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Abstract

There is growing consensus that genome organization and long-range gene regulation involves partitioning of the genome
into domains of distinct epigenetic chromatin states. Chromatin insulator or barrier elements are key components of these
processes as they can establish boundaries between chromatin states. The ability of elements such as the paradigm b-globin
HS4 insulator to block the range of enhancers or the spread of repressive histone modifications is well established. Here we
have addressed the hypothesis that a barrier element in vertebrates should be capable of defending a gene from silencing
by DNA methylation. Using an established stable reporter gene system, we find that HS4 acts specifically to protect a gene
promoter from de novo DNA methylation. Notably, protection from methylation can occur in the absence of histone
acetylation or transcription. There is a division of labor at HS4; the sequences that mediate protection from methylation are
separable from those that mediate CTCF-dependent enhancer blocking and USF-dependent histone modification
recruitment. The zinc finger protein VEZF1 was purified as the factor that specifically interacts with the methylation
protection elements. VEZF1 is a candidate CpG island protection factor as the G-rich sequences bound by VEZF1 are
frequently found at CpG island promoters. Indeed, we show that VEZF1 elements are sufficient to mediate demethylation
and protection of the APRT CpG island promoter from DNA methylation. We propose that many barrier elements in
vertebrates will prevent DNA methylation in addition to blocking the propagation of repressive histone modifications, as
either process is sufficient to direct the establishment of an epigenetically stable silent chromatin state.
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Introduction

It has been proposed that genes and gene clusters are organized

into chromatin domains that are maintained independent of their

surroundings through the establishment of boundaries [1,2]. These

boundaries may be variable in position, resulting from a balance

between countervailing chromatin opening and condensing

processes. Alternatively, chromatin boundaries of fixed position

could be established by specific DNA sequence elements and their

associated binding proteins. Such elements, collectively called

insulators, possess a common ability to protect genes from

inappropriate signals emanating from their surrounding environ-

ment [3–7].

The chicken b-globin genes are clustered within a thirty kilobase

domain of nuclease accessible chromatin, the 59 boundary of

which is marked by a constitutive DNaseI hypersensitive site called

HS4 (Figure 1). The HS4 element has two activities that

functionally define insulators. First, it can block the action of an

enhancer element on a linked promoter, but only when positioned

between the two [8]. The protein CTCF mediates the enhancer

blocking activity of the HS4 element [9]. Second, the HS4

insulator acts as a barrier to chromosomal position effect silencing

[10]. The activities of HS4 have been mapped to a 275 bp ‘‘core’’

element that contains five protein binding sites revealed by DNase

I footprinting [9–11] (Figure S1). The enhancer blocking and

barrier activities of HS4 appear to have different underlying

mechanisms as they are separable in assay systems. The CTCF

binding site footprint II (FII) is necessary and sufficient for

enhancer blocking, but can be deleted from HS4 without affecting

barrier activity [9,12,13]. The four remaining protein binding sites

are all essential for barrier activity (FI, FIII, FIV and FV) but

dispensable for enhancer blocking activity [9].

We previously found that the binding of ubiquitous USF

proteins to a single site in HS4, footprint FIV, is a necessary

component of its barrier activity [14]. USF serves to constitutively

recruit several histone modifying enzymes, leading to the

enrichment of a panel of histone modifications typically associated

with transcriptionally active open chromatin, including H3ac,

H4ac, H3K4me2 and H4R3me2as. Knock down of USF

expression abolishes the recruitment of active histone modifica-

tions and leads to the encroachment of transcriptionally repressive

chromatin marked by H3K9me2 and H3K27me3 into the b-globin
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locus [14,15]. While USF function is necessary, it is not sufficient

for HS4’s barrier activity. Deletion of any one of the three

remaining HS4 binding sites FI, FIII or FV disrupts barrier

activity without affecting USF-mediated recruitment of histone

modifications to HS4 [12,14].

We hypothesized that the FI, FIII and FV sites may

contribute to barrier activity by preventing a transcriptional

silencing process other than that mediated by repressive

histone modifications. We previously observed that transgenes

lack promoter DNA methylation when shielded from chromo-

somal silencing by HS4 elements [16]. Similar results were seen

with retroviral transgenes shielded by HS4 [17]. It was not

clear from these studies whether the lack of DNA methylation

was an indirect consequence of transcriptional activity of

insulated transgenes, nor did these studies address whether

particular DNA elements or proteins bound at HS4 are

specifically responsible for this protection. We now use

insulator mutations to demonstrate that HS4 does specifically

protect a gene promoter from DNA methylation. We

determine which HS4 sequence elements are responsible for

protection from methylation and have purified the protein that

recognizes these elements in vivo. We also demonstrate that

these elements are able to mediate the demethylation of a CpG

island promoter.

Results

Three elements within the HS4 insulator protect a
promoter from DNA methylation

To investigate whether HS4 acts specifically to counter DNA

methylation, we have studied transgenic cell lines that were

previously established for the HS4 barrier assay. The assay

construct consists of an IL-2R reporter gene driven by an erythroid

enhancer and promoter randomly integrated into erythroid 6C2

cells. These transgenes are susceptible to chromosomal silencing

over a period of 20–40 days in culture following the removal of

selection, with transgenic promoters being subject to DNA

methylation and subsequent recruitment of the Mi-2/NuRD co-

repressor complex [12,16]. In contrast, transgenes flanked by wild-

type HS4 insulators are protected from silencing and lack

promoter DNA methylation [16,17]. It was unclear from these

earlier results whether the lack of methylation was a consequence

of transcriptional activity or whether particular HS4 activities

mediate protection from methylation.

We have performed clonal bisulfite sequencing on single/low-

copy transgenes flanked by HS4 insulators that are either wild type

or carry deletions in one of five protein binding site ‘footprints’

(Figure 1). We have studied the same stocks of the same cloned

transgenic cells that have been characterized for long term

expression and histone modification status [12,14]. The transgene

promoter remains free of DNA methylation when insulated from

chromosomal silencing by wild type HS4 elements, even following

prolonged culture (Figure 2B, WT). Strikingly, we find that

transgenic promoters are subject to almost complete DNA

methylation if any one of three footprinted sites, FI, FIII or FV,

is deleted from the flanking HS4 insulators (Figure 2, D1, D3 and

D5). These profiles of DNA hypermethylation are indistinguish-

able from those observed at non-insulated transgenes [16]. In

contrast, deletion of the CTCF (FII) binding site from HS4 results

in little de novo DNA methylation of the promoter (Figure 2B, DII).

The deletion of the CTCF site has no effect on barrier activity and

the lack of methylation observed is consistent with the transcrip-

tionally active state of this transgene (Figure 2C, [12]). De novo

DNA methylation of the transgene promoter has previously been

observed to be a secondary consequence of chromosomal silencing

in the absence of insulation [18]. This suggested that deletion of

the USF binding site from HS4, which abolishes HS4’s barrier

activity and results in the loss of active histone modifications [14]

and transcriptional silencing [12], should also result in promoter

hypermethylation. To our surprise, deletion of the USF (FIV)

binding site from HS4 results in little de novo DNA methylation of

the promoter (Figure 2B, DIV). These results show that the DNA

methylation status of a promoter does not necessarily follow its

histone modification and transcription status. They also strongly

Figure 1. Schematic representation of the chicken b-globin cluster and surrounding loci. Boxes represent the folate receptor (FR), b-globin
(r, bH, bA and e) and chicken olfactory receptor (COR) genes (not to scale). Arrows indicate DNaseI hypersensitive sites. The core of the HS4 element is
expanded to show the positions of the five in vitro footprinted sequences [11].
doi:10.1371/journal.pgen.1000804.g001

Author Summary

DNA sequences known as chromatin insulator or barrier
elements are considered key components of genome
organization as they can establish boundaries between
transcriptionally permissive and repressive chromatin
domains. Here we address the hypothesis that barrier
elements in vertebrates can protect genes from transcrip-
tional silencing that is marked by DNA methylation. We
have found that the HS4 insulator element from the b-
globin gene locus can protect a gene promoter from DNA
methylation. Protection from DNA methylation is separa-
ble from other insulator activities and is mapped to three
transcription factor binding sites occupied by the zinc
finger protein VEZF1, a novel chromatin barrier protein.
VEZF1 is a candidate factor for the protection of promoters
from DNA methylation. We found that VEZF1-specific
binding sites are sufficient to mediate demethylation and
protection of the APRT gene promoter from DNA
methylation. We propose that barrier elements in verte-
brates must be capable of preventing DNA methylation in
addition to blocking the propagation of silencing histone
modifications, as either process is sufficient to direct the
establishment of an inactive chromatin state.

VEZF1 Mediates Protection from DNA Methylation
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Figure 2. Three footprinted sites in the HS4 barrier protect a promoter from DNA methylation. (A) Schematic representation of the IL-2R
transgene drawn to scale with the distribution of CpG dinucleotides shown below. Promoter region CpG dinucleotides subject to bisulfite genomic
sequencing (BSEQ) analysis are indicated by the gray bar. (B) CpG methylation of transgene promoters flanked by wild-type or mutant HS4 insulators
after 30 (left) or 90 (right) days of culture. The percentage of methylation for each CpG from 10 clones is plotted. The average methylation for all CpGs
is indicated to the right of each plot. Scoring from individual clones can be found in Table S1. Numbers below each histogram refer to CpG
numbering from [16], where CpG 4–11 and 12–18 reside in the promoter and coding sequence, respectively. Data are representative of two
independent transgenic lines, with an average methylation variation of 7% or less. (C) Transgenic IL-2R expression for each line in (B) as monitored by
flow cytometry. WT and DII lines retain IL-2R expression, whereas DI, DIII, DIV and DV all succumb to silencing following 20–40 days of culture.
doi:10.1371/journal.pgen.1000804.g002

VEZF1 Mediates Protection from DNA Methylation
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indicate that three protein binding sites at HS4 (FI, FIII and FV)

have a specific role to mediate protection from silencing associated

with de novo DNA methylation.

Mutant insulators are partially methylated
We next sought to determine how HS4 footprint deletions affect

the timing and level of methylation of the mutant insulators in

comparison with their linked transgene promoters. The dogma

established from previous studies posits that a barrier element like

HS4 acts as a passive barrier to the propagation, or spreading, of

chromosomal silencing. We therefore expect that when HS4

mutations compromise barrier activity, the mutant insualtors

would become methylated either prior to, or coincident with, the

transgene promoters they are shielding. We performed bisulfite

sequencing of the HS4 elements that are located 59 of the IL-2R

transgenes (Figure 3A). Analyses were made following 30 days of

culture, typically the period at which epigenetic silencing of the

transgene is being established in non-insulated lines, and after 90

days, at which point any silencing will be complete. We find that

wild type HS4 elements remain unmethylated during long term

culture, concordant with the lack of transgene methylation

(Figure 3C, WT). Deletion of the FI and FV sites results in partial

methylation of HS4 (Figure 3C, DI and DV). This is in line with

the effects of these mutations on promoter methylation. The

timing of methylation does not fit the spreading models however,

as the transgene promoter becomes methylated prior to the

flanking insulator (compare DI at day 30 in Figure 2B with that in

Figure 3C). Furthermore, deletion of the FIII site does not result in

methylation of HS4 despite complete promoter methylation

resulting from this mutation (compare DIII at day 90 in

Figure 3C with that in Figure 2B). We also found that deletion

of either the CTCF or USF sites leads to partial methylation of

HS4, but with no methylation at the promoter (compare DII and

DIV at day 90 in Figure 3C with that in Figure 2B).

We note that the patterns of partial methylation of mutant HS4

elements are heterogeneous, with none of the individually

sequenced clones becoming densely methylated (Table S2). The

partial methylation of mutant HS4 elements (20%–50%) contrasts

with the near total DNA methylation observed at the silenced

promoters flanked by FI, FIII or FV site mutant insulators (90%–

100%). These findings reveal a disconnect between the level and

timing of de novo DNA methylation at a transgene and flanking

insulators.

Identification of HS4-binding activities
The footprinted sequences FI, FIII and FV are specifically

required for HS4’s ability to protect against DNA-methylation-

mediated silencing of a transgene. We wished to identify the

factors that interact with each of the FI, FIII and FV sites to better

understand this activity. We established gel mobility shift assays for

insulator-binding activities using nuclear protein extracts of the

chicken early erythroid cell line 6C2 (the cell line in which the

barrier assay is performed) and adult chicken red blood cells (an

abundant source of nuclear protein for purification purposes).

Complexes of similar mobility and intensity are observed between

the two nuclear extracts and each of the FI, FIII and FV sites

(Figure 4, 6C2 data not shown). Competition assays show that

these complexes are all specific for homopolymeric dG-dC strings

found in each site. Unlabelled wild type FI duplexes compete

efficiently with the formation of the major complex with FI,

whereas FI duplexes harboring mutations in the (dG-dC)9 string

are much less effective as competitors (Figure 4A, arrow, compare

lanes 2, 4 and 5). The major complex with FIII specifically

interacts with the (dG-dC)6 string at its center (Figure 4B, compare

lanes 1, 5, 6 and 7) and the major FV complex also specifically

interacts with bases in both of its (dG-dC) strings (Figure 4C,

compare lanes 1, 4, 5 and 7).

The same proteins interact with the FI, FIII and FV sites. This

is supported by the observation that the three sites can efficiently

compete with each other. Unlabelled FIII duplexes compete for

nuclear protein interactions with labeled FI (Figure 4A, compare

lanes 1 and 8) and FI duplexes efficiently compete for interaction

with FIII (Figure 4B, compare lanes 1 and 9), for example.

Mutational analysis shows that this cross-competition is dependent

upon the dG-dC string bases within each footprint site (data not

shown). Competition assays also reveal that the relative affinity of

nuclear proteins for the three sites differs somewhat. FI complexes

form with approximately 2- and 5-fold greater affinity than FIII

and FV complexes, respectively (data not shown). Together, these

observations of similar sequence specificity and comparable

complex mobilities indicate that common nuclear proteins interact

with all of these sites.

VEZF1 specifically interacts with G-rich sites in the HS4
insulator and the bA-globin promoter

We purified proteins that specifically interact with FI and FIII

from chicken red blood cells by conventional chromatography. FI-

and FIII-binding activities exactly co-fractionated following ion

exchange chromatography with SP- and Heparin sepharose

(Figure 5). The active elution peak from Heparin sepharose

chromatography was split in two and fractionated in parallel by

either FI or FIII DNA affinity chromatography. The resulting

purified polypeptides were sequenced by tandem mass spectrom-

etry (Figure S2). The proteins Hsp70, VEZF1, ZF5 and TEF1a
were present in both FI and FIII DNA affinity eluates. The

proteins SP1 and SP3 were additionally present in the FI DNA

affinity eluate.

We firstly cloned chicken VEZF1 (Refseq NM_001037827.1)

and determined whether it interacts with the G-rich footprinted

sites of the HS4 insulator, as it was previously reported that human

VEZF1 (also known as DB1) interacts with similar G-rich sites

[19,20]. We find that in vitro translation of chicken VEZF1 cDNA

yields a 65 kDa protein that efficiently interacts with the FI, FIII

and FV sites (Figure 6A). The complexes formed with recombinant

VEZF1 migrate slightly faster than those formed with nuclear

extract. This may be a reflection of differing post translational

modifications. Nonetheless, recombinant VEZF1 binds with an

identical specificity to that observed for nuclear extract proteins.

For example, competition of VEZF1 complexes with unlabelled FI

and FIII duplexes is disrupted by mutations within their dG-dC

strings (Figure 6A, lanes 1–8).

The (dG-dC) strings present in the VEZF1 sites at HS4 are

reminiscent of a site in the chicken bA-globin promoter that

contains a (dG-dC)16 string. A nuclear factor called Beta Globin

Protein 1 (BGP1) was previously characterized as interacting with

this site [21]. This BGP1 binding site has no effect on transcription

in transient assays or on chromatinized templates in vitro, but was

considered to indirectly assist in activation by directing nucleo-

some placement [22–24]. BGP1 protein of 66 kDa can be purified

using poly(dG)-poly(dC) affinity chromatography [25]. We have

now sequenced a purified BGP1 sample (a gift from J. Allan,

University of Edinburgh) and find it to be VEZF1. We find that

recombinant chicken VEZF1 interacts with the bA promoter site

with an identical specificity to that of erythrocyte nuclear protein(s)

(Figure 6A, compare lanes 9–15 with 16–22). At least seven

contiguous homopolymeric dG-dC base pairs are required for the

efficient formation of complexes between recombinant VEZF1 or

nuclear proteins and the bA promoter site [25]. Consistent with

VEZF1 Mediates Protection from DNA Methylation
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Figure 3. Mutations of insulator protein binding sites result in the de novo methylation of HS4 itself. (A) Schematic representation of the
IL-2R transgene including the upstream HS4 elements subject to bisulfite genomic sequencing analysis (gray horizontal bar below CpG plot). (B)
Schematic representation of a 275 bp HS4 core element, drawn to scale. Footprinted sequences are shaded gray. CpG locations with their assigned
numbers are shown above. Horizontal bars indicate bases subject to deletion. (C) CpG methylation of wild-type (WT) or mutant (DI - DV) HS4
insulators after 30 (left) or 90 (right) days of culture. Both copies of HS4 were sequenced, except for DII and DV, where only the outermost copy was
sequenced (see Materials and Methods). The percentage of methylation for each CpG from 10 clones is plotted. The average methylation for all CpGs
is indicated to the right of each plot. Scoring from individual clones can be found in Table S2. Numbers below each histogram refer to CpG
numbering as assigned in (B). Horizontal gray bars indicate deleted CpGs. Data are representative of at least two independent transgenic lines, with
an average methylation variation of 12% or less.
doi:10.1371/journal.pgen.1000804.g003

VEZF1 Mediates Protection from DNA Methylation
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this, interaction between VEZF1 and the bA site is competed by

unlabelled FI which contains a (dG-dC)9 string (Figure 6A,

compare lanes 16 and 20). This competition is disrupted by

mutation at the centre of the FI dG-dC string (Figure 6A, compare

lanes 20 and 21). However, VEZF1 interaction with the bA site is

also competed by FIII which contains only a (dG-dC)6 string

(Figure 6A, compare lanes 16 and 22). FIII contains a second short

(dG-dC)4 string, as does FV (see figure 4D), which may

compensate to form a bipartite recognition motif. Recombinant

VEZF1 interacts with the contiguous dG-dC strings of the FI and

bA sites with approximately 2- and 5-fold greater affinities than the

bipartite dG-dC strings of the FIII and FV sites, respectively (data

not shown).

Polyclonal antibodies were raised against a conserved C-

terminal fragment of VEZF1, which specifically recognize the

65 kDa VEZF1 polypeptide from chicken nuclear extracts (Figure

S7B). VEZF1 antibodies readily supershift/abrogate complexes

between recombinant VEZF1 and the FI, FIII, FV and bA sites

(Figure 6B). Supershift analysis also reveals that VEZF1 is present

in complexes between nuclear extracts and the FI, FIII, FV and bA

sites (Figure 6B). VEZF1 appears to be the only factor that

interacts with the FIII and FV sites, whereas other factors also

appear to bind to the FI and bA sites in vitro.

Chromatin immunoprecipitation (ChIP) analyses were per-

formed to analyze the binding of VEZF1 at the chicken b-globin

locus in vivo. Chromatin was prepared from the early erythroid line

6C2, which does not express b-globin and nucleated erythrocytes

isolated from 10 day chicken embryos, a stage at which

approximately 80% of erythrocytes are definitive and express the

bA-globin gene. VEZF1 was found to strongly interact with HS4 in

both 6C2 cells and erythrocytes, consistent with our in vitro

analyses (Figure 7A and 7B). VEZF1 binding to HS4 therefore

does not coincide with transcription of the b-globin genes. VEZF1

does not interact with the 39HS enhancer blocking element, which

does not contain any dG-dC string like motifs and lacks barrier

activity [12]. This is in contrast to CTCF, which interacts strongly

with both the HS4 and 39HS insulators in 6C2 cells and

erythrocytes (Figure 7A and 7B). We also find that VEZF1

strongly interacts with the bA promoter, consistent with gel

mobility shift assays. In contrast to HS4, VEZF1 binding to the bA

promoter appears to be restricted to erythrocytes in which the bA

gene is expressed (Figure 7A and 7B). None of the other candidate

HS4-binding proteins isolated by DNA affinity purification were

found to bind in vivo (described in Text S1) (see also Figures S3, S4,

S5).

We tested whether VEZF1 requires all three of its sites for

binding to HS4 in vivo, as all three VEZF1 binding sites are

required for protection from DNA methylation. We found that this

was not the case, as VEZF1 remains tightly bound at HS4 when

any one of its binding sites is deleted (Figure S6). VEZF1 also

remains bound to mutant HS4 elements that have become

partially methylated. Consistent with this, we found that VEZF1

Figure 4. Nuclear proteins specifically interact with the dG-dC strings at HS4 footprints I, III, and V. (A–C) Gel mobility shift analysis of
interactions between chicken adult erythrocyte nuclear extract and 32P-labelled FI (A), FIII (B), and FV (C) oligonucleotide duplexes. Unlabelled
competitor duplexes (indicated above each lane) were added at 50 fold molar excess. Arrows indicate footprint sequence-specific complexes.
Asterisks indicate a non-specific FI complex in (A) and an FV complex that was not pursued further due to inconsistent abundance in (C). (D)
Sequences present in competitor oligonucleotides. Mutations shown in bold lower case. Footprinted bases are indicated by shading. Bases that are
essential for maximal binding are underlined; mutations of other bases had no effect on binding (A–C, data not shown).
doi:10.1371/journal.pgen.1000804.g004
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binding to its three sites at HS4 is not affected by CpG

methylation in vitro (data not shown). We have attempted to

disrupt VEZF1 function at HS4 following knockdown by RNAi.

We strived to achieve substantial knockdown of VEZF1 to disrupt

its binding to the high affinity sites at HS4. Prolonged knockdown

was also required as we have previously found that the de novo

DNA methylation of these transgenes is a gradual process that

takes many days to establish [18]. We were able to knockdown

VEZF1 protein to 3% of wild type levels following 2 weeks of

stable miRNA expression. However, ChIP analysis revealed that

VEZF1 binding to HS4 was not significantly affected following this

prolonged and substantial knockdown (Figure S7). Consequently,

we observed no de novo DNA methylation of the HS4 element and

no change in HS4’s ability to protect a transgene from silencing

during this period (data not shown). The inadequacy of RNAi to

strip constitutive transcription factor binding from high affinity

sites has also been observed for CTCF [26]. Unfortunately, we are

unable to study the role of murine Vezf1’s role in protection from

DNA methylation in Vezf1 null ES cells, as we recently found that

they are defective for de novo DNA methylation due to the

requirement of Vezf1 for full transcriptional activity of the Dnmt3b

gene in these cells [27].

VEZF1 elements protect a CpG island from de novo DNA
methylation

To address whether VEZF1 elements also protect CpG island

(CGI) promoters from DNA methylation, we investigated VEZF1

binding to the APRT gene promoter and its effects on methylation.

SP1-like binding elements have been shown to be required to

prevent methylation of the mouse and hamster APRT CpG island

elements: two earlier papers have shown that deletion of the SP1-

like elements is sufficient to induce methylation in these islands

[28,29]. Furthermore, pre-methylated fragments of the hamster

APRT CGI that contain three SP1-like elements are subject to

demethylation upon integration into mouse ES cells [28]. The

SP1 transcription factor itself is not required for the unmethylated

state of CGIs however, with the APRT gene remaining

unmethylated and expressed normally in Sp1 null ES cells and

embryos [30]. Given that VEZF1 recognizes G-rich sequences

that are similar to SP1 motifs, we hypothesized that VEZF1 may

interact with the APRT CGI elements (Figure 8A). We performed

ChIP analyses for the binding of SP1 and VEZF1 to the 720 bp

hamster APRT CGI stably integrated into mouse ES cells

(Figure 8B). We found SP1 binding at both sites 1/2 and site 3,

but site 3 was also occupied by VEZF1. Supershift analysis also

shows VEZF1 interaction with site 3 in vitro (Figure S8). Site 3

contains a motif (CCCCCCTTTCCCC) that is reminiscent of the

VEZF1-specific bipartite footprint III site found at the HS4

insulator element (CCCCCCGCATCCCC).

To address whether VEZF1 elements could protect the APRT

CGI from methylation, we replaced each of the three SP1-like

elements with the VEZF1-specific FIII element from the HS4

insulator (Figure 8A). ChIP analysis shows that VEZF1 binding

replaces that of SP1 at the mutant APRT CGI integrated into ES

cells (Figure 8B). Supershift analysis also shows that VEZF1

interacts with the mutant sites 1&2 and site 3, while SP1/SP3

binding is lost (Figure S8). We then tested the ability of wild type

and mutant APRT CGIs to resist DNA methylation. Firstly, we

confirmed that the de novo DNA methylation machinery

functioned normally in the ES cells as non-island sequences from

the APRT gene body succumb to de novo methylation (Figure 8C).

Consistent with previous results [28,29], we find that the wild type

APRT CGI is protected from DNA methylation when stably

integrated into ES cells (Figure 8D). Furthermore, a pre-

methylated wild type APRT CGI is demethylated upon integra-

tion (Figure 8E). It has previously been shown that mutation of the

SP1-like elements results in the de novo methylation of the APRT

CGI [28]. Our results show that substitution of the SP1-like

elements with VEZF1-specific FIII elements from HS4 restores

the ability of the mutant APRT CGI to be both protected from de

novo methylation and to remove pre-methylation (Figure 8E and

8F). VEZF1 elements from HS4 are therefore sufficient to

mediate the demethylation and protection of a CGI from DNA

methylation.

Figure 5. Purification of FI- and FIII-binding proteins. Schematic
representation of the steps used to purify DNA-binding proteins from
adult erythrocyte nuclear protein (NP) extracts that interact with FI and
FIII sequences. Numbers in the workflow indicate the salt concentration
(mM) at which DNA binding factors eluted from each column. DNA
binding activity was tracked using gel mobility shift analysis and the
sequence specificity of complex-forming factors was checked by
competition analysis following each purification stage (data not shown).
FI- and FIII-binding activities exactly co-purified. The eluate pool from
the Heparin step was split in two prior to either FI or FIII DNA affinity
chromatography. SDS-PAGE of proteins eluted from DNA affinity
columns at 400 mM KCl visualized with colloidal Coomassie is shown
below. The size of each polypeptide (kDa) is indicated.
doi:10.1371/journal.pgen.1000804.g005
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Figure 6. VEZF1 specifically interacts with dG–dC strings within HS4 footprints I and III and the bA-globin promoter. (A) Gel mobility
shift analysis of interactions with 32P-labelled HS4 FI, and FIII, or bA-globin promoter ‘glo wt’ oligonucleotide duplexes. Unlabelled competitor
duplexes (indicated above each lane) were added at 50 fold molar excess. Adult chicken erythrocyte nuclear extract (ery) or recombinant chicken
VEZF1 were used as indicated by brackets above the lanes. Arrows indicate footprint sequence-specific complexes. (B) Gel mobility supershift assays
using 32P-labelled FI, FIII, FV, and glo wt oligonucleotide duplexes. Proteins were pre-incubated with anti-VEZF1 antibodies (indicated above each
lane) prior to incubation with DNA. VEZF1 supershifts are evidenced by either abrogation of specific complexes (asterisks) and/or formation of low
mobility ternary complexes (SS). Antibodies alone do not give rise to complexes with any of the duplexes used (data not shown). Supershift
experiments shown are cropped from the full gels shown in Figure S3. (C) Sequences present in oligonucleotides used in gel mobility shift assays.
dG–dC strings and their mutations are bold and underlined, respectively.
doi:10.1371/journal.pgen.1000804.g006
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Discussion

Here we have studied the paradigm HS4 element to address our

hypothesis that a barrier element in vertebrates must be capable of

defending a gene from silencing by DNA methylation and have

identified a novel CpG island factor. We have presented six

findings: 1) a vertebrate barrier element protects a gene promoter

from DNA methylation-mediated silencing, 2) the essential

transcription factor VEZF1 is a barrier/anti-methylation factor,

3) there is a modular division of labor at the compound HS4

insulator as VEZF1-mediated protection from methylation is

separable from CTCF-mediated enhancer blocking and USF-

mediated recruitment of active histone modifications, 4) the de novo

DNA methylation activity prevented by the HS4 barrier does not

appear to spread from its chromosomal neighborhood, 5) a

promoter can be protected from DNA methylation even when it

lacks active histone modifications and transcriptional activity, and

6) short DNA elements bound by VEZF1 mediate the demeth-

ylation and protection of a CpG island from DNA methylation.

The barrier activity of HS4 consists of separable activities
which prevent silencing mediated by either histone or
DNA methylation

We have previously demonstrated that the HS4 insulator acts as

a barrier to the spread of histone methylation marks associated

with repressive chromatin [14,15]. While we found that active

histone modifications recruited by USF proteins are an essential

component of HS4’s barrier activity, they are not sufficient [14].

Three addition protein binding sites are essential for barrier

activity but are not required for the recruitment of active histone

modifications [12,14]. These findings, summarized in Figure 9,

indicated that there was an additional and separable component to

HS4’s barrier activity. Here, we show that all three sites are bound

by VEZF1 and are required for HS4’s ability to protect a linked

promoter from de novo DNA methylation.

It was previously shown that the transgenes used in this study

become marked by dense promoter DNA methylation upon

chromosomal position effect silencing [16]. Promoter DNA

methylation occurred subsequent to histone deacetylation and

transcriptional inactivation of the promoter [18]. While flanking

HS4 elements perfectly shield the transgene from silencing and

DNA methylation, it was unclear from these experiments whether

the lack of promoter methylation was simply a readout of the

promoter’s transcription status. We show that VEZF1-mediated

protection from DNA methylation of a transgene promoter is

retained even when USF site mutations at HS4 lead to histone

deacetylation and transcriptional silencing (Figure 9, DUSF). The

separation of DNA methylation protection from a promoter’s

histone modification and transcriptional status is a strong

indication that the VEZF1 sites at HS4 possess a bona fide activity

that is protective against DNA methylation.

De novo DNA methylation of a transgene does not
appear to propagate via a continuous DNA methylation-
dependent spreading mechanism

Determining the source of de novo DNA methylation is key to our

understanding of how VEZF1 binding at HS4 could protect a

promoter from epigenetic silencing. Previous studies using the

same transgene system studied here found that non-insulated

transgenes, regardless of integration site, are consistently subject to

promoter methylation upon chromosomal silencing, and that

flanking with HS4 elements can shield transgenes from this

methylation [16,18]. The simplest explanation of these results is

that HS4 is acting as a barrier to the encroachment, or spreading,

of a silencing mechanisms that results in DNA methylation. The

ability of repressive histone modifications and associated chroma-

tin factors to mediate the spreading of gene silencing is well

documented for many systems [31]. In the case of the chicken b-

globin locus, the spreading of repressive histone modifications is

observed upon perturbation of active histone modification

recruitment at the HS4 barrier [14,15]. Analyses of progressive

CpG island methylation during tumor progression are consistent

with models that describe the spreading of DNA methylation

[32,33].

Should de novo DNA methylation arise via spreading from the

chromosomal integration site in our transgene system, we would

expect to see high levels of methylation at compromised mutant

insulators either coincident with, or prior to promoter methylation.

However, we observe that promoters become methylated prior to

the insulators, which remain unmethylated or become partially

methylated. The observed independence of methylation states

between insulator and promoter argue against spreading and

clearly show that there can be no single mechanism that controls

the methylation state of both the insulator and promoter. It

remains possible that VEZF1 elements at HS4 are acting as a

barrier to the spreading of a DNA methylation mechanism, but

that additional processes prevent the accumulation of methylation

at HS4 itself. An alternative possibility is that DNA methylation

does not result from spreading, and that the insulator directly

interacts with the promoter to deliver VEZF1 co-factors that

prevent promoter methylation. In this model, the promoter itself

would have its own program to recruit de novo DNA methylation,

and VEZF1 would act as a factor that mediates inhibition of

methylation. This would distinguish the activity of VEZF1 from

those of USF1/USF2, which bind elsewhere in the insulator

element and recruit a number of enzymes that deliver active

histone modifications to the reporter gene [14,15,34]. It will be of

interest in future to determine whether VEZF1 elements

potentiate the expression of nearby genes through the control of

DNA methylation.

Intact insulator protein complexes maintain HS4 as a CpG
island

The 275 bp ‘‘core’’ HS4 element comprises a CpG island (CGI)

that is free of DNA methylation regardless of neighboring gene

Figure 7. VEZF1 interacts with the HS4 insulator in vivo. (A) ChIP
analysis of VEZF1 and CTCF interactions at the b-globin locus in (A) 6C2
erythroid progenitor cells or (B) 10 day embryonic erythrocytes. DNA
enrichments at the bA promoter or the HS4 and 39HS insulators were
normalized to a negative control located in the 16 kb condensed
chromatin region upstream of the b-globin locus.
doi:10.1371/journal.pgen.1000804.g007
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expression [11,35,36], as well as when it is inserted into the mouse

Igf2/H19 domain [37]. Consistent with this, we found that wild

type transgenic HS4 elements remain unmethylated during long

term culture. The processes that maintain the unmethylated state

of the insulator appear to be complex, as we find that the mutation

of all insulator protein binding sites results in some degree of de

novo DNA methylation of HS4. It has previously been shown that

DNA binding proteins can prevent the methylation of their

binding sites simply by steric hindrance of de novo DNA

methyltransferases (DNMTs) [38]. It is possible that the HS4

deletions studied here disrupt cooperative interactions between

insulator proteins, thus permitting DNMT access. We performed

ChIP experiments on HS4 mutants and found that deletion of any

one insulator binding site does not lead to the loss of binding of

another (Figure S6). This is in agreement with functional assays

which also found that deletion of any one insulator protein binding

site does not lead to the loss of function associated with another site

[9,12,14]. These findings argue against a simple steric protection

of HS4 DNA from DNMTs by transcription factor binding. The

degree of methylation at mutant HS4 elements was typically

moderate (20–50%) and did not increase to the near total

methylation seen at the transgene promoter (90–100%) following

Figure 8. VEZF1 elements protect a CpG island from de novo DNA methylation. (A) Scale representation of the 700 bp hamster APRT CpG
island (CGI). The positions of AvaII (A) and HpaII (H) restriction sites are indicated. The locations of putative SP1 and VEZF1 binding motifs in the wild
type (wt) sequence are shown. The sequence alterations in the mutant (mut) are shown beneath, where all three SP1/VEZF1 motifs are replaced with
the VEZF1-specific footprint III (CCCCCCGCATCCCCGA) sequence from the HS4 insulator. (B) ChIP analysis of SP1 and VEZF1 interactions with stably
integrated hamster APRT CGI sequences in mouse ES cells. PCR primers flanking either sites 1 and 2 (1&2) or site 3 were used to detect interactions
with either the wild type (wt) APRT CGI or the mutant (FIII mut) containing VEZF1-specific sites. PCR products shown are ,180 bp in size. DNA
enrichments relative to input and normalized to no antibody control are shown (C) Methylation specific PCR (MSP) analysis of a stably integrated non-
island region of the APRT locus. Genomic DNA was digested with either of the isoschizomers MspI (M) or CpG methylation-sensitive HpaII (H),
followed by PCR over the CpG-containing sites. Increased PCR product from HpaII relative to MspI digested DNA demonstrates the presence of de
novo methylation at these sites in ES cells. Two representative lines are shown. (D–G) VEZF1 sites are sufficient for the demethylation of the APRT CpG
island. Southern blotting of APRT CpG island elements stably integrated into ES cells. Genomic DNA was digested with AvaII alone (A) or with AvaII
and HpaII (AH). Digestion of the ,600 bp AvaII parent fragments with HpaII indicates the absence of DNA methylation. (D,E) Representative lines
harboring the wild type APRT CGI that was unmethylated or in vitro methylated with M.SssI prior to integration. (F,G) Two representative lines
harboring the mutant APRT CGI, whose SP1 motifs are substituted with VEZF1-specific FIII sites from HS4, that were unmethylated or pre-methylated
prior to integration.
doi:10.1371/journal.pgen.1000804.g008
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long term culture. These observations are consistent with a

balance between activities that add and remove DNA methylation

at HS4.

VEZF1 elements at CpG island promoters
All constitutively expressed genes and ,40% of genes with

tissue-restricted expression have CGI promoters [39]. CGIs are

typically unmethylated, especially in the germ line, which ensures

that these CpGs are not subject to mutation by spontaneous

deamination. It remains to be determined how CGIs resist global

de novo methylation during early development, and how they

remain hypomethylated irrespective of transcriptional status.

Recent epigenomic profiling studies have begun to reveal a

significant portion of CGIs that are subject to varying degrees of

tissue-specific methylation in human somatic tissues [40–42].

These findings point to the existence of processes that protect

CGIs from de novo methylation, which can be selectively

inactivated during development and may become defective during

cancer progression [43]. Definition of the cis-regulatory elements

and trans-acting factors that control CGI methylation status is key

to unraveling these processes.

We have revisited the well established example of the APRT

gene CGI promoter. It was previously shown that SP1-like binding

elements are required to prevent CGI methylation [28,29],

although surprisingly the SP1 transcription factor itself is not

required [30]. These findings suggested that other factors function

at the G-rich SP1-like motifs, which are commonly found at CpG

islands [44]. We show that VEZF1 interacts with site 3 of the

hamster APRT CGI. A promoter-less APRT CGI fragment

containing only site 3 remains protected from DNA methylation

[28]. We were able to abrogate SP factor binding while retaining

VEZF1 binding by introducing VEZF1-specific elements. The

VEZF1-specific mutant retained its ability to mediate demethyl-

ation and protection from de novo DNA methylation. Thus, VEZF1

binding elements can protect a CGI from DNA methylation. We

attempted to definitively address the requirement for VEZF1, but

discovered that global de novo DNA methylation mechanisms are

defective in Vezf1 null ES cells [27]. We also show that VEZF1

interacts with the CGI promoter of the DHFR gene (Figure S5).

Furthermore, ChIP-array analysis in somatic human cells reveals

that VEZF1 predominantly interacts with CGI promoters and

regulates genes with diverse functions (R.S. and A.W., unpub-

lished observations). It remains to be determined whether VEZF1

plays a widespread role in the control of DNA methylation and

what contribution this epigenetic control makes to developmental

gene regulation and cancer progression.

DNA methylation and the multiple roles of chromatin
boundaries

Experimental evidence has demonstrated that chromatin barrier

elements can employ a number of different mechanisms to limit the

spread of transcriptionally repressive chromatin; including tether-

ing, nucleosome gaps/masking and histone code manipulation [6].

The constitutive recruitment of histone modifications such as

acetylation is considered to be sufficient to establish barrier activity

in eukaryotes that do not methylate their genomes, as demonstrated

at synthetic barriers in yeast [45]. Our finding that HS4 also

mediates protection from de novo DNA methylation adds another

tier to understanding the mechanism of barrier elements in

vertebrates. It is well established that densely methylated DNA

abrogates transcription factor binding and is sufficient to establish

all the features of repressive chromatin, including repressive histone

modifications [46,47]. We propose that a barrier element in higher

eukaryotes must be capable of preventing de novo DNA methylation

in addition to blocking the propagation of silencing histone

modifications, as either event, if not inhibited, is sufficient to direct

the establishment of an epigenetically stable silent chromatin state.

We have shown here that a fully effective vertebrate barrier

combines both of these properties in a single multi-component

element.

Materials and Methods

Bisulfite sequencing analysis
Chicken 6C2 erythroleukemia cells carrying IL-2R reporter

transgenes (8103, wild type HS4; 10401, DFI; 10506, DFII; 10615,

DFIII; 10901, DFIV; 8d5, DFV) were cultured and assayed for IL-

2R expression by FACS as described previously [12,14]. Genomic

DNA was extracted from cell lines after 30 and 90 days of culture

and bisulfite modified (EZ Methylation, Zymo Research, CA). The

upstream double-core HS4 elements and the IL-2R promoter

were PCR amplified from each line. We were unable to amplify

bisulfite modified double-core HS4 elements from the 10506, DFII

Figure 9. Shielding of a transgene by the multi-component HS4
barrier element. The observed effects of insulator protein binding site
mutations on the DNA methylation (this study), histone modification
[14] and transcriptional status (this study and [12]) of a transgene
insulated by HS4. A schematic representation is shown where HS4
harbors one CTCF (purple), one USF (green) and three VEZF1 (red)
binding sites. Transcriptional activity of the reporter gene is indicated
with an arrow. The histone modification status is depicted above each
transgene, where high and minimal levels of H3ac and H3K4me2 are
represented as ac/me and -/-, respectively. The DNA methylation status
of the promoter and upstream insulators is indicated below each
transgene where open and filled circles represent unmethylated and
methylated bases, respectively. Shades of methylation are an approx-
imation of the data presented in Figure 1 and Figure 2. Mutation of the
CTCF site disrupts enhancer blocking activity [9] but has no effect on
barrier activity of HS4. USF site mutation disrupts the recruitment of
active histone modifications, resulting in transcriptional silencing. The
promoter remains unmethylated in USF mutants due to the action of
VEZF1. VEZF1 site mutations abrogate barrier activity despite USF-
mediated recruitment of histone modifications remaining intact. VEZF1
mutants are characterized by complete promoter methylation.
doi:10.1371/journal.pgen.1000804.g009
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line to sufficient levels to provide representative sequence data. We

therefore opted to amplify the outermost HS4 copy only. The 8d5,

DFV line also only contains one copy of HS4 in the upstream

location [12]. All PCR products were gel purified and cloned,

followed by sequencing (GATC Biotech, Konstanz, Germany) of

10 clones for each region of interest.

Gel mobility shift assays were performed as described previously

[14]. Recombinant VEZF1, SP1, SP3 and ZF5 were produced by

in vitro translation using rabbit reticulocyte lysate (Promega).

Protein purification
FI- and FIII-binding proteins were purified from adult chicken

red blood nuclear protein extracts by ion exchange chromatog-

raphy. Throughout the purification, eluate fractions were analyzed

for FI- and FIII-binding activity with gel mobility shift assays. The

binding specificity of partially purified proteins was checked by

competition analysis after each purification step. FI- and FIII-

binding activities co-fractionated following ion exchange chroma-

tography with SP XL and Heparin sepharose (GE Healthcare).

Phosphocellulose, Q and Sephacryl S300 columns were used in

early purification attempts to resolve FI- and FIII-binding

activities but they co-fractionated in each case (data not shown).

FI- and FIII-binding activities both eluted in two distinct fractions

of approximately 200 and 400 kDa following gel filtration (data

not shown). The active fractions eluted from heparin sepharose

were pooled then split into two and fractionated in parallel by FI

or FIII DNA affinity as described previously [14]. Polypeptides

electrophoresed on 7% Tris-acetate gels (Invitrogen) were excised,

digested with trypsin and sequenced at the Harvard Microchem-

istry Facility by microcapillary reverse-phase HPLC nano-electro-

spray tandem mass spectrometry (mLC/MS/MS) on a Finnigan

LCQ DECA quadrupole ion trap mass spectrometer.

cDNA cloning
Chicken VEZF1/BGP1 cDNA was cloned following RT-PCR

from 6C2 cell total RNA based on an assumption of conservation

of 59 cDNA sequence with human VEZF1/DB1. The oligonu-

cleotide Adaptor-A 59CATGCCGCTCGAGCGGTTTTTTTT-

TTTTTTTTT was used in first strand cDNA synthesis with

Superscript II reverse transcriptase (Invitrogen). The primers

VEZF1_59, 59CCATGACCCATGGGCAGAGCCAAAGT and

Adaptor 59CATGCCGCTCGAGCGG were used to amplify a

full length chicken VEZF1 cDNA by PCR which was TA cloned

into pCRII (Invitrogen). VEZF1 cDNA was sub-cloned into

pCITE4b (Novagen) to generate p4bVEZFfull for the purpose of

in vitro transcription. cDNA encoding chicken ZF5 was isolated by

RT-PCR from 6C2 cell total RNA using primers designed from

the published sequence (U51640). We found that the bases CpG

1306-7 in the published sequence were GpC in our clone, causing

codon 436 to translate as alanine instead of arginine. We obtained

the vectors pCDNA3-ZF5 and pEVRFO-ZF5 (a kind gift of W.

Stumph, San Diego State University) and we also found the CpG

to GpC conflict with the published sequence. Full length chicken

SP1 and SP3 cDNAs cloned in the pBluescript-based vectors pH-

SP1 and pH-SP3-3 were a kind gift from Marc Castellazzi

(INSERM, Lyon).

Antibodies
Polyclonal antibodies were raised (Rockland Immunochemicals)

against chicken VEZF1 (Ser376-Ala547) and chicken ZF5 peptides

(Ser131-Lys248) produced in E.coli (QIAexpress, Qiagen). Peptides

were produced in M15 [pREP4] E. coli followed by rapid lysis with

B-PER reagent (Pierce). ZF5 peptide was soluble and purified on

Ni-NTA agarose (Qiagen). VEZF1 peptide was insoluble and

resulting inclusion bodies were prepared using B-PER reagent

(Pierce), solubilized with 6M guanidium hydrochloride and

immobilized on TALON Sepharose resin (Clontech) at pH 7.

VEZF1 peptide was renatured in a stepwise manner with 6, 4, 3, 2,

1 and 0.5 M guanidium hydrochloride prior to elution. VEZF1

and ZF5 polyclonal IgG antibodies (Rockland Immunochemicals)

were purified from rabbit serum using PROSEP-A media

(Montage, Millipore). Anti-full length chicken VEZF1 antibodies

were raised previously [27]. Antibodies raised against CTCF (06-

917), SP1 (PEP2X, H-225X), SP3 (D20X) and USF1(B01) were

obtained from Millipore, Santa Cruz Biotechnology and Abnova,

respectively.

Chromatin immunoprecipitation (ChIP) analysis
ChIP analysis of transcription factor binding in chicken cells was

performed using formaldehyde crosslinked chromatin prepared

from chicken 10 day embryonic erythrocytes isolated from

fertilized White Leghorn eggs (CBT Farms, Chestertown, MD)

or cultured 6C2 erythroleukemia cells. 10 day erythrocytes were

washed and resuspended in 25 mls of PBS (26107 cells/ml) and

fixed with a final concentration of 0.25% formaldehyde at room

temperature for 30 seconds. 6C2 cells were harvested in mid-

exponential growth phase, divided into 30 ml aliquots containing

16108 cells in fresh media and fixed with a final concentration of

0.8% formaldehyde at room temperature for 5 minutes. Reactions

were stopped by adding glycine to a final concentration of

0.125 M. The cells were washed in PBS and resuspended in cell

lysis buffer (0.25% Triton X-100, 10 mM EDTA, 0.5 mM EGTA,

10 mM Tris pH 8.0) to isolate nuclei. Chromatin was prepared

following washing (0.2 M NaCl, 1 mM EDTA, 0.5 mM EGTA,

10 mM Tris pH 8.0) and lysis (NLB: 50 mM Tris-HCl pH 8.0,

10 mM EDTA, 0.5% SDS) of nuclei. Crosslinked chromatin was

fragmented by sonicaton (Misonix) for a total time of 10 minutes

in regular 10 second pulses at 4uC. Debris was removed by

centrifugation at 15000 g for 10 minutes and chromatin was

diluted in 10 volumes of X-ChIP buffer (1.1% TX-100, 1.2 mM

EDTA, 16.7 mM Tris pH 8.1, 167 mM NaCl). Agarose gel

electrophoresis was used to confirm that chromatin fragments

were ,500 bp in length on average.

Chromatin was pre-cleared with 100 ml of protein A agarose

(50% slurry in X-ChIP buffer, Millipore) and 50 mg of normal

rabbit IgG (Santa Cruz) for 3 hours at 4uC on a rotating wheel.

Aliquots of chromatin were taken to generate input DNA and

protein for western analysis. Individual ChIPs were performed

using chromatin from 16107 cells in a total volume of 1 ml by

diluting the pre-cleared chromatin with modified X-ChIP buffer (1

part NLB to 9 parts X-ChIP). Incubation with antibodies was

performed overnight at 4uC on a rotating wheel. Between 10 and

30 mg of specific antibodies or 10 mg of normal rabbit IgG (Santa

Cruz) were used per ChIP. Chromatin was precipitated with

protein A agarose (50 ml slurry in X-ChIP, Millipore) for 4 hours

at 4uC with rotation. Immunoprecipitated chromatin was

collected, washed, eluted and crosslinks reversed. DNA was then

extracted by phenol-chloroform and ethanol precipitated in the

presence of 10 mg glycogen.

Relative DNA enrichments were quantified by TaqMan real-

time qPCR using the comparative Ct method relative to input

DNA and normalized to the primer set 10.35 within the 16 kb

condensed chromatin region upstream of the chicken b-globin locus

as described previously [14]. The TaqMan primer sets 10.35

(‘‘16 kb’’), 21.54 (HS4 core, ‘‘end HS4’’), 39.806 (beta-adult

promoter), 50.861 (39HS) and PGI59 (59 HS4 elements on IL-2R

transgene, ‘‘trans HS4’’) were used in this study.

10.35_For: GGAACAAGTTGGCAAGGTCCTAT
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10.35_Rev: TCTTCTGCCCTGCCCGTAT

10.35_TM: FAM-TGCAGTTCCCTGTTCATGTGCTTT-

TCG-TAMRA

21.54_For: TCCTGGAAGGTCCTGGAAG

21.54_Rev: CGGGGGAGGGACGTAAT

21.54_TM: 6FAM-CCCAAAGCCCCCAGGGATGT-TA-

MRA

39.8_For: CTGTGGTCTCCTGCCTCACA

39.8_Rev: AGGCTGGGTGCCCCTC

39.8_TM: FAM-CAATGCAGAGTGCTGTGGTTTGGAA-

CTG-TAMRA

PGI_59_For CACAGGAAACAGCTATGACATGATT

PGI_59_Rev TCTGCCTTCTCCCTGATAACG

PGI_59_TM 6FAM-AATTCCTGCCCACACCCTCCTGC-

TAMRA

ChIP analysis of transcription factor binding in murine

E14Tg2A.4 ES cell lines was performed using formaldehyde

crosslinked chromatin prepared from 16109 cells treated with 1%

formaldehyde for 5 minutes. Chromatin was prepared as de-

scribed above, where fragments sizes ranged from 500–700 bp.

Semi-quantitative PCR was performed using the following primers

APRT1/2_For: AAAGGCGTGCGGGAGCCAGAAAT

APRT1/2_Rev: CCTTGGTAGGTGGGG

APRT3_For: CCCTGTTCCTGGGCTCC

APRT3_Rev: TGACTGGCCAGGAGG

ChIP analysis from human embryonic kidney 293-T cell line

SD5 that contains a stably integrated copy of the 275 bp HS4 core

chicken insulator was performed as described for cultured chicken

cells above. SD5 cells were crosslinked with 1.6% formaldehyde

for 5 minutes. The following primers were used in SYBR

quantitative PCR analysis:

HS4_21.726_F: CGGGATCGCTTTCCTCTGA

HS4_21.726_R: CCGTATCCCCCAGGTGTCT

P_DHFR_F: TCGCCTGCACAAATAGGGAC

P_DHFR_R: AGAACGCGCGGTCAAGTTT

Control

VEZF1_CDS_F: GACAGCAGCCGAACTTCGTT

VEZF1_CDS_R: TGGTGCCCGAGGAAGATG

APRT elements. The following elements were amplified from

Hamster liver genomic DNA:

Wild-type APRT CpG island. Sp1-like motifs in red. AvaII and

HpaII restriction sites in bold.

CTAGAGGATCCCGGACAACACCCACACCCGGCCCC-
TCCAGGGTCCAGAAAGCTGGCCCTGCGAGAAGCGGG-
ACTGAAAAGGCGTGCGGGAGCCAGAAATCCAAAAG-
GGTGCCAAGGCATGCGTCCTTTTTCCACCCAGAAA-
TAACCCCAGGCTTTCAATTTGAGGTTATTTCAAT-
ATCCAGCAAATGCGTTACTTCCTGCCAAAAGCCAG-
CCTCCCCGCAACCCACTCTCCCAGAGGCCCCGCCC-
CGTCCCGCCCCCTCCCCGGCCTCTCCTCGTGCTGGA-
TCGCTCCCTAAGGACGCCCCGCTCCAGAAGCCCCA-
CCTACCAAGGACGCCCCACCCTTGTTCCCCGGACTG-
GTATGACCCCAGCCTGCTGACATCCCTCCGCCCTT-
TCTCGTGCACGCGGCTATGGCGGAATCTGAGTTGC-
AGCTGGTGGCGCAGCGATCCGCAGTTTCCCCGACT-
TCCCCATCCCCCGGCGTGCTGTTTAGGTGAGATCAC-
GAGCCAGCAAGGCGTTGGAGCCCTGTTCCTGGGCT-
CCCCGGCGAGGCGCATGGGCAGTCTCGGGGATCTTG-
TGGGGTCTCCGCCCCCCTTTCCCCCGGCCACCAGCC-
TCTCCTTGTTCCCAGGGATATCTCGCCCCTCCTGA-
AGGGACCCCGCCTCCTTCCGAGCTTCCATCCGCCTC-
CTGGCCAGTCACCTTAAGTCCACGCATGGCGGCAA-
GATCGACTACATCGCAGGTCTA

Mutant APRT CpG island. Mutated bases in blue were

introduced by site directed mutagenesis. Overall CpG content

increased from 46 to 48 following these mutations. AvaII and HpaII

restriction sites in bold.

CTAGAGGATCCCGGACAACACCCACACCCGGCCCC-
TCCAGGGTCCAGAAAGCTGGCCCTGCGAGAAGCGG-
GACTGAAAAGGCGTGCGGGAGCCAGAAATCCAAA-
AGGGTGCCAAGGCATGCGTCCTTTTTCCACCCAG-
AAATAACCCCAGGCTTTCAATTTGAGGTTATTTC-
AATATCCAGCAAATGCGTTACTTCCTGCCAAAAG-
CCAGCCTCCCCGCAACCCACTCTCCCAGAGACCC-
CCCGCATCCCCGACGCTACCCCCCGCATCCCCGA-
TCTCCTCGTGCTGGATCGCTCCCTAAGGACGCCC-
CGCTCCAGAAGCCCCACCTACCAAGGACGCCCCA-
CCCTTGTTCCCCGGACTGGTATGACCCCAGCCTGC-
TGACATCCCTCCGCCCTTTCTCGTGCACGCGGCT-
ATGGCGGAATCTGAGTTGCAGCTGGTGGCGCAGC-
GATCCGCAGTTTCCCCGACTTCCCCATCCCCCGGC-
GTGCTGTTTAGGTGAGATCACGAGCCAGCAAGGC-
GTTGGAGCCCTGTTCCTGGGCTCCCCGGCGAGGCG-
CATGGGCAGTCTCGGGGATCTTGTGGGGGTCCGCT-
CCCCCCGCATCCCCGACACCAGCCTCTCCTTGTT-
CCCAGGGATATCTCGCCCCTCCTGAAGGGACCCCG-
CCTCCTTCCGAGCTTCCATCCGCCTCCTGGCCAG-
TCACCTTAAGTCCACGCATGGCGGCAAGATCGAC-
TACATCGCAGGTCTA

Non-CpG island from APRT locus. HpaII site in bold.

TCTAGATTGCTAGGAGTAGCACCTAAGATGAAC-
TAGATGCTAAAAAATGCTGTATCTTTGGGGCACAC-
GAGGGCATGCCTGGGCAGGCTTAGAGCCTGGTAGT-
CTCAGGGGCTGCACCAAAGTGTAATTCTTGTGCTA-
AATAACTTTCACTTACCAGTGCCAAGCACGGGCTT-
CAGAAACACCCTAGGGTCGCTGAATGTCCACCAGG-
GGAGTCAGACATGTCCAGAGGGTGAGAACCCCAGA-
GAATTCGGTAGCCCTGACATGTGCTACAATTACTG-
ATGCCCACTTCCTACTGGTTCCTCCTGGCCATACC-
TCAGGAATTAGGGCATGCTTTCTGCCTGCTACAGT-
AGCTCATCCTCCCTGGAAGTGACCCCAGACATATA-
CCCTGAACTGTAACCGATAAAGTGCGCCTGGGCAG-
ATGTATTTGAGAGGTGGCAAAAGTAAACCATAGGT-
GTCCCCGAGCTAGATACAGAAGGCAGATAACATCC-
CCAAGGCTAAGCTGCTGCCCCAATAGCCATCAGCC-
TTCTAGTTATAGCTAGTAAGACCTAGTATTCCTGG-
TCAATACTATTCACTCAATCCTTACACCTCAGCCC-
TAACACGCCCCCTCTCTCATCCTAACAGGCCTAGA-
CTCCAGGGGATTCTTGTTTGGCCCCTCCCTAGCTC-
AGGAGCTGGGCCTGGGCTGTGTGCTCATCCCGGAAG-
CGAGGGAAGCTGCCAGGCCCCACAGTGTCAGCCTC-
CTATGCTCTCGAGTATGGCAAGGTAAGCAGGCAGT-
GGGTAGCTGTCTAGGAGTAAATGTGGGGGCTCAGA-
GAGGTTAAGTCATCAGGCCAGGTTTATACCACCAG-
GAAACATGGAGAAGCTAGGGGTGGTGGTTCTAGA

CpG island methylation assays
,720 bp wild type and mutant APRT CpG islands and an

870 bp non-island region of the APRT gene were cloned into

pUC19. Each element was PCR amplified, half of which was

subject to in vitro CpG methylation by M.SssI methyltransferase

(New England Biolabs). In vitro methylation was validated by HpaII

and MspI digestion. 1 mg of each APRT element was transfected

into murine E14Tg2A.4 ES cells (BayGenomics) with 1 mg of the

XbaI fragment of pREP7 (Invitrogen). Hygromycin resistant clones

were grown in LIF without feeder co-culture. Genomic DNA was

VEZF1 Mediates Protection from DNA Methylation
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extracted after two weeks of culture. Probes for Southern blotting

were generated using Ready-to-go dCTP beads (GE Healthcare).

Oligonucleotide sequences
Oligonucleotides were generated on an ABI 394 DNA

synthesizer.

The top strand sequences for each of the duplexes used for gel

mobility shift analyses were:

FI wt 59 GGAGCTCACGGGGACAGCCCCCCCCCAAA-

GCCCCCAGGGA,

FIII wt 59 aggcgcgccCCGGTCCGGCGCTCCCCCCGCAT-

CCCCGAGCCGGggcgcgcct,

FV wt 59 CCTGCAGACACCTGGGGGGATACGGGGA-

AAAAGCTTTAGG,

Sp1 59 ATTCGATCGGGGCGGGGCGAGC,

glo wt 59 AATTGCAGAGCTGGGAATCGGGGGGGGG-

GGGGGGGCGGGTGGTGGTGTGG,

glo 7G 59 AATTGCAGAGCTGGGAATCGGGGGGGC-

GGGTGGTGGTGTGG,

glo 6G 59 AATTGCAGAGCTGGGAATCGGGGGGCG-

GGTGGTGGTGTGG.

Asc I restriction sites used for cloning FIII sites in an earlier

study are shown as lower case. All FI and FIII oligonucleotides

were identical to the wt sequences above except for mutations

indicated in Figure 1E.

DNA affinity columns were prepared using the following

oligonucleotides

FI-DA TOP 59 gatcTCACGGGGACAGCCCCCCCCCAA-

AGCCCCCA

FI-DA BOTTOM 59 gatcTGGGGGCTTTGGGGGGGGG-

CTGTCCCCGTGA

FIII-DA TOP 59 gatcGGTCCGGCGCTCCCCCCGCATC-

CCCGAGCCGGCA

FIII-DA BOTTOM 59 gatcTGCCGGCTCGGGGATGCG-

GGGGGAGCGCCGGACC

PCR primers used in bisulfite sequencing were

HS4 59 double forward 59 GGTATTAGAGTAGATTGTA-

TTGAGAGTGTA

HS4 59 double reverse 59 CATAACTATTTCCTATATAA-

ATCCCC

HS4 59 single forward 59 AGAGTAGATTGTATTGAGAG-

TGTATTATA

HS4 59 single reverse 59 ACATCCCTAAAAACTTTAAAA-

AAAA

IL-2R forward 59 GTTAAGGTTGGGGGTTTTTT

IL-2R reverse 59 AAAACTCTACCTAACAACCAAACA-

C

PCR primers used in RT-PCR gene expression analysis were

GgVEZF805anti 59CAGTGCACGTTTGGCATTTGAAG

GgVEZF716sense 59GAAAAGGCTTCTCGAGGCCTGA-

TC

GgGAPDH-247T 59-6FAM-TCCAGGAGCGTGACCCCA-

GCA-TAMRA

GgGAPDH-226F 59 ATGGGCACGCCATCACTATC

GgGAPDH-302R 59 AACATACTCAGCACCTGCATCTG

GgB-ACTIN_F 59 TGCTGCGCTCGTTGTTGA

GgB-ACTIN_R 59 CATCGTCCCCGGCGA

GgB-ACTIN_T 59-6FAM-TGGCTCCGGTATGTGCAAG-

GCC-TAMRA

The primers used for methylation specific PCR analysis of the

APRT non-island element were:

APRTNI_59 TCTAGATTGCTAGGAGTAGC

APRTNI_39 TCTAGAACCACCCCTAGC

Supporting Information

Figure S1 Core HS4 sequences. (A) The 244 bp SacI - HindIII

fragment originally defined as the ‘‘250 bp core’’ HS4 element

[11]. Underlined bases indicate the positions of five in vitro DNaseI

footprints [11]. Bases in bold type have been shown to be essential

for DNA-binding of CTCF [9], USF1/2 [14], or VEZF1 (this

study). This 244 bp fragment alone has not been tested in either

enhancer blocking or barrier assays. (B) The 275 bp HS4 fragment

used to define insulator properties of the ‘‘250 bp core’’ in

enhancer blocking [9] and barrier assays [12]. Flanking AscI

cloning sites present in all functional assays of the HS4 core are

shown in italics.

Found at: doi:10.1371/journal.pgen.1000804.s001 (0.87 MB TIF)

Figure S2 Identification of FI- and FIII-binding proteins. (A)

Peptide sequences obtained from tandem MS sequencing of

proteins isolated by FI- and FIII-DNA affinity. (B) Alignment of

the amino acid sequences of chicken VEZF1/BGP1, human

VEZF1/DB1, and mouse Vezf1 (accession numbers AY775302,

1082846, and 7710108). Peptides obtained from tandem MS

sequencing that match VEZF1 are indicated by lines above the

alignment. Six C2H2 zinc fingers motifs are boxed. (C) Schematic

representation of the domain structure of VEZF1. Only the zinc

finger motifs share homology with factors other than VEZF1

orthologs, the nearest relative being the MAZ transcription factor.

Found at: doi:10.1371/journal.pgen.1000804.s002 (4.96 MB TIF)

Figure S3 Supershift analysis of VEZF1, SP1, SP3, and ZF5

interactions with HS4 footprints and the bA-globin promoter. Gel

mobility supershift assays using 32P-labelled FI (A), FIII (B), FV

(C), and glo wt (D) oligonucleotide duplexes. Adult chicken

erythrocyte nuclear extract (ery) and recombinant chicken

VEZF1, SP1, or SP3 used in the reactions are indicated by

brackets above the lanes. Proteins were pre-incubated with

antibodies (indicated above each lane) prior to incubation with

DNA. Supershifts are evidenced by abrogation of specific

complexes (asterisks) and/or formation of low mobility ternary

complexes (SS). Antibodies alone do not give rise to complexes

with any of the duplexes used (not shown).

Found at: doi:10.1371/journal.pgen.1000804.s003 (3.49 MB TIF)

Figure S4 Analysis of SP1, SP3, and ZF5 interactions with HS4

footprints I and III. Gel mobility shift assays using 32P-labelled FI

and FIII oligonucleotide duplexes. Unlabelled competitor duplexes

(indicated above each lane) were added at 50 fold molar excess.

Recombinant chicken SP1, SP3, and ZF5 used in the reactions are

indicated by brackets above the lanes. The competition profile of

these proteins does not match that of red blood cell nuclear extract

(Figure 4) or recombinant VEZF1 (Figure 6A).

Found at: doi:10.1371/journal.pgen.1000804.s004 (0.71 MB TIF)

Figure S5 SP1, SP3, and ZF5 do not interact with HS4 in vivo.

(A) ChIP analysis of transcription factor interactions at the b-globin

locus in 6C2 erythroid progenitor cells. DNA enrichments at the

{lower case beta}A promoter or the HS4 and 39HS insulators

were normalized to a negative control located in the 16 kb

condensed chromatin region upstream of the b-globin locus. (B)

ChIP analysis of transcription factor interactions with a stably

integrated HS4 element in transgenic human 293 cells. Interac-

tions with the DHFR CpG island promoter are shown as a positive

control for SP1 and SP3 binding. DNA enrichments are

normalized to an AT-rich negative control locus.

Found at: doi:10.1371/journal.pgen.1000804.s005 (0.49 MB TIF)

Figure S6 VEZF1 binding to HS4 is resistant to individual

binding site mutations. (A) Schematic representation of the IL-2R
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transgene showing location of QPCR primer sets used to analyze

the interaction of VEZF1 with the transgenic HS4 and promoter

elements. (B–D) ChIP analysis of (B) VEZF1, (C) CTCF, or (D)

USF1 interactions at the endogenous HS4 insulator (eHS4) and

the transgenic HS4 (tHS4) and promoter (b-IL2Rpro) elements in

the same 6C2 cell lines used for DNA methylation (Figure 3) and

histone modification [14] analysis. DNA enrichments were

normalized to a negative control located in the 16 kb condensed

chromatin region upstream of the b-globin locus. Deletion of either

footprint II or footprint IV disrupts CTCF and USF1 binding as

expected. In contrast, deletion of individual VEZF1 sites footprint

I, III, or V have no significant effect on overall VEZF1 ChIP

efficiency.

Found at: doi:10.1371/journal.pgen.1000804.s006 (1.09 MB TIF)

Figure S7 VEZF1 binding to HS4 is not significantly affected

following VEZF1 RNAi. (A) Quantitative RT-PCR analysis

following 48 hours of doxycycline-induction of two chicken 6C2

cell lines harboring lentiviral vectors that express VEZF1-specific

miRNA. Expression levels are normalized to those of b-actin

(ACTB) and untreated cells. VEZF1 mRNA levels are reproduc-

ibly knocked down by 70%. (B) Western blot analysis of chicken

VEZF1 protein levels in one of the above lines with and without

14 days of doxycycline induction of VEZF1-specific miRNA. TBP

levels were monitored as a loading control. VEZF1 and TBP band

intensities visualized on a FUJI LAS3000 imager were quantified

using AIDA software (shown below). Following normalization to

TBP levels, VEZF1 protein levels were quantified to be knocked

down by ,97%. VEZF1-specific miRNA may cause translational

inhibition in addition to the mRNA degradation observed by RT-

PCR (C) ChIP analysis of VEZF1 interaction with the endogenous

HS4 element following 14 days of induced VEZF1 knockdown.

DNA enrichments were normalized to a negative control located

in the 16 kb condensed chromatin region upstream of the b-globin

locus.

Found at: doi:10.1371/journal.pgen.1000804.s007 (1.64 MB TIF)

Figure S8 Transcription factor interactions with APRT CpG

island elements. VEZF1 and SP1 interact with the wild type APRT

CpG island, but the FIII mutant APRT element is only bound by

VEZF1. Gel mobility supershift assays using 32P-labelled oligonu-

cleotide duplexes containing either the wild type APRT SP1 sites

1&2 (lanes 1–4) and site 3 (lanes 5–8) or the mutant sites 1&2 (lanes

9–12) and site 3 (lanes 13–16). The core sequences of the duplexes

are as shown in figure 8a. Nuclear extracts were pre-incubated

with antibodies (indicated above each lane) prior to incubation

with DNA. Supershifts are evidenced by the formation of low

mobility ternary complexes (SS) in addition to abrogation of

specific complexes (asterisk). Antibodies alone do not give rise to

complexes with any of the duplexes used (not shown). SP1 and SP3

are detected in complexes with the wild type sites 1&2 and site 3

only. VEZF1 is detected in complexes with all four sites; weakest

binding is seen at wild type sites 1&2 and strongest binding is seen

at mutant sites 1&2.

Found at: doi:10.1371/journal.pgen.1000804.s008 (1.78 MB TIF)

Table S1 VEZF1 sites in the HS4 barrier protect a promoter

from DNA methylation. CpG methylation of transgene promoters

flanked by wild type or mutant HS4 insulators after 30 or 90 days

of culture. The scoring of individual CpG bases from each clone

subject to bisulfite sequencing is shown. Methylated bases are

marked as ‘1’ and shaded blue. Average CpG methylation values

are shown in Figure 5. Numbers above each table refer to CpG

numbering from [16], where CpG 4–11 and 12–18 reside in the

promoter and coding sequence, respectively.

Found at: doi:10.1371/journal.pgen.1000804.s009 (0.02 MB PDF)

Table S2 Mutations of insulator protein binding sites result in

the de novo methylation of HS4. CpG methylation of wild type

(WT) or mutant (DI - DV) HS4 insulators after 30 or 90 days of

culture. Both copies of HS4 were sequenced, except for DII and

DV, where only the outermost copy was sequenced (see Materials

and Methods). The scoring of individual CpG bases from each

clone subject to bisulfite sequencing is shown. Methylated bases

are marked as ‘1’ and shaded blue. Average CpG methylation

values are shown in Figure 3. Numbers above each table refer to

CpG numbering as assigned in Figure 3b.

Found at: doi:10.1371/journal.pgen.1000804.s010 (0.03 MB PDF)

Text S1 DNA binding activities of candidate HS4-binding

proteins; RNA interference methods; western blotting methods.

Found at: doi:10.1371/journal.pgen.1000804.s011 (0.04 MB

DOC)
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