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nterferometric modeling of wave propagation in inhomogeneous
lastic media using time reversal and reciprocity
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ABSTRACT

Time reversal of arbitrary, elastodynamic wavefields in
partially open media can be achieved by measuring the wave-
field on a surface surrounding the medium and applying the
time reverse of those measurements as a boundary condition.
We use a representation theorem to derive an expression for
the time-reversed wavefield at arbitrary points in the interior.
When this expression is used to compute, in a second point,
the time-reversed wavefield originating from a point source,
the time-reversed Green’s function between the two points is
observed. By invoking reciprocity, we obtain an expression
that is suitable for modeling of wave propagation through the
medium. From this we develop an efficient and flexible two-
stage modeling scheme. In the initial phase, the model is illu-
minated systematically from a surface surrounding the medi-
um using a sequence of conventional forward-modeling runs.
Full waveforms are stored for as many points in the interior as
possible. In the second phase, Green’s functions between ar-
bitrary points in the volume can be computed by crosscorre-
lation and summation of data computed in the initial phase.
We illustrate the method with a simple acoustic example and
then apply it to a complex region of the elastic Pluto model. It
is particularly efficient when Green’s functions are desired
between a large number of points, but where there are few
common source or receiver points. The method relies on in-
terference of multiply scattered waves, but it is stable. We
show that encoding the boundary sources using pseudonoise
sequences and exciting them simultaneously, akin to daylight
imaging, is inefficient and in all explored cases leads to rela-
tively high-noise levels.

INTRODUCTION

Many applications in diverse fields such as communications anal-
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SI47
sis, waveform inversion, imaging, survey and experimental design,
nd industrial design require a large number of modeled solutions of
he wave equation in different media. The most complete methods of
olution, such as finite differences �FD�, which model accurately all
igh-order interactions between scatterers in a medium, typically
ecome prohibitively expensive for realistically complete descrip-
ions of the medium and geometries of sources and receivers, and
ence, for solving realistic problems based on the wave equation.
ecently, van Manen et al. �2005� showed that the key to breaking

his apparent paradigm lies in combining a basic reciprocity argu-
ent with contemporary theoretical advances in the fields of time-

eversed acoustics �Derode et al., 2003� and seismic interferometry
Schuster, 2001; Weaver and Lobkis, 2001; Wapenaar, 2004�.

In time-reversed acoustics, the invariance of the wave equation to
ime reversal is exploited to focus a wavefield through a highly scat-
ering medium on an original source point �Derode et al., 1995�.
assereau and Fink �1992, 1993� realized that an acoustic represen-

ation theorem can be used to time-reverse a wavefield in a volume
y creating secondary sources on a surface surrounding the medium
uch that the boundary conditions correspond to the time-reversed
omponents of a wavefield measured there. These secondary sourc-
s give rise to the back-propagating, time-reversed wavefield inside
he medium that collapses onto itself at the original source location.
ote that because there is no source term absorbing the converging
avefield, the size of the focal spot is limited to half a �dominant�
avelength in accordance with diffraction theory �Cassereau and
ink, 1992�. The diffraction limit was overcome experimentally by
e Rosny and Fink �2002� by introducing the concept of an acoustic
ink.

In interferometry, waves recorded at two receiver locations are
orrelated to find the Green’s function between the locations. Inter-
erometry has been applied successfully to helioseismology �Rickett
nd Claerbout, 2000�, ultrasonics �Weaver and Lobkis, 2001�, and
xploration seismics �Bakulin and Calvert, 2004, 2006; Wapenaar et

ecember 2, 2005; published onlineAugust 17, 2006.
ad, Edinburgh EH9 3JW, United Kingdom and WesternGeco Oslo Technolo-
m.

ad, Edinburgh EH9 3JW, United Kingdom. E-mail: andrew.curtis@ed.ac.uk.
obertsson@oslo.westerngeco.slb.com.
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l., 2004�. Recently, it was shown that there exists a close link be-
ween the time-reversed acoustics and interferometry disciplines
hen Derode et al. �2003� analyzed the emergence of the Green’s

unction from field-field correlations in an open scattering medium
n terms of time-reversal symmetry. The Green’s function can be re-
overed as long as the sources in the medium are distributed, form-
ng a perfect time-reversal device.

Here, we extend the interferometric-modeling method of van
anen et al. �2005� to elastic media and show how the theorem by
erode et al. �2003� can be derived from an elastodynamic represen-

ation theorem. We demonstrate the connection with the Porter-Bo-
arski equation in the field of generalized holography in optics �Por-
er, 1969, 1970; Bojarski, 1983� and reciprocity theorems of the cor-
elation type �de Hoop, 1988, 1995; Fokkema and van den Berg,
993; Wapenaar et al., 2004�. More specifically, we show how the
lastodynamic representation theorem can be used to time reverse a
avefield in a volume and how, using the appropriate sets of Green’s

unctions, the time-reversed wavefield can be computed at any point
n the interior. Note that the elastodynamic Kirchhoff integral has
reviously been used as a boundary condition in reverse-time FD
igration �Mittet, 1994; Hokstad et al., 1998� and in the FD injection
ethod proposed by Robertsson and Chapman �2000� to compute

fficiently FD seismograms after model alterations. By applying a
imple reciprocity argument, it is shown how the elastodynamic
reen’s tensor between arbitrary points in a volume can be comput-

d using only crosscorrelations and numerical integration once the
reen’s tensors from sources on the surrounding surface to these
oints are known. Illuminating a model from the outside thus leads
o a flexible and efficient modeling algorithm.

The method is first illustrated using a simple acoustic model con-
isting of isotropic point scatterers embedded in a homogeneous
ackground medium. This is followed by an example for a more
omplicated, inhomogeneous, elastic medium and a detailed discus-
ion of computational aspects. The limits of using pseudonoise
ources on the boundary and exciting them simultaneously are dis-
ussed also. Finally, we speculate about reducing the number of
ources on the surrounding surface as a way of approximate model-
ng that maintains high-order scattering and suggest possible syner-
ies with methods of inversion for medium properties.

In the next section, the interferometric modeling method will be
erived from the elastodynamic representation theorem, closely fol-
owing the physically intuitive reasoning of Derode et al. �2003�.
owever, to understand fully the relation between time reversal, in-

erferometry, and generalized holography, it is useful briefly to re-
iew reciprocity.

RECIPROCITY AND THE
REPRESENTATION THEOREM

A reciprocity theorem relates two independent, acoustic, electro-
agnetic or elastodynamic states that can occur in the same spa-

iotemporal domain, where a state simply means a combination of
aterial parameters, field quantities, source distributions, boundary

onditions, and initial conditions that satisfy the relevant wave equa-
ion. In its most general form, it relates a specific combination of
eld quantities from both states on a surface surrounding a volume to
ifferences in source distributions, medium parameters, boundary
onditions, or even flow velocities �in cases where the material is
oving� throughout the volume �Fokkema and van den Berg, 1993;

e Hoop, 1995; Wapenaar and Fokkema, 2004�.
Here, we consider a special case of elastodynamic reciprocity
here the medium in both states is identical and nonflowing. In that

ase, states �A� and �B� are characterized simply by the following
ave equations �in the space-frequency domain�:

��2ui
�A� + � j�cijkl�kul

�A�� = − f i
�A�, �1�

��2ui
�B� + � j�cijkl�kul

�B�� = − f i
�B�, �2�

here ui
�A� and ui

�B� denote the components of particle displacement
or state �A� and �B�, respectively, generated by the components of
ody-force density f i

�A� and f i
�B�, and where cijkl�x� and ��x� are the

tiffness tensor and mass density, respectively, at location x in the
edium. Note that Einstein’s summation convention for repeated in-

ices is used. The Betti-Rayleigh reciprocity theorem can be derived
y multiplying the first equation by ui

�B� and the second by ui
�A�, sub-

racting the results, integrating over a volume V, and using Gauss’
heorem to convert volume integrals to surface integrals. This gives
Snieder, 2002�

�
S

�ui
�B�njcijkl�kul

�A� − njcijkl�kul
�B�ui

�A��dS

= − �
V

�f i
�A�ui

�B� − f i
�B�ui

�A��dV . �3�

quation 3 is called a reciprocity theorem of the convolution type,
ecause the displacement and traction from the two states multiply
ach other �Bojarski, 1983; de Hoop, 1988�. A Betti-Rayleigh reci-
rocity theorem of the correlation type can be derived by taking the
omplex conjugate of both sides of equation 1:

��2ui
*�A� + � j�cijkl�kul

*�A�� = − f i
*�A�, �4�

here a star * denotes complex conjugation, and following the
ame procedure that led up to equation 3. This gives

�
S

�ui
�B�njcijkl�kul

*�A� − njcijkl�kul
�B�ui

*�A��dS

= − �
V

�f i
*�A�ui

�B� − f i
�B�ui

*�A��dV , �5�

here now the quantities from both states occur in pairs that corre-
pond to crosscorrelation in the time domain. The physical signifi-
ance of a reciprocity theorem of the correlation type will be dis-
ussed in detail below.

A representation integral can be derived from equation 3 by iden-
ifying one state with a mathematical or Green’s state �i.e., a state
here the source is a unidirectional point force and the resulting par-

icle displacement is called the elastodynamic Green’s function� and
he other with a physical state that can be any wavefield resulting
rom an arbitrary source distribution. Thus, we arbitrarily choose
tate �B� to be the Green’s state and take f�B� a unit point force at loca-
ion x� in the n direction: f i

�B��x� = �in��x − x��, where �in and ��x�
enote the Kronecker symbol and Dirac distribution, respectively,
nd the wavefield ui

�B��x� becomes the Green tensor: ui
�B��x�

Gin�x,x��. We leave state �A�, unspecified. Inserting these expres-
ions into equation 3, carrying out the volume integral, dropping the
uperscripts for state �A�, and making no assumptions about the
oundary conditions, we arrive at
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un�x�� = �
V

Gin�x,x��f i�x�dV + �
S

�Gin�x,x��njcijkl�kul�x�

− njcijkl�kGln�x,x��ui�x��dS . �6�

inally, applying reciprocity to the Green’s tensor and allowing the
xchange of coordinates x ↔ x� and indices i ↔ n, we arrive at the
lastodynamic representation theorem �Snieder, 2002�

ui�x� = �
V

Gin�x,x��fn�x��dV�

+ �
S

�Gin�x,x��njcnjkl�k�ul�x��

− njcnjkl�k�Gil�x,x��un�x���dS�, �7�

here �k�Gil�x,x�� denotes the partial derivative of the Green’s tensor
n the k direction with respect to primed coordinates, and n denotes
he normal to the boundary. Thus, the wavefield ui�x� can be comput-
d everywhere inside the volume V once the exciting force fn�x�� in-
ide the volume and the displacement un�x�� and the associated trac-
ion njcijkl�k�ul�x�� on the surrounding surface S are known.

TIME REVERSAL USING THE
REPRESENTATION THEOREM

To time-reverse a wavefield in a volume V, one possibility would
e to reverse the particle velocity at every point inside the volume si-
ultaneously. However, Cassereau and Fink �1992� noted that for

pen systems �i.e., with outgoing boundary conditions on at least
art of the surrounding surface S�, time reversal can be achieved also
y measuring the wavefield and its gradient on the enclosing surface,
ime-reversing those measurements, and letting them act as a time-
arying boundary condition on the surface S. Their approach direct-
y follows from an application of Green’s theorem �or the Kirchhoff-
elmholtz integral� and is easily extended to elastodynamic-wave
ropagation using equation 7, derived above. Thus, to time-reverse
ny wavefield ui�x�, resulting from an arbitrary source distribution

fn�x�, we substitute the complex conjugate of the wavefield �phase
onjugation being equivalent to time reversal�, its gradient, and its
ources into the elastodynamic representation theorem �equation 7�.
his gives

ui
*�x� = �

V

Gin�x,x��fn
*�x��dV�

+ �
S

�Gin�x,x��njcnjkl�k�ul
*�x��

− njcnjkl�k�Gil�x,x��un
*�x���dS�. �8�

quation 8 can be used to compute the back-propagating wavefield
including all high-order interactions� at any location, not just at an
riginal-source location. It can be confirmed also that equation 8 is a
alid representation for the time-reversed wavefield by substituting
wo forward Green’s states into the equivalent Betti-Rayleigh reci-
rocity theorem of the correlation type �equation 5�.

In order for the time reversal to be complete, the energy converg-
ng at the original source locations should be absorbed at the appro-
riate time. Thus, the volume integral in the right-hand side of equa-
ion 8 corresponds to the wavefield generated by a distribution of
lastic sinks �de Rosny and Fink, 2002�, which destructively inter-
eres with the time-reversed wavefield that propagates through the
oci.

Now, say that the wavefield ui�x� also was set up originally by a
oint-force source excitation, but at location x� and in the m direc-
ion �i.e., f i�x� = �im��x − x�� and ui�x� is a Green’s tensor: ui�x�

Gim�x,x���. Thus, if we compare equations 7 and 8, it is clear that
ffectively we are taking the unspecified state to be a time-reversed
reen’s state, which satisfies the conjugated wave equation ��2Gim

*

� j�cijkl�kGlm
* � = −�im��x − x�� �cf. equation 4�. Inserting these ex-

ressions in equation 8 and carrying out the volume integration gives

Gim
* �x,x�� = Gim�x,x�� + �

S

�Gin�x,x��njcnjkl�k�Glm
* �x�,x��

− njcnjkl�k�Gil�x,x��Gnm
* �x�,x���dS�. �9�

quation 9 relates the time-advanced and time-retarded elastody-
amic Green’s functions. In the field of generalized holography in
ptics, an equation of this type is often referred to as the Porter-Bo-
arski equation after the work by Porter �1969, 1970� and Bojarski
1983�, who previously derived it for the scalar, inhomogeneous,
elmholtz-wave equation and electric and magnetic vector wave-
elds.
Note that the time-retarded Green’s function Gim�x,x�� in the

ight-hand side now corresponds to the wavefield generated by the
oint-force elastic sink. In the following, the elastic sink will not be
odeled — only the integral term in equation 9 will be calculated.
hysically, this means that the converging wavefield will immedi-
tely start diverging again after focusing. Mathematically, the time-
etarded Green’s function must be subtracted from both sides of
quation 9, and the homogeneous Green’s function, Gim

h �x,x��
Gim

* �x,x�� − Gim�x,x��, will be obtained: The time-reversed
avefield is a solution to the homogeneous wave equation �i.e.,
ithout a source term�. The latter also follows immediately when

ubtracting the wave equations for the forward and time-reversed
tates �Oristaglio, 1989; Cassereau and Fink, 1992�.

Equation 9 states that by measuring or computing the time-re-
ersed wavefield at location x for a source originally at location x�,
he Green’s function and its time reverse between the source point x�

nd point x are observed. This agrees with other recent experimental
nd theoretical observations �Derode et al., 2003; Wapenaar, 2004�.
sing reciprocity, Gij�x�,x� = Gji�x,x��, we can rewrite equation 9

o that it involves only sources on the boundary enclosing the medi-
m:

Gim
* �x,x�� − Gim�x,x��

= �
S

�Gin�x,x��njcnjkl�k�Gml
* �x�,x��

− njcnjkl�k�Gil�x,x��Gmn
* �x�,x���dS�. �10�

ence, the Green’s function between two points x and x� in a partial-
y open, elastic medium can be calculated once the Green’s functions
etween the enclosing boundary and each of these points are known.
n the following, we refer to equation 10 as the interferometric-mod-
ling equation.
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INTERFEROMETRIC MODELING

A highly efficient, two-stage modeling strategy follows from
quation 10: First, the Green’s function terms Gim�x,x�� and
jcijkl�k�Glm�x,x�� under the integral sign are calculated from bound-
ry locations to internal points in a conventional forward-modeling
hase; in a second intercorrelation phase, the integral is calculated,
equiring only crosscorrelations and numerical integration. Because
he computational cost of typical forward-modeling algorithms
e.g., FD� does not depend significantly on the number of receiver lo-
ations—but mainly on the number of source locations—efficiency
nd flexibility are achieved, because sources need only be placed
round the bounding surface, not throughout the volume. The mod-
led wavefield should be stored for each of the boundary sources in
s many points as possible throughout the medium. To calculate the
omponents of the Green’s tensor between two points, the appropri-
te components of the displacement vector in the first point, result-
ng from deformation-rate-tensor type sources on the boundary, are
rosscorrelated with the appropriate components of the Green’s ten-
or in the second point, resulting from the point-force sources from
he same location on the boundary. The resulting crosscorrelation
athers are subtracted and numerically integrated over the boundary
f source locations. Unprecedented flexibility follows from the fact
hat Green’s functions can be calculated between all pairs of points
hat were previously defined and stored in the initial boundary-
ource modeling phase. Thus, we calculate a partial modeling solu-
ion that is common to all Green’s functions, then a bespoke compo-
ent for each Green’s function. A flowchart of the interferometric-
odeling method is given in Figure 1 and discussed in detail below

or an acoustic, isotropic, point-scattering example.

oundary conditions

Note that because of the symmetry of the terms in the integrand in
quation 10, no sources are required along the earth’s free surface, or

igure 1. Flowchart of the proposed modeling method. The method c
hases: an initial phase that creates a partial modeling solution th
reen’s functions �computed only once using a conventional forw

ithm�, followed by a second phase where desired Green’s functions
he partial modeling solution using only crosscorrelation and sum
eed for additional modeling.
ny interface with homogeneous boundary conditions �e.g., with
anishing traction or vanishing particle displacement�. Intuitively,
his can be understood from a method of imaging argument: Because
uch interfaces act as perfect mirrors, reflecting all energy back into
he volume, an equivalent medium can be constructed that consists
f the original medium combined with its mirror in the homoge-
eous boundary but with the homogeneous boundary absent. Be-
ause the original boundary with source locations is also mirrored,
he new boundary completely surrounds this hypothetical medium;
herefore, the sources constitute a perfect time-reversal mirror. Note
hat when the free surface has topography, although the method of
maging argument breaks down, this property still holds.

According to equation 10, derivatives of the Green’s function
ith respect to the source location on the boundary also must be

omputed. As mentioned above, these terms correspond to the re-
ponse caused by special �deformation-rate-tensor type� sources on
he boundary and seem to require additional modeling with such spe-
ial sources before Green’s functions can be computed using the new
ethod. However, using reciprocity, these terms also can be inter-

reted as the traction measured on the enclosing boundary resulting
rom point forces at a particular point of interest �cf. equation 8�.
rosscorrelation of components of particle displacement with com-
onents of traction ensures that waves that are incoming and outgo-
ng at the surrounding boundary are separated correctly in the corre-
ation process �Wapenaar and Haimé, 1990; Mittet, 1994�.

When part of the surface surrounding the medium has outgoing
oundary conditions �i.e., no energy crosses the surface as ingoing
ave�, the displacement and the corresponding traction are related
irectly �Holvik andAmundsen, 2005�.

In Appendix A, it is explained in detail how these properties can
e exploited to avoid the need for additional direct modeling. When
he boundary sources are embedded in a medium that is homoge-
eous along the source array, the components of the particle dis-
lacement in a particular point-of-interest gather are simply Fourier
ransformed into the frequency-wavenumber domain, matrix-multi-

plied with an analytical expression, and inverse-
transformed back to the space-time domain. This
directly gives the corresponding components of
traction. When the boundary is curved or the me-
dium is inhomogeneous along the source array,
spatially compact filter approximations can be
designed to filter the data in the space-frequency
domain using space-variant convolution. Such an
approach is used commonly to decompose multi-
component seismic data into upgoing and down-
going waves in the shot domain and is described
in detail in, e.g., Robertsson and Curtis �2002�;
Robertsson and Kragh �2002�; van Manen et al.
�2004�; Amundsen et al. �2005�.

Recently, Wapenaar et al. �2005� have shown,
for the acoustic case, that when the surface sur-
rounding the medium has outgoing boundary
conditions, the two terms under the integral in the
interferometric-modeling equation �equation 10�
are approximately equal, but have opposite sign.
In addition, when the surrounding surface has
large enough radius such that Fraunhofer far-field
�i.e., normal incidence� conditions apply, only
monopole sources are required to compute
Green’s functions.

s of two main
mmon to all
deling algo-

mputed from
, without the
onsist
at is co
ard-mo
are co

mation
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pecial case: Interferometric modeling
f acoustic waves

The interferometric-modeling formula for acoustic waves can be
erived similarly, as discussed in detail by van Manen et al. �2005�.
ere, we simply state their result, valid for partially open acoustic
edia �i.e., with outgoing, radiation, or absorbing boundary condi-

ions on at least part of the surrounding surface�:

G*�x,x�� − G�x,x�� = �
S

1

��x��
�nj� j�G�x,x��G*�x�,x��

− G�x,x��nj� j�G
*�x�,x���dS�,

�11�

here G�x,x�� denotes the Green’s function for the pressure at loca-
ion x resulting from a point source of volume injection at location
�, and nj� j�G�x,x�� denotes the normal derivative of Green’s func-
ion with respect to primed coordinates. Thus, the pressure Green’s
unction G�x,x�� between two points x and x� can be calculated once
he Green’s functions between the enclosing boundary and these
oints are known. Note that the terms G�x,x�� correspond to simple
onopole sources on the surrounding surface, whereas the terms

j� j�G�x,x�� correspond to dipole sources. This formula will be used
n the next section to compute the Green’s function between points in
2D acoustic model with three isotropic point scatterers embedded

n a homogeneous background medium.

EXAMPLE 1: 2D ACOUSTIC ISOTROPIC
POINT SCATTERING

The methodology described above is now explained in more de-
ail using a simple 2D acoustic example. A more realistic elastic

odel, including strong heterogeneity and interfaces with homoge-
eous boundary conditions, is discussed in a later section. In Figure
, three isotropic point scatterers are shown, embedded in a homoge-
eous background medium of infinite extent �background velocity
0 = 750 m/s�. The point scatterers are indicated by large black
ots. The new method is used to model full-waveform Green’s func-
ions between arbitrary source and receiver locations in the medium.

As indicated in the flowchart in Figure 1, in the first step, a bound-
ry enclosing the medium is defined and spanned by source loca-
ions. A large number of so-called points of interest are also speci-
ed. In Figure 2, every second boundary-source location is marked
ith a star. The boundary sources should be spaced according to lo-

al Nyquist criteria. The grid of small points are the points where we
ay be interested in placing a modeled source or receiver later. The

umber of points of interest should be chosen to be as large as possi-
le, the only limitation being the waveform data-storage capacity. In
igure 2, the triangles denote some particular points of interest that
e will be looking at later.
In the second step of the initial phase, separate, conventional, for-

ard-modeling runs are carried out for each source on the boundary,
nd the wavefield is stored at all points of interest. In this example,
e have used a deterministic variant of Foldy’s method �Foldy,
945; Groenenboom and Snieder, 1995; Snieder and Scales, 1998�
o compute the multiply scattered wavefield for each boundary
ource. This method naturally incorporates radiation boundary con-
itions. Note that we could have used any method that accurately
odels multiple scattering �e.g., FD�. Our methodology is not re-

tricted to any particular forward-modeling method or code. Also,
ecause multiplication with a complex conjugate in the frequency
omain corresponds to crosscorrelation in the time domain, the
ethod is not limited to a frequency-domain implementation. In the

ollowing, the examples are computed using the time-domain equiv-
lent of equation 11.

In Figure 2, a snapshot of the early stages of the wavefield is
hown for the first source on the enclosing surface. Thus, in the sec-
nd step, the interior of the model is illuminated systematically from
he surrounding surface. During or after the simulations for all
oundary sources, it is convenient to sort the data into point-of-inter-
st gathers comprising data from all boundary sources recorded at
ach point of interest. These constitute a common component of all
reen’s functions involving that point of interest.
In the second intercorrelation phase, we now may calculate the

reen’s function between any pair of points that were defined be-
orehand by crosscorrelation and summation of boundary-source re-
ordings. In Figure 2, the triangles denote a subset of points that we
ould be interested in as part of, e.g., a crosswell-survey design ex-
eriment.

In Figure 3a–d, the modeled wavefield resulting from each mono-
ole source on the boundary is shown for two of the points of interest

1 and bmx2 �with coordinates �−50,0� and �50,−50�, respectively�.
ote that even though there are only three isotropic point scatterers,

everal multiply scattered waves can be easily identified. Also, note
he flat event at approximately t = 0.2 s. This is the incident wave
rom each boundary source, scattered isotropically in the direction
f the two points of interest by the central scatterer �which is equidis-
ant from each boundary source�. In Figure 3b and c, the normal de-
ivative with respect to the boundary has been computed by spatial
ltering of the point-of-interest gathers �a� and �d�, respectively, to
imulate the response resulting from dipole sources on the boundary.

igure 2. 2D acoustic model and snapshot of the first boundary-
ource wavefield: Three isotropic point scatterers �large black dots�
mbedded in a homogeneous background medium v0 = 750 m/s of
nfinite extent. Stars �*� mark every second-source location on a sur-
ace enclosing the medium. Particular sources are numbered for ref-
rence with Figure 3a–f. Small dots �·� mark potential source and re-
eiver locations �points of interest� for Green’s-function intercorre-
ation. Triangles mark one of many crosswell-source/-receiver con-
gurations that can be evaluated using the new method. In the initial
hase, the wavefield is computed for all boundary sources separately
nd stored in all points of interest.
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his is possible because we have outgoing �i.e., absorbing or radia-
ion� boundary conditions on the surrounding surface, and hence the
ressure and its gradient are related directly �see the section on
oundary conditions and Appendix A for details�. Calculation of the
ormal derivative with respect to the boundary-source location is
ompletely equivalent to measuring the response resulting from a di-
ole source so; alternatively we could have modeled the required
radient using a second dipole-source type. Typically, however, di-
ect modeling would be computationally much more expensive.

Figure 3e and f show the trace-by-trace crosscorrelation of panels
a� and �c�, and �b� and �d�, respectively. Thus, they form the two
erms in the integrand of the time-domain equivalent of equation 11.
t is difficult to make a straightforward interpretation of the crosscor-
elation gathers: Although equation 11 predicts that the waveform
esulting from summation of these crosscorrelations for all bound-
ry sources will be antisymmetric in time, panels �e� and �f� clearly
re not. This is because, at this stage, we still have not carried
hrough the Huygens’ summation �integration�, which provides the

igure 3. Modeled waveforms for all boundary sources in two points
rosscorrelation: �a� Monopole response in point x1, and �b� corre
ponse computed by spatial filtering �see text for details�. �c� Dipole
omputed by spatial filtering, and �d� corresponding monopole respo
ation of �a� and �c�. �f� Crosscorrelation of �b� and �d�. The difference
nd �f�, weighted by �−1, forms the integrand of equation 11. �g� Inte
unction �solid line� and a directly computed reference solution �sq
etails of the signals in time intervals bounded by dashed boxes. No
f the intercorrelation Green’s function across t = 0 s, as predicted b
elicate �but stable� constructive and destructive interference of the
ack-propagating wavefield. It can be seen, as predicted by Wap-
naar et al. �2005� and discussed in the section on boundary condi-
ions, that Figure 3e and f are approximately equal, but have opposite
ign. A more thorough analysis of the features of such crosscorrela-
ion gathers is presented for the second example.

In the final step, crosscorrelation gathers of Figure 3e and f are
eighted by �−1, subtracted, and numerically integrated �summed�
ver all source locations. The resulting intercorrelation Green’s
unction and a directly computed reference solution are shown in
igure 3g. The insets show particular events in the waveform in de-

ail.
To further illustrate the new modeling method, the intercorrela-

ion phase is now applied repeatedly to look up Green’s functions for
simple crosswell-transmission- and reflection seismic experiment

hown in Figure 2 �source and receiver locations are indicated by tri-
ngles�. Note that this does not require any additional conventional
orward modeling, but instead uses the same data modeled in the ini-

tial phase. Also, note that we could consider a
completely different well location, for any com-
bination of points of interest �indicated by small
dots in Figure 2�, as long as they were defined be-
forehand and the wavefield was stored in those
points during the initial modeling phase.

In Figure 4a and b, Green’s functions comput-
ed using a conventional forward-modeling meth-
od and the new method are shown, respectively.
These Green’s functions correspond to the trans-
mission experiment shown in Figure 2 �source at
�−50,−50�, receivers distributed vertically from
�50,50� to �50,−50� at 1-m spacing�. Note that the
amplitudes have been scaled up to show the weak,
multiply scattered events. In Figure 4c , the differ-
ence between the Green’s functions computed
with the two methods is shown, and the amplitude
differences have been scaled up by a factor of 10
to emphasize the match. Similarly, in Figure 4d,
c, and f, Green’s functions computed using the
new method are compared to a reference solution
for the reflection setting shown in Figure 2
�source at �−50,−50�, receivers distributed verti-
cally from �−50,50� to �−50,−50� at 1-m spac-
ing�. Again, amplitude differences have been
scaled up by a factor of 10. Note the mismatch in
the Green’s function for the direct wave close to
the original-source location. This error results
from the missing acoustic sink and the band-lim-
ited nature of the synthetic signals and agrees
with the theory that predicts the diffraction-limit-
ed Green’s function will be retrieved.

EXAMPLE 2: 2D ELASTIC
PLUTO MODEL

In the second example, we apply the method to
an elastic model that is more relevant to the ex-
ploration seismic setting. In Figure 5, the com-
pressional-wave velocity in a 4.6- � 4.6-km re-
gion of the elastic Pluto model �Stoughton et al.,
2001� is shown. This model is used often to

rest and their
ng dipole re-
se in point x2

� Crosscorre-
en gathers �e�
ation Green’s
. Insets show
ntisymmetry
ion 11.
of inte
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enchmark marine seismic-imaging algorithms. A high velocity
4500 m/s� salt body on the right represents a common imaging
hallenge. In black, two particular points of interest, x1 and x2, are
hown �offset 1 km�. The solid line S denotes the boundary with
ource locations. Every twentieth source location is marked by a
quare, and selected source locations are numbered. These should be
istributed with sufficient density such that the wavefields are not
liased after sorting the data into point-of-interest gathers. Outgoing
i.e., radiation or absorbing� boundary conditions �Clayton and En-
quist, 1977� are applied just outside the surface, enclosing the
oints of interest to truncate the computational domain.

Forward simulations were carried out for all of the source loca-
ions on the boundary using an elastic FD code �Robertsson et al.,
994�, and the waveforms were stored at a large number of points
istributed regularly throughout the model. Because we are dealing
ith the 2D elastodynamic-wave equation, at

east two forward simulations must be carried out
or each source location: one for each point-force
ource in mutually orthogonal directions. Here,
e also directly computed the response for the

pecial deformation-rate tensor sources, but the
quivalent traction data could have been obtained
lso by spatial filtering of the particle-velocity
oint-of-interest gathers �see the section on
oundary conditions and Appendix A�. Since the
D-modeling code is based on a velocity-stress
ormulation, in the following particle velocity,
reen’s tensors are used and the interferometric
reen’s functions are computed after taking the

ime derivative of the interferometric-modeling
quation �equation 10�. Again, results are shown
n the time domain.

Figure 6 shows the first 4 s of ġ11�x1,x�� �i.e.,
he horizontal component of particle velocity in
1 resulting from horizontal point-force sources
t location x� on the boundary� for all boundary
ources. For reference, several sources on the
oundary have been numbered in Figure 5 �the
umbering increases clockwise from just below the free surface on
he right�. As explained in the section on boundary conditions, no
ources are required along the free surface.

An interesting feature of the data, to which we will return later, oc-
urs approximately between sources 200–475 and between sources
800–2200. These sources are located in the near surface of the sedi-
entary column, just beneath the water layer. The Pluto model in-

ludes many randomly positioned, near-surface scatterers, repre-
enting complex near-surface heterogeneity that is often observed in
ature. Within these two source ranges, it is clear that all coherent ar-
ivals are followed by complicated codas that are superposed, result-
ng in a multiply scattered signal that builds with time.

When all components of the Green’s tensor and the equivalent
raction data have been retrieved for the two points of interest x1 and

2, the gathers are crosscorrelated and summed according to the
quivalent interferometric-modeling equation for particle velocity.
ote that even before numerical integration, this requires summa-

ion of crosscorrelation gathers since Einstein’s summation conven-
ion for repeated indices is used �e.g., in equation 10�.

Figure 7a shows the integrand of the interferometric-modeling
quation for particle velocity �in the time domain� for the ġ11�x2,x1�
omponent of Green’s tensor between the two points of interest x

Figure 4. Com
method and a
Figure 2 with
�b� interferom
tion �reflectio
the mismatch
lution is diffra
1

nd x2. Note how the strongly scattered coda previously identified in
igure 6 affect both negative and positive time lags in the crosscorre-

ation. In Figure 7b, the Green’s function ġ11�x2,x1� resulting from
irect summation of the crosscorrelation traces in Figure 7a along
he horizontal direction is shown. Note the emergence of the time
ymmetry �across t = 0 s� from the nonsymmetric crosscorrela-
ions. The intercorrelation Green’s function is time-symmetric in-
tead of antisymmetric, as predicted by equation 10, because parti-
le-velocity Green’s functions were used in the example instead of
article-displacement Green’s functions.

In Figure 8, the four components of the particle-velocity Green’s
ensor computed using the new method �in blue� are compared to a
irectly computed reference solution �in green�. The ġ11�x2,x1� com-
onent in Figure 8a was shown already in Figure 7b. Note the good
atch between the directly computed reference solutions and the

n of Green’s functions computed with the interferometric-modeling
ce solution for the crosswell-transmission and -reflection setting in
e source fixed at �−50,−50�. �a� Reference solution �transmission�,
lution �transmission�, and �c� difference ��10�. �d� Reference solu-
nterferometric solution �reflection�, and �f� difference ��10�. Note
r coincident source-receiver; this is because the interferometric so-

imited.

igure 5. P-wave velocity of a 2D elastic marine-seismic model. The
olor scale is clipped to display weak velocity contrasts �P-wave ve-
ocity of salt is 4500 m/s�. The model is bounded by a free surface on
op and by absorbing boundary conditions on the remaining sides.
very twentieth source on the surrounding surface S is marked by a
ot.
pariso
referen
a singl
etric so
n�, �e� i
in �f� fo
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reen’s functions computed using the new method, even at late
imes. The waveforms have been scaled and clipped to show the

atch in more detail. Some numerical noise at acausal time lags �i.e.,
efore arrival of the direct wave� can be seen clearly. This noise
robably is caused by a slight undersampling of the shear wavefield,
ecause the computational parameters have been set rather tightly to
inimize computational cost. Note how the different source-radia-

ion patterns are reproduced accurately by the new modeling meth-
d; Figure 8a and b show more P-wave energy �e.g., the first signifi-
ant arrival�, which is consistent with a point-force source in the hor-
zontal direction and the second point of interest at the same depth
evel, whereas Figure 8c and d show more S-wave energy because of
he maximum in S-wave radiation in the horizontal direction by a
oint-force excitation in the vertical direction.

INTERPRETATION OF THE
CROSSCORRELATION GATHER

The time series in Figure 7 bear little resemblance to the final
reen’s function in Figure 8. Equation 10 sums signals such as those

n Figure 7 along the horizontal axis and hence relies on the delicate
onstructive and destructive interference of time-reversed waves
ack-propagating through the medium, recombining and undoing
he scattering at every discontinuity to produce the Green’s function.
n Figure 7, each column represents the set of all waves propagating
rom point x1 to a particular location on the boundary, correlated
ith the Green’s functions from a source at that location to x2. Thus,

ach column represents the Huygens’ contribution of a particular
oundary source to point x2, when the time-reversed wavefield is ap-
lied as a boundary condition. Some of the energy propagating from
1 to this boundary source may pass through x2 before being record-
d, and therefore has part of its path in common with waves emitted
rom x2 in the same direction. The traveltimes associated with such
dentical parts of the path are eliminated in the crosscorrelation, and
he remaining traveltime corresponds to an event in the Green’s

igure 6. Point-of-interest gather for the left point in Figure 5 show-
ng ġ11�x1,x��, the horizontal component of particle velocity in the
oint of interest caused by individual horizontal point-force sources
n the boundary. This is one of four required particle-velocity
reen’s-function gathers, computed in the initial phase, needed in

he construction of all Green’s functions involving that point.
unction from x1 to x2. Similarly, some waves emitted from x2 may
ravel to the boundary-source location via x1 and have a common
ection of path between x1 and the boundary source. Again, travel-
ime on the common section will be eliminated and give rise to the
ame event in the Green’s function from x1 to x2, but at negative
imes. Note that the directions involved with such overlapping paths
or positive and negative times in general are not parallel, because
hey are related to propagation of energy to the boundary through the
ackground structure of the whole model �hence, one or the other
ay not even exist for the same boundary source�. Hence, waves at

ositive and negative times are reconstructed differently, even
hough the final Green’s function constructed is identical.All energy
n the crosscorrelations corresponding to waves that do not pass
rom x1 through x2, or vice versa, is eliminated by destructive inter-
erence through summation of the columns. This process of con-
tructive and destructive interference is discussed in detail by Snied-
r �2004� and Snieder et al. �2006� using the method of stationary
hase.

COMPUTATIONAL ASPECTS

We now discuss some computational aspects of the new modeling
ethod. First, an estimate of the number of floating-point operations

igure 7. Green’s-function intercorrelation gather �weighted� for the
wo points shown in Figure 5. The low correlation amplitude for
oundary sources 620-800 corresponds to the shadow of the salt
ody. �b� Interferometric Green’s function, ġ11�x1,x2,−t� + ġ11�x1,
2,t�, �blue� computed by direct summation of the crosscorrelations
n panel �a� along the horizontal direction, compared to a directly
omputed reference solution �green�. Note the emergence of time
ymmetry from the asymmetric crosscorrelations. The reconstruct-
d Green’s function is symmetric, rather than antisymmetric �as pre-
icted by equation 10�, because particle-velocity Green’s functions
ere used instead of particle displacement as in the theory.
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flops� is derived for both the initial and intercorrelation phase and
ompared to the cost of a sequence of conventional FD computa-
ions. Then memory and storage implications are highlighted. In
able 1, parameters and variables mentioned in the computational
iscussion are summarized.

In the following, we ignore the cost of modeling the response to
he second source type �i.e., the dipole or deformation-rate tensor
ources�. As explained in detail in Appendix A, the gradient �or trac-
ion� can be computed from the pressure �or particle velocity�
hrough a spatial-filtering procedure as applied to the point-of-inter-
st gathers. The cost of this type of spatial filtering is typically insig-
ificant compared to the FD simulations.

he cost of the initial phase and direct computation

Both direct computation and the initial phase of the new method,
hile consisting of a sequence of conventional FD simulations, have
computational cost that is directly proportional to the cost of a sin-
le FD simulation, CFD. Typically, CFD 	 aNTNX

d , where NT is the
umber of timesteps, NX is the number of gridpoints in each of d di-
ensions, and a is the number of flops required for the evaluation of

he discrete temporal and spatial derivatives �e.g., a = 22 for a typi-
al acoustic 2D FD code�. When the data are computed directly, on
he order of NM FD simulations are required �where NM is the mini-

um of the number of source and receiver locations considered in
he modeling�, whereas in the initial phase of the new method at least

S FD runs need to be carried out �where NS is the number of source
ocations on the boundary�.

For the new modeling method, however, the simulation time T
ust be longer than in a conventional FD simula-

ion: Energy that is time-reversed must be record-
d on the surrounding surface �in the equivalent
eciprocal experiment�. In the following, we as-
ume that this doubles the simulation time for the
ew method. Defining a quantity q, where q = 1
or acoustic and q = d for elastodynamic prob-
ems, and in the typical case that we are interested
n all the components of the Green’s tensor, we
nd for direct computation and the initial phase of

he new method

CCONV = qNMCFD, �12�

CINIT = 2qNSCFD. �13�

he cost of looking up a
reen’s function

Although the initial phase constitutes the bulk
f the computations, the cost of looking up a
reen’s function cannot simply be ignored, espe-

ially when the number of Green’s functions that
s looked up is large. For each Green’s function, at
east NS crosscorrelations and summations must
e computed and often more.

On the other hand, in the second, intercorrela-
ion phase of the new method, the strict spatio-
emporal sampling requirements of a typical, full-
aveform modeling method �as governed by nu-

Table 1. Var

Parameter

a

c

d

q

CFD

CFFT

CGREEN

CINIT

CCONV

CNEW

NX

NT

NT�

NS

NGF

NM
erical accuracy and the Courant criterion� can be relaxed to Ny-
uist criteria. For a typical acoustic 2D FD code with second-order
ccuracy in time and fourth-order accuracy in space, it can be shown

mentioned in the computational discussion.

ription Units

ber of operations to evaluate the discrete
oral and spatial derivatives

flops

ber of crosscorrelations for a single
ponent of Green’s tensor

dimensionless

ension of the modeling dimensionless

ber of source components dimensionless

of a single finite-difference run flops

of a combined FFT of two padded,
valued traces

flops

of a single Green’s function intercorrelation flops

of the initial phase in the new method flops

of a conventional sequence of FD
lations

flops

using the new methodology to compute
n’s functions

flops

ber of gridpoints along a typical dimension dimensionless

ber of timesteps in the initial FD
putations

dimensionless

ber of timesteps in the intercorrelation phase dimensionless

ber of source locations on the boundary dimensionless

ber of Green’s function intercorrelations dimensionless

imum number of conventional sources or
ivers

dimensionless

igure 8. Components of the particle-velocity Green’s tensor
˙ �x2,x1� computed by summation of weighted intercorrelation gath-
rs using the new method �blue� compared to reference solutions
omputed using a conventional FD method �green�. �a� ġ11�x2,x1�,
b� ġ12�x2,x1�, �c� ġ21�x2,x1�, �d� ġ22�x2,x1�. For details see text.
iables
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hat the ratio of the number of samples NT in the initial phase to the
umber of samples NT� in the intercorrelation phase can be as large as
0. Thus, the cost of looking up a Green’s function in the intercorre-
ation phase is reduced substantially by abandoning the oversam-
ling.

In addition, waveforms modeled in the initial phase are stored in
he frequency domain in anticipation of the crosscorrelations in the
ntercorrelation phase. This avoids having to recompute the Fourier
ransform �FT� of point-of-interest gathers when computing several
reen’s functions involving the same point of interest. To avoid end

ffects, the traces are padded with NT� zeros. Transforming a wave-
orm to the frequency domain using a fast Fourier transform �FFT�
herefore takes on the order of

CFFT 
 NT� log2�NT� + 1� �14�

ops, where NT� is twice the number of time samples in the desired
one-sided� final seismogram, and we have made use of the fact that
he FFT of two real traces can be computed at once.

The number of crosscorrelations, c, that need to be computed for a
oundary-source location depends on the type of wave equation
i.e., scalar or vector� and the spatial dimensionality of the problem,
. For an acoustic problem, there is only a single, scalar quantity and
his does not increase with the spatial dimensionality. Therefore, c

2, the number of terms in the integrand in equation 11. For an elas-
ic problem, the implicit Einstein summation �for repeated indices�
n equation 10 and the two terms in the integrand lead to c = 2d. The
coustic and elastic cases can be written in the same form, using the
uantity q defined above: c = 2q. Complex multiplication of the
ositive frequencies for all source locations on the boundary and the
crosscorrelations requires 6cNSNT� operations. Complex addition
f the c crosscorrelation gathers requires 2�c − 1�NSNT� operations.
ultiplying the crosscorrelation gathers with the �varying� weight-

ng factor along the boundary requires 2NSNT� operations. Summing
he weighted crosscorrelations for all source locations requires
�NS − 1�NT� flops. Thus, the total number of flops required for the
ntercorrelation of a single component of Green’s tensor is approxi-
ately

CGREEN 
 �8c + 2�NSNT� + CFFT, �15�

here CFFT relates to the final inverse FFT. Note that CFFT can typi-
ally be neglected, because in most cases of interest �8c
2�NS � log2�NT� + 1�. In Table 2, c is computed for 2D and 3D

coustic and elastic modeling.

able 2. Number of floating-point operations (flops) per
ridpoint and timestep in 2D and 3D acoustic and elastic
D modeling.

Parameter

Acoustic Elastic

2D 3D 2D 3D

a 22 32 50 102

q 1 1 d�=2� d�=3�

c�=2q� 2 2 4 6
omparison of direct computation
nd the new method

To make an exact comparison between direct computation and the
ew method means that one already has chosen a particular source
nd receiver geometry. In many cases, such as survey evaluation and
esign and full-waveform seismic inversion, this is simply not possi-
le, and therefore the new method enables the full potential of such
pplications. In other applications, such as straightforward simula-
ion of synthetic data, one intrinsically limits the uses of the data by
eciding on a geometry upfront �e.g., by choosing the source or re-
eiver depth�s� when generating a towed marine synthetic-seismic
ata set�. Nevertheless, it is instructive to assess the relative efficien-
y of the two methods when a given set of Green’s functions must be
omputed.

Assuming that we are interested in all d2 components of the
reen’s tensor and that NGF Green’s functions are looked up, the cost
f the new method compared to a sequence of conventional FD sim-
lations follows directly from equations 12, 13, and 15:

CCONV = qNMCFD, �16�

CNEW = 2qNSCFD + q2NGFCGREEN. �17�

rom these equations, it is not immediately clear that the new meth-
d is always more efficient than direct computation. For instance, in
he case that one is interested in only Green’s functions between a
ingle point and a set of other points, the initial computational bur-
en clearly makes the new method inefficient. In the other extreme
ase, where one is interested in all combinations of Green’s func-
ions between a large number of points, NM, the new method is also
ess efficient, because the number of Green’s functions to be looked
p, NGF, is proportional to the square of NM. In such a case, equations
6 and 17 are a straight line through zero and a vertically offset pa-
abola, as a function of NM, respectively, and, at best, there may be a
egion where the new method is more computationally efficient.

On the other hand, in applications where Green’s functions be-
ween a large number of points interior to a medium are desired, but
here there are no common source or receiver points, the upfront
alue of the new method is obvious. In such a case, a separate con-
entional FD simulation is required for each Green’s tensor, and
ence, NGF = NM. In this case, equations 16 and 17 are a straight line
hrough zero and a vertically offset straight line, as a function of NM,
espectively, and the new method becomes more efficient beyond
he intersection point of the two lines. No other existing method
ould offer full waveforms at comparable computational cost.

emory and storage

Assuming that a standard, isotropic, elastic FD method is used
e.g., not relying on domain decomposition�, the amount of run-time
emory required for storage of the �d/2��d + 3� field quantities

e.g., vi and �ij�, and three medium parameters �e.g., �, �, and �� is at
east 4��d/2��d + 3� + 3�NX

d bytes �for a heterogeneous medium
nd calculations carried out in single precision�. We note that for a
edium size of NX = 1000, a 3D elastic problem will require on the

rder of 45 Gbytes of primary memory. This number grows consid-
rably for even more complex media �e.g., anisotropic�, and the
omputations therefore typically rely on large shared-memory ma-
hines or heavily parallelized algorithms running on clusters with
igh-performance connections. Using our methodology, we com-
ute a table of all point-of-interest gathers using high-end computa-
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ional resources. The computations in the intercorrelation phase, on
he other hand, would be performed on much smaller machines, be-
ause they require a substantially smaller amount of primary memo-
y and because they require only a subset of the intercorrelation table
o be exported. We have shown how the point-of-interest gathers
ith Green’s functions constitute a common component of all
reen’s functions in the medium through equation 10.

SIMULTANEOUS SOURCES: LIMITS
OF ENCODING AND DECODING

We also investigated exciting all of the boundary sources simulta-
eously by encoding the source signals using pseudonoise sequenc-
s �Fan and Darnell, 2003� and with simultaneous sources distribut-
d randomly in the medium �Derode et al., 2003� as two alternative
ays to reduce the number of sources, and hence, the computational

ost of the initial forward-modeling phase. Such approaches have
een investigated in attempts to speed up conventional FD simula-
ions, although in surprisingly few published studies. Recent experi-

ental evidence in passive imaging; however, using techniques
ased on interferometry and time reversal seems to suggest that such
n approach would be highly feasible for the new modeling method.
or instance, Wapenaar and Fokkema �2004� and Derode et al.
2003� show that, when the sources surrounding and inside the medi-
m consist of uncorrelated noise sequences, their autocorrelation
ends to a delta function, and terms involving crosscorrelations be-
ween the different noise sequences can be ignored. However, it is
ell known in the field of communications analysis that Welch’s
ound �Welch, 1974� poses a fundamental limit to the quality of sep-
ration of such pseudonoise sequences of a given length, when emit-
ed simultaneously. InAppendix B, it is shown that, when making no
ssumptions about the Green’s function, the signal-to-interference
from the unwanted crosscorrelations between the encoding se-
uences� ratio in the final modeled seismogram is proportional to
�N, where N is the length of the sequences. Thus, the signal-to-in-

erference ratio only improves as the square root of the sequence
ength. Note that the number of sequences required, the so-called
amily size M �equal to the number of boundary sources: M = NS�,
oes not influence the signal-to-interference ratio. A similar expres-
ion was derived recently by Snieder �2004�, using a statistical ap-
roach to explain the emergence of the ballistic �direct wave�
reen’s function through an ensemble of scatterers with uncorrelat-

d positions.
Although in principle and in real-life experiments it is possible to

educe such interference by time/event averaging—where data are
odeled for free and all we have to do is listen longer �Snieder

004�—in synthetic modeling of Green’s functions, it is exactly the
odeling itself that is expensive. Therefore the use of pseudonoise

equences for the purpose of interferometric, simultaneous-source
D modeling is probably limited. In all explored cases, the limits of
eparation caused relatively high-noise levels compared to the
quivalent FD effort using the direct method described above.

DISCUSSION

Whereas traditional approximate-modeling methods typically
mpose restrictions with respect to the degree of heterogeneity in the

edium of propagation or neglect high-order scattering, the new
ime-reversal modeling methodology allows us instead to compro-

ise on noise level, while maintaining high-order scattering and full
eterogeneity in the medium. Recent experimental and theoretical
ork indicates that time-reversed imaging is robust with respect to
erturbations in the boundary conditions �Snieder and Scales, 1998;
erode et al., 2003�. For cases where the wave propagation is heavi-

y dominated by multiple scattering, even a single source may be suf-
cient to excite all wavenumbers in the model, and hence to refocus
ssential parts of a time-reversed signal �Draeger and Fink, 1999�.
ven when not all wavenumbers are excited by a single source, such
s in the examples above, it may be possible to reduce substantially
he number of sources and still recover essential parts of the signal.
an Manen et al. �2005� showed that even for as few as one-sixteenth
f the original number of sources, they were able to reproduce ampli-
ude and phase of an arrival of interest fairly accurately, but with an
ncreased noise level. Clearly, the required number of sources will
epend on the application. For many applications, the possibility to
rade off signal-to-noise ratio to central processing unit �CPU� time
ithout compromising on medium complexity or high-order scatter-

ng will be another attractive property of the new method.
We anticipate that the new methodology also will have a signifi-

ant impact on inversion. For example, Oristaglio �1989� has shown
hat the Porter-Bojarski equation �similar to equation 10� forms the
asis for an inverse-scattering formula that uses all the data. He
roved that a three-step imaging procedure, consisting of back prop-
gation of receiver and source arrays followed by temporal filtering,
ives the scattering potential within the Born approximation. His
ormula relies on complete illumination of a �3D� scattering object
rom a surface surrounding the object, as our modeling method does.

Interestingly, the method provides exactly those Green’s func-
ions required for direct evaluation of higher-order terms in the Neu-

ann-series solution to multiple scattering. Consider perturbing an
nhomogeneous background model �e.g., by adding multiple, isotro-
ic point scatterers�. In such a case, computation of the interscatterer
reen’s functions in the background medium may not be trivial, and

he new method provides such Green’s functions efficiently and
exibly. Note that we do not have to specify even beforehand in
hich regions of the model we want to perturb or to add the scatter-

rs. Rose �2002� argues that focusing, combined with time reversal,
s the physical basis of exact, inverse scattering and derives the New-
on-Marchenko equation from these two principles.

The new method also provides a flexible way to compute spatial
erivatives of the intercorrelation Green’s functions with respect to
oth source and receiver coordinates for any region in the model,
rovided the points of interest are spaced closely enough in the ini-
ial modeling phase. This makes it straightforward to consider other
ypes of sources and receivers, such as pure P- and S-wave sources
nd receivers �see, e.g., Wapenaar and Haimé �1990�; Robertsson
nd Curtis �2002�; Wapenaar �2004��. Alternatively, in cases where
he medium is relatively well known, but where the objective is to
rack some kind of nonstationary source or receiver within the vol-
me, computationally cheap spatial derivatives also may be a signif-
cant advantage.

CONCLUSION

We have shown how the elastodynamic representation theorem
an be used to time-reverse a wavefield in a volume, and how, using a
econd set of Green’s functions, the time-reversed wavefield may be
omputed at any point in the interior. We emphasized the relation-
hip between time reversal, interferometry, holography, and reci-
rocity theorems of the correlation type. By invoking reciprocity, we
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rrived at an expression that is suitable for interferometric modeling
f wave propagation and suggested an efficient two-stage modeling
cheme, whereby, in an initial phase, the model is illuminated from
he outside using a sequence of conventional forward-modeling runs
nd, in a second phase, Green’s functions between arbitrary points in
he volume can be computed using only crosscorrelations and sum-

ation �numerical integration�. The method was illustrated in detail
sing an acoustic, isotropic, point-scattering example and applied to
region of the elastic Pluto model. A physical description of the

rosscorrelation gathers was given, and the computational aspects
ere discussed. The limitations of source encoding and decoding
ere discussed also. Finally, implications for modeling and inver-

ion were suggested. We expect that the new method may change
ignificantly the way we approach modeling and inversion of the
ave equation in the future.
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APPENDIX A

COMPUTATION OF THE GRADIENT
BY SPATIAL FILTERING

It is well known that when the wavefield on a boundary satisfies
utgoing �i.e., radiation or absorbing� boundary conditions, the
avefield and its gradient �or traction� are related directly. For exam-
le, Holvik and Amundsen �2005� derive the following expressions
n the frequency-wavenumber ��,k� domain that relate the upgoing
omponents of particle velocity V�up��k� of a plane wave propagat-
ng with horizontal slowness p = �k/�� to the upgoing traction T�up�

�k� across a horizontal array of receivers �sources�:

T�up��k� = LTV�k�V�up��k� , �A-1�

here the particle velocity and traction vector are defined as

V�up� = �V1
�up�,V2

�up�,V3
�up��T �A-2�

T�up� = �T1
�up�,T2

�up�,T3
�up��T �A-3�

nd T denotes transposed. The 3 � 3 matrix LTV�k� is derived as
Holvik andAmundsen, 2005�:

LTV =
��

k��kz,	 −
ky

2

k

2 �kz,	 − kz,
�

kxky

k

2 �kz,	 − kz,
� kx�1 − 2k


−2k��

kxky

k

2 �kz,	 − kz,
� kz,	 −

kx
2

k

2 �kz,	 − kz,
� ky�1 − 2k


−2k��

− kx�1 − 2k

−2k�� − ky�1 − 2k


−2k�� kz,



 .

�A-4�
n equation A-4, kx and ky are the components of the wavenumber
ector parallel to the array of receivers �sources�; kr = �kx

2 + ky
2�1/2 is

he length of the wavenumber vector, and kz,	 = �k	
2 − kr

2�1/2 and kz,


�k

2 − kr

2�1/2 are the P- and S-wavenumbers perpendicular to the ar-
ay of receivers �sources�, respectively, with k = ��/	� and k
	 

��/
� the P- and S-wavenumbers. In addition, an auxiliary quanti-
y k� = kr

2 + kz,	kz,
 has been defined.
Similarly, for acoustic waves propagating in a single direction

cross an array, the pressure P�k� and its gradient �P�k� are related
hrough

�P

�n
� n · � P = ikz,	P , �A-5�

here n is the normal to the array and i is the imaginary unit. Note
hat these relations depend on material properties and require that the

edium is �locally� laterally homogeneous.
Thus, equations A-1–A-5 allow us to calculate the outgoing trac-

ion or pressure gradient associated with the modeled particle veloc-
ty or pressure on the surface surrounding the medium, because ab-
orbing boundaries were included right outside the enclosing bound-
ry during the modeling.

The implementation of equations A-1–A-5 is straightforward
hen the wavefield is recorded �or emitted� on a linear array of regu-

arly spaced receivers �sources� embedded in a homogeneous medi-
m. In that case, the point-of-interest gathers can be directly trans-
ormed to the frequency-wavenumber domain, and the matrix multi-
lication carried out explicitly before the components of the result-
ng traction vector are inverse-Fourier transformed to the space-
requency domain.

Alternatively, when the medium is laterally varying or the array of
eceivers �sources� is curved, equation A-1 can be implemented by
esigning spatially compact filters that approximate the terms of LTV

or, in the acoustic case, i�q	� and filtering the data in the space-fre-
uency domain. Such an approach has been used in, for instance, the
eabed seismic setting to decompose the wavefield measured at the
eabed into upgoing and downgoing P- and S-waves �Røsten et al.,
002; van Manen et al., 2004� and is based on solving a linear least-
quares problem with �in�equality constraints to find a small number
f spatial-filter coefficients with a wavenumber spectrum that best
atches the spectrum of the analytical expression. Because the ana-

ytical expressions �equations A-4 andA-5� are functions of frequen-
y, this optimization is carried out separately for each frequency. The
aterally varying seafloor properties are accomodated by designing
uch compact filters for the particular seafloor properties that are
resent at each receiver location. These filters are applied then to the
oint-of-interest gathers in the space-frequency domain by space-
ariant convolution.

Note that the filter coefficients must be optimized only once for a
articular model and can be reused for all Green’s functions that are
omputed in the intercorrelation phase. This approach was tested
n acoustic data computed for the Pluto model �modeled with 

0 m/s� and gave good results.

APPENDIX B

THE WELCH BOUND AND LIMITS TO
ENCODING USING PSEUDONOISE SEQUENCES

In communications analysis, the problem of encoding and decod-
ng signals using pseudonoise sequences and its limits are well
nown. In particular, Welch �1974� has shown that for any family of

M �unit energy� sequences �an
�i��, i = 0, . . . ,M − 1, n = 0, . . . ,N

1 of length N, a lower bound on the maximum �aperiodic� cross-
orrelation or off-peak autocorrelation is
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Cmax = max�Cam,Ccm� � � M − 1

M�2N − 1� − 1
�B-1�

here Cam and Ccm are the maximum off-peak autocorrelation and
aximum crosscorrelation values defined by

Cam = max
i

max
1�
 �N−1

�Ci,i�
��

Ccm = max
i�j

max
0�
 �N−1

�Ci,j�
�� ,

nd Ci,j is the discrete aperiodic correlation function of the sequenc-
s an

�i� and an
�j� defined as

Ci,j�
� = � �
n=0

N−1−


an
�i�an+


�j� , 0 � 
 � N − 1

�
n=0

N −1+


an−

�i� an

�j�, − N + 1 � 
 � 0

0, �
 � � N .
�

ote that the Welch bound �equation B-1� holds without reference to
particular type of sequence set �e.g., maximal, Kasami or Gold se-
uences �Fan and Darnell, 2003�. This means that when we encode
ignals using sequences of any such family, superpose the encoded
ignals, and subsequently decode using crosscorrelation, there will
e some point in the decoded output where the interference between
he original data sequences is at least Cmax. We can estimate the best
ossible performance that can be expected �without making any
uestionable assumptions about the uncorrelatedness of the Green’s
unctions from boundary sources to points of interest� by looking at
he rms expected signal-to-interference ratio when all members an

�i�

f the sequence set simply are added, and the result rn is autocorrelat-
d. Thus, we have

rn = �
i

an
�i� �B-2�

nd the corresponding autocorrelation Cr

Cr�
� = �
n=0

N−1−


rnrn+ 
 , 0 � 
 � N − 1, �B-3�

hich, using equation B-2 can be written

�B-4�

he first term denotes the diagonal, or signal term CD�
�, whereas
he second term CC�
� denotes the cross terms related to the �un-
anted� interference between the different codes and contains a dou-
le summation.

Equation B-4 mimics the structure of the interferometric-model-
ng equations �equations 10 and 11�: When the boundary source sig-
als are encoded using pseudonoise sequences and excited simulta-
eously, it is their superposition �convolved with the Green’s func-
ion� that is recorded in the points of interest. And when calculating
he Green’s function, decoding, crosscorrelation, and summation are
mplicit in a direct correlation �just as in a typical retrieval of the
reen’s function from uncorrelated noise sources�. Thus, as long as
e assume that the Green’s functions from the boundary to the
oints of interest do not influence the signal-to-interference ratio, an
stimate of the ratio can be found by analyzing equation B-4. This is
one by comparing the expected magnitude of the first term to the
agnitude of the second term. Since the diagonal term consists of a

um of the autocorrelations of the sequences, its magnitude is maxi-
um at zero lag �
 = 0� and equal to the family size M:

CD�0� = �
i

�
n=0

N−1

an
�i�an

�i� = M , �B-5�

ecause the signals are unit energy. The expected value of the second
erm is calculated actually by Welch as part of his derivation of equa-
ion B-1. In fact, Welch’s original statement is basically a lower
ound on the rms value of a family of unit-energy signals:

Crms � � M − 1

M�2N − 1� − 1
, �B-6�

nd because Cmax � Crms, equation B-1 follows. Thus, the Welch
ound gives the rms value of each of the terms within the double sum
n CC�
�. Note that the sign of each of these M�M − 1� terms is not
pecified directly through the Welch bound. The only thing we can
ay about the sign is that its expected value is zero when the DC com-
onent of the sequences vanishes and the sequences are �in the en-
emble average� uncorrelated. Thus, we estimate the magnitude of
he term CC�
� by calculating the variance of

�B-7�

hich simply is

�CC�
��1/2 = �M�M − 1�Crms, �B-8�

nd the ratio of the signal term to the interference term becomes

CD�0�
�CC�
��1/2 
 M�M�2N − 1� − 1

M�M − 1�2 . �B-9�

hen both the sequence length N and the family size M are much
arger than one, this becomes

CD�0�
�CC�
��1/2 
 �2N . �B-10�

hus, the signal-to-interference ratio improves as the square root of
he sequence length.
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