likelihood
of each residual, to arrive at an overall scaling � and its
uncertainty (details are given in appendix B). The time
series �̂pal is then scaled by �. The overall uncertainty
for the reconstruction is derived from a combination of
the uncertainty in the amplitude (�) and the range of
error variances for 	pal that is consistent with the cali-
bration residual (see appendix B). Note that our ap-
proach assumes that the errors 	pal and 	inst are uncor-
related and normally distributed. The first assumption
appears reasonable since red noise possibly present in
the individual records should have been strongly re-
duced by hemispheric averaging in �̂pal (note the small
changes in the correlation to instrumental temperature
between detrended or nondetrended data), and the sec-
ond is justified for hemispheric means by the central
limit theorem.

The longer reconstructions are constructed in the
same manner as CH-blend (short) and are calibrated to
CH-blend (short) rather than to instrumental data,
since the longer overlap period allows for a more accu-
rate calibration. Due to their high correlation with CH-
blend (short) (r � 0.97 and r � 0.93), this second cali-
bration step adds only a small additional uncertainty
that is accounted for in the uncertainty range (see ap-
pendix B). Note that the high correlations and overall
similarity of the longer, sparser sampled reconstruc-
tions CH-blend (long) and CH-blend (Dark Ages) with
the more densely sampled CH-blend (short) during the
period of overlap (see Fig. 2) suggests that even a few

well-spaced decadal records can provide a surprisingly
reliable estimate of decadal variability in the last five
centuries.

Figure 2 shows the time series calibrated to instru-
mental land annual temperatures 30°–90°N. The CH-
blend (short) is similar to the reconstruction used in
Hegerl et al. (2003) and Crowley and Lowery (2000; see
also Crowley 2000), but has enhanced amplitude (by
13% for zonal mean temperature and 7% for land tem-
perature). Larger enhancement due to TLS calibration
was found for other published records if recalibrated,
yielding on the order of 20%–30% enhancement, and if
annual reconstructions are attempted. Note that a
prominent eleventh-century peak in the 2003 recon-
struction is not as evident after balancing the composite
with more data from Asia.

3. Testing the reconstruction method with climate
model data

We have tested our reconstruction technique with
model-derived synthetic proxy data (i.e., a “perfect
model approach”) using the same atmosphere–ocean
general circulation model (AOGCM) simulation of cli-
mate of the past few centuries that was used by von
Storch et al. (2004). The simulation was driven by esti-
mates of past volcanic, solar, and greenhouse gas forc-
ing, primarily from Crowley (2000). The AOGCM pro-
vides dynamically consistent data with approximately
realistic teleconnections, enabling a reliable estimate of
the effects of sparse networks and calibration tech-
niques on reconstructions.

We first create a synthetic instrumental (“pseudoin-
strumental”) record from the simulation, using the
same spatial coverage of annual mean land tempera-
tures as in the actual instrumental record. Next, we
derive a synthetic paleoreconstruction (“pseudoproxy
reconstruction”) using grid boxes that represent the ar-
eas and sites used in CH-blend (see Fig. 1). These
model data were perturbed by adding decadal white
noise until the correlation between pseudoproxy data
and the pseudoinstrumental decadal data was similar to
those in CH-blend over the calibration interval. This
reduces the correlation of unperturbed to perturbed
decadal local model data to values of 0.1–0.7, averaging
0.45, which is similar to correlations between decadal
proxy data and local temperature data. These
pseudoproxies are then weighted by their correlation
with pseudoinstrumental mean temperature from 30° to
90°N, averaged and calibrated to the pseudoinstrumen-
tal NH 30°–90°N mean using the TLS approach.

Figure 3 shows the mean of 10 such pseudoproxy
reconstructions with different realizations of noise
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added, and two individual reconstructions with the
highest and the lowest variance among these 10. This
test shows that the reconstruction method reproduces
the actual model 30°–90°N land temperature variability
very well (correlation over the calibration interval is on
average r � 0.97, and r � 0.68 if using detrended time
series; correlation with the model’s true 30°–90°N mean
ranges from r � 0.96 to r � 0.98 for different realiza-
tions of error over entire reconstruction). On average
97% of the variance of the true model 30°–90°N mean
has been recovered. This result is based on a calibration
period of 1898–1977, since the peak early-twentieth-
century warming occurs later in the model and hence
the shape of the time series in that period is more simi-
lar to that in the observations than the period 1881–
1960, which is dominated by a linear trend (cf. Figs. 2
and 3). Note that each calibration interval is affected by
different sampling error due to the extent to which the
sampling regions in proxy and instrumental data cap-
ture simulated hemispheric mean change. This leads to

differences in the extent of variance recovered in the
reconstruction, such as the small overestimate of cool-
ing into the Little Ice Age seen in Fig. 3. Based on an
1880–1960 calibration period, the reconstructed vari-
ance is on average underestimated (although less so
than if using an OLS technique), and it is overestimated
if using a later calibration period. However, in each of
these cases, as well as in the case shown in Fig. 3, the
true hemispheric average remains within the estimated
uncertainty range slightly more than 95% of the time,
indicating that our uncertainty ranges are conservative
and validating the reconstruction method.

In contrast, using OLS instead of TLS for calibration
reduces the intercentury variance (filtered by applying
a consecutive running 60- and 40-yr moving average) of
the 30°–90°N mean on average by a factor of 0.81 for
calibration of decadal data, and by a factor of 0.40 to
0.30 for annual data. This indicates a very severe re-
duction of low-frequency variance using OLS calibra-
tion. If the proxy data are OLS fitted to local decadal

FIG. 2. Proxy reconstruction of 30°–90°N mean annual decadally averaged temperatures
over land back to A.D. 558. The long time series is made from three segments covered by
different amounts of data, which are kept constant within that segment. Gray shaded ranges
give the 95% uncertainty bounds of decadal temperature estimates. Another recent proxy
reconstruction and the borehole reconstruction over the same spatial domain are shown for
comparison. Each time series is plotted relative to its 1880–1960 mean (shown by the hori-
zontal gray shaded region). This is a departure from the commonly used reference period of
the 1961–90 instrumental mean [indicated by a dotted line; e.g., Pollack and Smerdon (2004),
pinned the zero crossing of the twentieth-century trend in the borehole time series to the
equivalent point in the linear trend of the twentieth-century instrumental data plotted relative
to the 1961–90 mean]. We now use the 1880–1960 calibration period since it demonstrates
most clearly the differences in the reconstructions prior to calibration.
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temperature and then averaged, the variance is reduced
by about half.

4. Comparison of reconstructed temperature
history with other reconstructions based on
surface and borehole data

Our reconstruction (Fig. 2) shows features seen in
many other reconstructions—the broad transition from
the relatively warm Middle Ages to the Little Ice Age,
and the warming after the Little Ice Age to the present,
along with multidecadal–centennial-scale fluctuations
(see Jones and Mann 2004). The cool interval before
the Middle Ages coincides with the Early Medieval
Cool Period, a time of glacial advance in many regions
(Grove 1988; Oerlemanns 2005), which corresponds ap-
proximately to the historical interval after the collapse
of the Roman Empire sometimes called the Dark Ages.
Late-twentieth-century temperatures substantially ex-
ceed the maximum temperatures in the Middle Ages,

confirming that the late twentieth century is probably
the warmest interval in at least 1500 yr.

Table 1 gives correlations of our reconstruction with
other reconstructions, while Fig. 4 shows a comparison
of our reconstruction with two other recently published
reconstructions with high variance: that by Moberg et
al. (2005), and by Esper et al. (2002), calibrated by
Cook to NH 30°–90°N land data (Cook et al. 2004). For
the comparison with Moberg et al. (2005), we have
recalibrated our data to NH 0°–90°N annual means.
The CH-blend data show a somewhat smaller level of
cooling into the Little Ice Age and a similar warming in
the Medieval Warm Period than Moberg et al. (2005),
along with overall similar features to that latter recon-
struction. Given the uncertainty in the amplitude of
CH-blend (only amplitude uncertainty for NH 30°–
90°N land is shown in Fig. 4a for simplicity, note that
the amplitude uncertainty for 0°–90°N land and ocean
is substantially larger) and in Moberg et al. (dotted
line), the reconstructions are consistent in their esti-

FIG. 3. Validation of our reconstruction method with climate model data perturbed by
noise. The mean of 10 synthetic reconstructions and their uncertainty ranges, derived using a
climate model simulation from 1000 to 1990, (red, shown with 95% error bars) is compared
to the true NH 30°–90°N annual model mean (black) and the subsampled model data using
instrumental coverage (green). The calibration interval is shown as vertical shaded region
(note that results vary to some extent with calibration period). The case with highest and
lowest variance from the 10 synthetic reconstructions (blue) is also shown. Uncertainty ranges
are smaller for time periods with temperatures close to the calibration period, while periods
far away from them are more affected by scaling uncertainty.
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mate of Little Ice Age cooling and Medieval Warm
Period temperatures. Similarly, our reconstruction for
30°–90°N land data is broadly consistent with the Cook
et al. (2004) calibrated version of Esper et al. (2002) for
both periods. Note, however, that Esper et al. (2002)
shows differences from other records in the twelfth and
thirteenth centuries.

Figure 2 also shows a comparison between CH-blend
and subsurface temperature histories measured in bore-
holes over the same spatial domain (30°–90°N land).
Boreholes provide estimates of centennial-scale surface
temperature changes over the past five centuries that
are independent of both the instrumental record and
climate proxies. Here we compare the history of tem-
perature changes estimated from 631 extratropical
boreholes (latitude 
30°N, see Fig. 1 for locations) to
that derived from the multiproxy reconstruction de-
scribed above. The ensemble of individual borehole re-
sults has been averaged onto a 5° � 5° spatial grid to
yield the area-weighted reconstruction shown in Fig. 2
(Pollack and Smerdon 2004, see also Pollack and
Huang 2000), which is in good agreement with our sur-
face proxy reconstruction for extratropical land data.
An implicit assumption in the borehole verification of
the new multiproxy reconstruction is that borehole re-
constructions represent a valid target of verification for
surface proxy reconstructions (i.e., that both track
changes in the surface air temperature). An analysis of
millennial simulations of air and subsurface tempera-
tures from AOGCMs (González-Ruoco et al. 2003,
2006) shows that despite seasonal decoupling between
air and ground temperatures, deep soil temperature is a
good proxy for the annual surface air temperature on
land.

We further compare the new multiproxy reconstruc-
tion with borehole results by calculating the subsurface
temperature anomaly for each reconstruction (Fig. 4b).
The temperature anomaly represents the transient
warming of the subsurface at a given time as the sub-
surface evolves from a previous temperature field. The
subsurface temperature anomalies for both the bore-

hole and CH-blend (short) reconstructions are calcu-
lated using a conductive forward model in which each
reconstruction comprises a time-varying surface bound-
ary condition (see Carslaw and Jaeger 1959). The bore-
hole subsurface temperature anomaly shown in Fig. 4b
is calculated from the mean of 631 reconstructions,
each based on individually inverted borehole tempera-
ture profiles, rather than calculating an average bore-
hole profile directly from the data. A comparison of the
calculated subsurface temperature anomaly with the
average observed anomaly determined by Harris and
Chapman (2001) shows the two to be almost identical.
Because the geothermal reconstruction extends back to
only A.D. 1500, we have compared only a segment of the
multiproxy reconstruction with it. To achieve isolation
of the post–A.D. 1500 history, we assume a steady-state
(zero heat flux) surface boundary condition prior to
A.D.1500 for both the multiproxy and geothermal re-
constructions. This assumption enables a direct com-
parison of the two reconstructions in their common
time interval, 1505–1960. As can be seen in Fig. 4b, the
subsurface expressions of both reconstructions are al-
most indistinguishable. The uncertainty envelopes of
each are also shown; these were calculated by driving
the model with the upper and lower uncertainty time
series shown in Fig. 2. These uncertainties also encom-
pass the results generated from the range of reasonable
initialization temperatures in the conductive-forward
model.

5. Implications for attribution of climate change to
causes

Changes in external radiative forcing need to be con-
sidered in order to understand the origin of past climate
variability. We thus apply a detection and attribution
analysis in order to quantify the role of external forcing,
including greenhouse gas forcing, in our reconstruction
and in other reconstructions with substantial century-
scale variability. Such an analysis based on paleorecon-
structions from several centuries enables a better sepa-

TABLE 1. The 20-point smoothed correlations between different proxy reconstructions. Reconstructions are Mann et al. (1999); Esper
et al. (2002), Jones et al. (2001), Moberg et al. (2005), and CH-blend (short, Dark Ages, and long, calibrated to 30°–90°N temperature
over land). The right column gives the average correlation between CH-blend, Mann, Jones, and Esper.

CH-blend CH-DA CH-long Mann Jones Esper Moberg Mean and std dev

CH-blend 1.0 0.91 0.98 0.69 0.71 0.82 0.50 0.74 � 0.07
CH-dark 1.0 0.93 0.59 0.65 0.74 0.60 0.66 � 0.06
CH-long 1.0 0.61 0.63 0.82 0.55 0.69 � 0.12
Mann et al. 1.0 0.70 0.52 0.44 0.60 � 0.13
Jones et al. 1.0 0.53 0.50 0.61 � 0.12
Esper et al. 1.0 0.28 0.52 � 0.09
Moberg et al. 1.0 0.41 � 0.12
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ration of the climate response to natural forcing, par-
ticularly between solar and volcanic forcing, both of
which are spuriously correlated over the twentieth cen-
tury (e.g., North and Stevens 1998), and between solar
and anthropogenic forcing (e.g., Cubasch et al. 1997).
Long reconstructions also provide an opportunity to
estimate internal climate variability independently
from climate model data. The dependence of detection
results on climate model control simulations is an im-

portant uncertainty in the attribution of climate change
to causes (Mitchell et al. 2001).

We use a multifingerprint detection and attribution
method (Hegerl et al. 2003; see also Hegerl et al. 1997;
Tett et al. 1999) using fingerprints for solar, volcanic,
and a combination of greenhouse gas and aerosol forc-
ing. Fingerprints for external forcing are derived from
simulations with a two-dimensional Energy Balance
Model (EBM) and additionally from the ECHAM
Hamburg Ocean Primitive Equation (ECHO-G)
AOGCM used above. The EBM is the same as used in
Hegerl et al. (2003), it has a realistic land–sea distribu-
tion and seasonal cycle. It is driven with solar forcing
variations (“sol”), greenhouse gas plus sulfate aerosol
forcing (“anthro”), and forcing by explosive volcanism
(“vol”, for forcing details see appendix C). All climate
model data are sampled over the same spatial and tem-
poral domain that is represented by the proxy recon-
struction (see Table 2, note that we use zonal mean
CH-blend data since these are simulated more realisti-
cally in the EBM). The influence of external forcings on
the proxy reconstruction, Tproxy, is assessed by estimat-
ing a scaling factor 
 to best match the time-dependent
fingerprints f(t) to observations (note that this scaling
factor is determined by an OLS approach since the
EBM provides noise-free fingerprints):

Tproxy�t� � �sol � fsol�t� � �vol � fvol�t� � �anthro

� fanthro�t� � �noise�t�. �2�

We estimate the amplitudes 
 of the fingerprints and
the residual climate variability 	noise simultaneously
from the proxy reconstruction from 1270 on, since forc-
ing data are less reliable prior to that time. We show
results mainly for CH-blend (long) for this analysis;
results for CH-blend (short) are similar. Errors in the
overall magnitude of forcing or climate model response
will not affect detection results. Random errors in the
size of individual volcanic eruptions tend to influence
results only slightly (see Hegerl et al. 2006). Note also
that we do not rotate fingerprints in order to optimize
signal-to-noise ratios as often done analysis of instru-
mental records (e.g., Hegerl et al. 1997; Stott et al.
2003).

A fingerprint is detected in the reconstruction if its
scaling factor 
 is significantly larger than variations in

 that occur due to internal climate variability alone.
The residual variability 	noise is used as our main esti-
mate of internal climate variability that determines
variations in 
 due to internal climate variability. The
estimated residuals are shifted in time by varying incre-
ments to increase the number of sample time series for
internal climate variability and thus to improve the
power of the detection test (see Hegerl et al. 2003). The

FIG. 4. Comparison of CH-blend with two other reconstructions
and boreholes. (a) Comparison with two recent high-variance re-
constructions. The CH-blend (short: solid, long: dashed) and Es-
per et al. (after Cook et al., 2004) time series have been smoothed
by applying a 60- and then a 40-yr moving average (this yields
nearly identical smoothing as that used by Moberg et al. 2005).
For CH-blend land data, we also show the 95% uncertainty range
in the amplitude of the reconstruction (dotted, see Fig. 2); for
Moberg et al.’s reconstruction, the 95% range is shown by red
dots. All reconstructions have been centered on the period 1860
to 1920 for a quantitative comparison with Moberg (which ends in
1925). Esper and CH-blend are shortened due to the application
of the filter. (b) Comparison of two forward modeled subsurface
temperature anomalies driven respectively by the composite ex-
tratropical borehole reconstruction and the CH-blend (short) re-
construction.
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number of effective degrees of freedom in these
samples is limited due to autocorrelation. To estimate
this effect, the autocorrelation and thus the decorrela-
tion time of 20-yr offset residuals has been estimated
(reasonable changes in offset period do not affect re-
sults). The effective sample size is then estimated from
the number of samples separated by the decorrelation
time, and further reduced by the number of signals fit-
ted to the data (three for the multisignal approach).
This often yields less than 10 degrees of freedom. How-
ever, all results given here are robust to reasonable
changes in estimated degrees of freedom [for the short-
est Briffa et al. (2001) time series the residual from
using the unscaled solar and volcanic signals is used to
preserve more degrees of freedom].

We have assessed the robustness of our attribution
results by using the internal variability in the ECHO-G
simulations (Zorita et al. 2003; von Storch et al. 2004)
rather than residual variability in proxy reconstructions
to estimate the significance of scaling factors for finger-
prints. We concatenated the control simulation vari-
ability and the difference between both forced
AOGCM simulations [adjusted by a factor of sqrt(2) to
account for doubled variance in a difference between
simulations]. These data are then treated similarly as
the noise residual. Generally, the model has somewhat
more variance than the residual from all proxy recon-
structions (Table 2, ECHO-G has a standard deviation
of 0.18 K for 30°–90°N decadally averaged temperature,
note that residual variability from reconstructions has
been corrected for bias in variance due to fitting three
fingerprints), suggesting that the use of this climate

model’s internal variability is conservative in detection
and attribution approaches.

Results using the CH-blend reconstruction show that
its decadal temperature variability is largely driven by
external forcing (typically 60%–75% of the variance in
entire proxy reconstructions, Table 2). We clearly de-
tect the influence of volcanism on hemispheric tem-
peratures (see Fig. 5a), similar to previous studies
(Robock and Free 1995; Crowley 2000; Hegerl et al.
2003). The EBM does not simulate changes in atmo-
spheric dynamics associated with volcanism (Shindell et
al. 2004), but these affect hemispheric-scale and annual
temperature only slightly (Thompson et al. 2000). Con-
sistent with earlier results (Hegerl et al. 2003), a re-
sponse to solar forcing cannot be robustly distin-
guished. This can be due to either the climate response
to solar forcing being small, or to low-frequency varia-
tions in solar forcing being different from estimates
used here. The latter is quite possible given large un-
certainties in these reconstructions (Lean et al. 2002).
Note that the detection and attribution approach has
only been applied to the best-guess reconstruction. This
is appropriate since the detection of fingerprints is un-
affected by the amplitude the reconstruction (see
Mitchell et al. 2001), and random sampling errors are
indirectly accounted for by the noise residual.

The fingerprint analysis also reveals that anthropo-
genic greenhouse gas and aerosol forcing is detectable
in our reconstruction by the end of the record (�2.5%
significance level). The scaling factor for the anthropo-
genic signal 
anthro is estimated to be more than 4.5
times larger than the standard deviation of scaling fac-

TABLE 2. Detection and attribution results for a range of high-variance paleoclimatic records of the last millennium. The “Y” or “N”
indicates that the response to external forcing is, or is not, detectable, with the number in brackets giving the best-guess scaling factor
for the model’s fingerprint. Here “ghg�aer” denotes the anthropogenic fingerprint, which is a combination of greenhouse gas forcing
and aerosol forcing from 1900 on, and an asterisk “*” marks that a result is sensitive to details of the analysis. The bottom row gives
the standard deviation of the (decadally smoothed) residual and, in parentheses, the amount of decadal variance explained by external
forcing. The 5%–95% of the estimated contribution of external forcings to the early twentieth-century trend (1901–50) are also given
(marked by “20thc,” except for Moberg, which ends too early. Note that the nondetection of anthropogenic forcing in Moberg from
1000 on is largely due to an increase in residual variability, possibly partly due to forcing error.

Record
analysis period

represents
the following:

Briffa et al. (2001)
1402–1940

20°–90°N land
growing season

Esper et al. (2002)
1400–1960

20°–90°N land
growing season

CH-blend
1270–1960

30°–90°N all annual

Moberg et al. (2005)
1270–1925

0°–90°N all annual

Moberg
1001–1925

0°–90°N all annual

Volcanic Y (0.9) Y (1.0) Y (1.5) Y (1.1) Y(1.4)
Solar N (�0.1) N (�0.2) N (0.5) N (Y periods) Y(2.2)
Ghg�aer Y (1.1) Y (1.9) Y (1.0) Y (1.3)* N
20thc Ghg�aer 10%–99% 50%–100% 22%–52% — —
20thc volcanic 18%–50% 18%–51% 16%–39% — —
20thc solar �22% �15% �16% — —
20thc internal 13% 2% 30% — —
Residual std 0.11 (57%) 0.17 (60%) 0.10 (70%) 0.13 (61%) 0.18 (52%)
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tors derived from the residual of the reconstruction.
Sensitivity tests reveal that this result is not sensitive to
omitting a small reduction in greenhouse gas forcing
during the Little Ice Age (Fig. 5). The detected signal of
greenhouse warming is consistent with results from the
late twentieth century and thus supports the finding
that most of the late-twentieth-century warming has
been anthropogenic (e.g., Tett et al. 1999; Mitchell et al.
2001). The anthropogenic forcing explains about a third
of the trend over the first half of the twentieth century
in the reconstruction (90% confidence interval 22%–
52%, Table 2, see also Fig. 5a). Additional contribu-
tions to the early-twentieth-century warming arise from
a decrease in volcanism (16%–39%), internal variabil-
ity (best estimate 30%, cf. Delworth and Knutson
2000), and an uncertain contribution from an increase
in solar forcing that is smaller than typically estimated
from data for the twentieth century alone (Stott et al.
2003).

The fingerprint of all radiative forcings combined
from the ECHO-G simulations (von Storch et al. 2004;
Zorita et al. 2003) can also be detected in CH-blend
(long) from 1270 on (using a single model simulation as
fingerprint) and CH-blend (short) (using an average of
two simulations). The model fingerprint has to be sub-
stantially reduced in amplitude to match our recon-
struction, despite application of a TLS fit to account for
noise in the fingerprint (see Stott et al. 2003). As a
sensitivity test, we have also performed the same mul-
tifingerprint detection analysis with data from the
ECHO-G simulations instead of the reconstruction
with similar detection results. However, the ECHO-G
simulation has substantially enhanced volcanic (scaling
factor of 2.8 � 0.8) and probably enhanced solar fin-
gerprints (factor of 2.7 � 1.7) relative to the EBM fin-
gerprints, despite both models having a similar climate
sensitivity of �2.5°C. This difference is at least partly
explained by the use of an older version of the volcanic
forcing from Crowley (2000), and a stronger solar forc-
ing.

A detection and attribution analysis of other high-FIG. 5. Contribution of external forcing to reconstructed dec-
adal mean temperature (a) to CH-blend and (b) to a range of
high-variance reconstructions. The top of (a) shows CH-blend and
the instrumental record compared to simulations with an
AOGCM and an EBM forced with estimates of volcanic, solar,
and anthropogenic forcing (EBM simulation with natural forcing
only dashed). The simulations are scaled to best fit the reconstruc-
tion (90% confidence interval for EBM fingerprint shaded). The
bottom of (a) shows an estimate of the contribution to CH-blend
(long) from individual forcings (volcanism, solar forcing, and
greenhouse gas and aerosol forcing combined) and the associated
90% uncertainty range for the detectable signals, which are
marked by an asterisk (*). The top of (b) compares reconstruc-
tions by Esper et al. (2002), Moberg et al. (2005), Briffa et al.
(2001), and CH-blend (for details, see Table 2) with NH 30°–90°N

←

average temperature from an EBM simulation forced with volca-
nic, solar, and anthropogenic forcing combined (unscaled, gray)
and instrumental data (green line), all data are smoothed remov-
ing variance below 20 yr. The bottom of (b) compares the esti-
mated contribution from individual forcings (volcanism, solar
forcing, and greenhouse gas and aerosol forcing combined; scaling
factor, see Table 2) to individual records: Briffa (solid, fat), Esper
(dotted), Moberg (dashed), and CH-blend (solid, thin), contribu-
tions from different forcings to reconstructions are differentiated
by color (e.g., blue for volcanism). Forcing fingerprints in the
bottom of (a) and (b) are centered to the period analyzed.
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variance reconstructions yields similar results (Table 2),
and estimated forced signals are quite consistent be-
tween reconstructions (Fig. 5b). Table 2 also shows es-
timates of the contribution of various forcings to the
trend over the first half of the twentieth century. The
detection of the anthropogenic fingerprint is robust for
all results except Moberg, where significance levels of
that signal are dependent on details of the analysis. The
Moberg et al. (2005) reconstruction is also the only one
that shows a detectable solar signal, although this is
somewhat sensitive to details of the analysis. The re-
sidual decadal variance of all reconstructions is less
than that of the ECHO-G model (Table 2). Thus, our
results suggest that model simulated internal climate
variability, from ECHO-G, is conservative.

6. Conclusions

We have introduced a simple method to reconstruct
past climate variability that applies a total least squares
approach in the calibration step that overcomes the in-
herent loss of variance in ordinary least squares cali-
bration methods. This reconstruction method has been
successfully validated with climate model data. A re-
construction based on this method is consistent with
borehole reconstructions, when compared over the
same spatial domain, and shows Little Ice Age cooling
and Medieval Warm Period warming that is consistent
with that in other recent reconstructions that focus on
the recovery of low-frequency variance. Our results
demonstrate that long, properly calibrated high-
resolution proxies indeed carry low-frequency informa-
tion and produce reconstructions with considerable
variability between centuries.

We find that natural forcing, particularly by volcan-
ism, explains a substantial fraction of decadal variance
in our and other high-variance reconstructions. Green-
house gas forcing is detectable with high significance
level in all analyzed reconstructions except Moberg et
al. (2005), which ends in 1925, and explains a consider-
able fraction of the early-twentieth-century warming.
In contrast, solar forcing is marginally detectable. In
conclusion, our results indicate that enhanced variabil-
ity in the past does not make it more difficult to detect
greenhouse warming, since a large fraction of the vari-
ability can be attributed to external forcing. Quantify-
ing the influence of external forcing on proxy records is
therefore more relevant to understanding climate vari-
ability and its causes than determining if past periods
were possibly as warm as the twentieth century.
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APPENDIX A

Records Used for the New 1500-Yr Reconstruction

The CH-blend reconstruction is composed of records
from 12 sites, some of which contain multiple records
(Fig. 1 shows their locations). It is termed a blended
time series because it includes some data from Esper et
al. (2002) that is not available elsewhere. All records
obtained from Esper et al. (2002) had already been
standardized using regional curve standardization
(RCS) methods, which better preserve low-frequency
variations in tree-ring-based reconstructions. Process-
ing of the other records varied by source (see below).
With the exception of one record (East Asia, which is
decadal), all records are annual records that we have
decadally smoothed.

• Western United States: This time series uses an RCS
processed tree-ring composite used in Mann et al.
(1999), and kindly provided by M. Hughes, and two
sites generated by Lloyd and Graumlich (1997), ana-
lyzed by Esper et al. (Boreal and Upper Wright), and
provided by E. Cook. The Esper analyses were first
averaged. Although there are a number of broad
similarities between the Esper and Hughes recon-
structions, the correlation is only 0.66. The two com-
posites were averaged.

• Alberta, Canada: This time series is also a composite
of two different analyses of the 1997 reconstruction
of Luckman et al. (1997)—one is unchanged from
Luckman’s paper, and the other (Athabasca) has
been RCS processed by Esper et al. (2002). The cor-
relation between these analyses is unimpressive
(0.11); the records were simply averaged. Note that
although the correlation with the decadally smoothed
30°–90°N instrument (land) temperatures varies
greatly between the two records (0.14 for Athabasca,
0.82 for Jasper), the composite correlation is 0.84.

• Mackenzie Delta: The original time series (Szeicz and
MacDonald 1995) provided by Esper et al. only had a
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0.04 correlation with the 1880–1960 decadal average
of NH temperature, which yields a very small weight
if used for the hemispheric composite. We experi-
mented with various other data from the National
Geophysical Data Center (NGDC, more information

available online at http://www.ncdc.noaa.gov/paleo/
ftp-search.html) to determine if other reconstructions
for that area would yield more information for a
hemispheric reconstruction. We found that proxy
data for that region generally show little correlation

FIG. A1. Decadally smoothed or decadal proxy sites used for the reconstructions in standard
deviation units. The records are explained in appendix A.
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with hemispheric mean temperature. We neverthe-
less included this site for the sake of completeness
and in order to include as many long sites as possible.

• Quebec: The situation with Esper’s Quebec recon-
struction is somewhat similar to what was experi-
enced for the Mackenzie Delta time series; the cor-
relation between their Quebec record and the 30°–
90°N average is only 0.25, partly because the time
series ends in �1930. Examination of the NGDC da-
tabase indicates that the original Esper et al. recon-
struction appears to be from the Boniface site. A
record from nearby St. Anne also shows many simi-
larities to Boniface (r � 0.66), extends closer in time
to the present, but is also slightly shorter (the Boni-
face/St. Anne correlation is 0.70). Although the Boni-
face/St. Anne composite has a very high correlation
with the 30°–90°N (land) record (0.88), inspection of
shorter records from Fort Chimo and No Name Lake
showed a different twentieth-century response—
earlier warming and late cooling. To preclude a Que-
bec composite from indicating a potentially unrealis-
tic magnitude of late-twentieth-century warmth for
the whole region, we created a shorter composite of
the four sites that averages records from a Fort Chino
and No Name Lake composite after 1806. The new
composite still shows significant warming in the twen-
tieth century, but not as extreme as the Boniface/St.
Anne sites alone. It is not claimed that this solution
represents the best possible way to deal with the con-
flicting evidence from Quebec; the problem can best
be resolved if more long records from other regions
of Quebec can be uniformly stacked together without
any late-century adjustments.

• Western Greenland: This composite is from Fisher et
al. (1996).

• European historical: This composite was kindly pro-
vided by Luterbacher et al. (2004).

• Northern Sweden: This is from Grudd et al. (2002) by
way of Esper.

• Western Siberia: In order to avoid any heavy biases of
the mean composite by a number of sites from one
region, the western Siberia time series is a composite
of three/four time series from this region: two “polar
Urals” records east of the Urals–Yamal (Briffa et al.
1995) and Mangazeja (Hantemirov and Shiyato 2002;
both by way of Esper et al.) and two records from
west of the Urals (Hantemirov and Shiyato 2002).
The records from each side of the Urals were first
averaged and then combined for the west Siberia
short composite; the west Siberia long composite in-
volved Yamal and the west Urals composite. The
sites from Esper have been RCS processed.

• Taimyr Peninsula: This is from Naurzbaev et al.
(2002) by way of Esper.

• Eastern Siberia: The Esper et al. (2002) composite
used the Zhaschiviresk time series from Schweingru-
ber. However, this composite only went to 1708. We
combined it with a ring width (by Schweingruber,
available from NGDC) series from the nearby Ayan-
dina River site after removing the obvious growth
overprint in the early part of the younger record.

• Mongolia: This is from the D’Arrigo et al. (2001)
study. However, the full composite illustrated in this
paper is not available. We reconstructed the compos-
ite from nine records from tree-ring sites sent to the
NGDC sites. The early growth part of the tree-ring
series from overlapping records was removed without
further removal of low-frequency variability.

• East Asia: This is the high-resolution record (10-yr
average) from Yang et al. (2002).

Individual proxy sites are shown in Fig. A1, correla-
tions between these and NH 30°–90°N land and land–
ocean instrumental temperatures are given in Table A1.

APPENDIX B

Estimating Uncertainty Ranges of Our
Reconstructions

This appendix details the derivation of the uncer-
tainty ranges of our reconstruction. As explained in the
body of the paper, we apply a total least squares fit
(Allen and Stott 2003), since this method can account
for errors in instrumental and proxy data without
loss of amplitude of the reconstruction. It is related
to fitting the main axis of an ellipse through a cloud
of points, after scaling the data so that the ratio of

TABLE A1. Correlations of local proxy data with decadally
smoothed hemispheric mean instrumental data.

Site 30°–90°N land 30°–90°N zonal

Western U.S. composite 0.71 0.61
Western U.S. Hughes 0.78 0.65
Alberta 0.82 0.79
Mackenzie 0.04 �0.14
Quebec 0.72 0.87
Western Greenland 0.57 0.57
Europe historical 0.89 0.83
Northern Sweden 0.83 0.89
Western Siberia short 0.72 0.51
Western Siberia 0.74 0.59
Taimyr 0.87 0.87
Eastern Siberia 0.42 0.50
Mongolia 0.78 0.66
East Asia 0.84 0.90
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the variance of errors (	inst/	pal, see section 2) is 1. The
uncertainty 	inst of the instrumental data for land 30°–
90°N annual averages due to sampling is estimated
from comparing true model averages from a coupled
climate model simulation with the ECHO-G model
(von Storch et al. 2004) to averages based on instru-
mental coverage over the area reconstructed and the
calibration interval. Estimates of 	inst varied between
two simulations and time periods analyzed and range
from a standard deviation of 0.034°–0.055°C (0.046°–
0.056°C land and ocean combined). This is broadly
similar to the error estimated in Jones et al. (1997) of
0.060°C for decadal averages over the whole Northern
Hemisphere in the first half of the twentieth century.
We chose standard errors 	inst of 0.047°C for land
records and 0.056°C for land–ocean combined records
(amplitudes and uncertainty ranges vary only by a few
percent if 	inst is varied within the range found in sub-
sampled ECHO-G simulations and for instrumental
data). Since the true error 	pal is not known, we have
varied its variance from 0 to 16 times that of the instru-
mental error, and calculated the probability of the ac-
tual calibration residual between reconstruction and in-
strumental data based on an F-distribution for each
variance ratio. Note that the thus determined most
likely ratio of proxy to instrumental data is one that
yields a residual that is close to that actual observed. To
obtain our best-guess and uncertainty range, the results
for every variance ratio have been integrated, weighted
by the likelihood of each residual given the assumed
noise ratio. In all cases, a variance ratio of 16 yielded
very small probabilities, and was also assumed to be
highly unlikely, so we have not sampled the tail of the
F-distribution beyond a ratio of 16. Overall, this yields
a best-guess amplitude � and error bars that account for
the uncertainty in our knowledge of the variance of 	pal.

Using this approach not only yields slightly larger
best-guess values of the scaling factor � than using an
OLS approach (see section 2), but more importantly
substantially increased 97.5% upper limits for the am-
plitude (37% higher for land, 65% higher for zonal).
This demonstrates that given the true uncertainty in
paleoclimatic reconstructions, large past climate varia-
tions are much more likely to be retained with this
method than with standard regression techniques.

Uncertainty of each decadal mean value of the re-
construction in any given year consists not only of the
uncertainty in the scaling of the record, but also of the
random sampling error and the nontemperature vari-
ability in the proxy records that is not removed by av-
eraging. The latter is unknown, but the F values of the
residuals in calibration for each ratio var(	inst)/ var(	pal)
discussed above yield the most likely variance ratio and

hence (since we can estimate the variance of 	inst) also
the most likely variance of 	pal. This variance is used to
estimate the random sampling uncertainty of the recon-
struction for the best-guess scaling factor. The sampling
uncertainty for the upper 97.5% range is derived from
the ratio of both errors’ variance associated with a high-
scaling factor, and for the lower 2.5% bar from that for
the low-scaling value. Resulting errors are typically
about 2–3 times as large for the high-amplitude upper-
scaling limit than for the low-amplitude lower limit, and
on the order of twice the instrumental error.

The amplitude error and the interdecadal noise are
combined by associating the time series with upper- and
lower-amplitude limits with the respective errors, and
choosing the entire range covered as the reconstruc-
tion’s full error range. This results in an overestimate of
uncertainties, but not dramatically so (e.g., the order of
3% rather than 5% exceedances of 95% uncertainty
range in the perfect model study discussed above). This
uncertainty range is shown in the figures.

We have scaled only the best-sampled reconstruction
CH-blend (short) from 1505 on to instrumental data.
Both the long CH-blend (long) and the very long re-
construction CH-blend (Dark Ages) are calibrated to
this shorter and better sampled proxy series 1505–1960.
This yields a small increase in uncertainty range due to
the calibration between long and short series, which is
accomplished by an inverse OLS fit [the extreme case
of a TLS fit with no additional noise on the target of
reconstruction; see Coelho et al. (2004); this is appro-
priate since only the subsampled longer series exhibits
sampling error when calibrated against the shorter,
more densely sampled, series]. We calibrate the pri-
mary reconstruction [termed CH-blend (short), 1505–
1960] to the instrumental period as discussed above.
The longer, less densely sampled reconstructions [CH-
blend (long), to 946, and CH-blend (Dark Ages), to
558] are then calibrated to CH-blend (short). Due to
their high correlation with CH-blend (short) (r � 0.97
and r � 0.93), this adds only little additional uncertainty
that is accounted for in the uncertainty range for this
section of the time series.

APPENDIX C

External Radiative Forcing during the Past
Millennium

This appendix briefly describes the estimates for ex-
ternal radiative forcing used in our fingerprints for the
past millennium, largely referring to Hegerl et al.
(2003). Greenhouse gas forcing for the instrumental pe-
riod is based on the Intergovernmental Panel on Cli-
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mate Changed (IPCC) radiative forcing reconstructions
for well-mixed greenhouse gases. Ice core evidence sug-
gests small multidecadal–centennial-scale changes in
greenhouse gases such as CO2, N2O, CH4 over the last
millennium (Etheridge et al. 1996, 1998; Fluckiger et al.
1999), in addition to the anthropogenic increase in
these greenhouse gases over the industrial period. We
applied standard radiative forcing conversion algo-
rithms to convert these changes to radiative forcing.

The solar forcing time series is based on a C14 re-
sidual record of which has been converted to C14 pro-
duction rate changes using a box model (Bond et al.
2001). This record was combined with the Lean et al.
(1995) solar irradiance reconstruction [note that there
is considerable uncertainty in reconstructions of solar
forcing, see Lean et al. (2002)].

We also applied an updated version of a global vol-
cano reconstruction (Crowley 2000), which is based on
long ice core records of volcanism that extend back to
A.D. 1200, four ice cores from Greenland and five from
Antarctica and is described in more detail in Hegerl et
al. (2003) and a new publication (T. Crowley 2006, un-
published manuscript). The reconstruction includes a
latitude profile of forcing that is either based on knowl-
edge of the origin of the eruption or on an estimate
based on the representation of the aerosols in ice cores
in both hemispheres. The reconstruction of aerosols in
ice cores is then calibrated to aerosol optical depth
(AOD) and converted to radiative forcing perturba-
tions using the Hansen et al. (2002) �F � 21.0 (AOD)
conversion. Because the radiative forcing from ex-
tremely large volcanic eruptions results in larger par-
ticles that enhance the infrared warming effect (Pinto et
al. 1989), we used a 2/3 power scaling between AOD
and radiative forcing (RF) for eruptions exceeding 4 W
m�2. This adjustment has only modest effects except for
the very large 1258 eruption not included in the analy-
sis, and the 1453 Kuwae eruption loadings over Ant-
arctica.
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