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Abstract. We present a model of excitability in larval Drosophila mus-
cles. Our model was initially based on modified Hodgkin-Huxley equa-
tions, adapted to represent variable, regenerative depolarisations (action
potentials) we have occasionally observed in intracellular recordings and
that can be triggered by excitatory junction potentials at neuromuscular
synapses. We modified several kinetic equations describing voltage sen-
sitive Ca2+ and K+ ionic currents, previously used to predict excitabil-
ity in muscle cells of the mammalian cardiac atrioventricular node. The
resulting nonlinear differential equations had multiple unknown param-
eters. Thus, to fit the model to experimental observations of variable
excitability, we developed a new implementation of particle swarm opti-
misation. This GPU-based implementation allows us to adopt an ensem-
ble model approach in which each experimental observation is used to
find a plausible parameterisation, resulting in a set of models account-
ing for cell-to-cell variability of muscle excitability in Drosophila larvae,
and with potential applications to population-based modeling of other
excitable cell types.

1 Introduction

The control of muscle contraction is fundamental to behaviour. In mammals
and other vertebrates, muscle contraction is the end result of a signalling cas-
cade that begins with excitation of motor neurones in the brain stem or spinal
cord, triggering waves of regenerative depolarization and repolarization (action
potentials) that are propagated by saltatory conduction along each myelinated
nerve axon. Activation of muscle fibres takes place at neuromuscular junctions
(NMJs). When a muscle action potential is propagated along the muscle sur-
face membrane it leads to conformational change in muscle proteins, enabling
contraction.

In this paper we investigated the mechanisms of muscle excitability in the
abdominal muscles of larval fruit flies (Drosophila melanogaster). These inver-
tebrate muscles do not express the voltage-sensitive sodium channels that are



essential for generation of action potentials in vertebrate muscle fibres. Larval
muscles do, however, contain voltage-sensitive calcium (Ca2+) and potassium
(K+) channels: a similar situation to some non-skeletal muscle fibres in verte-
brates, for example in the atrioventricular (AV) node of the mammalian heart
[8, 3, 12]. However, unlike mammalian cardiac AV node cells, the functional sig-
nificance of voltage-sensitive Ca2+ and K+ channels in larval Drosophila muscle
fibres is unclear, since activation of these channels is not necessary for muscle
contraction and the summative effects of a short burst of excitatory NMJ poten-
tials (EJPs) is sufficient for evoking contractile responses [22, 14]. Nevertheless,
larval Drosophila muscle fibres are capable of regenerative, Ca2+-dependent de-
polarization and we seek to establish the physiological role of these phenomena.
As part of that ongoing investigation, we have developed a computational model
of excitability at larval Drosophila NMJs. Our approach was initially based on
a modified Hodgkin-Huxley model of the firing properties of muscle cells in the
mammalian cardiac AV node, which also depends mainly on a combination of
interacting voltage-sensitive Ca2+ currents and K+ currents [8]. In addition, in
order to parameterise the model we have applied a new GPU-based implementa-
tion of the particle swarm optimisation method, following a similar procedure to
others [15]. Initial investigations of this model suggest that the quantitative char-
acteristics of the regenerative responses that have been observed experimentally
can be accounted for by a computational model of this type.

The rest of the paper is structured as follows. In Section 2 we present an
overview of the relevant biological background and a brief summary of Hodgkin-
Huxley models of action potentials. In Section 3 we introduce the computational
model of excitability at larval Drosophila neuromuscular junctions. In Section 4
we set up the parameter study for the presented model in the context of particle
swarm optimisation and describe the preprocessing steps taken for isolating in-
dividual examples of actions potentials from the experimental data. In Section 5
we discuss the results of the parameter fitting for the considered model and
finally, in Section 6 we give conclusions and some further research directions.

2 Background

2.1 Action potentials

Action potentials are primary mechanisms of cell-to-cell communication in ner-
vous and neuromuscular systems and they occur when transmembrane voltage
undergoes rapid depolarisation then repolarisation. In neurones, this is often
referred to as spiking or firing. The changes in membrane potential are caused
by the flow of charged ions along their extracellular-intracellullar concentration
gradients through voltage-gated ion channels in the cell membrane, proteins that
typically incorporate selectivity filters for Na+, Ca2+ or K+ ions. In the resting
state, the inside voltage is often more negative than −70mV with respect to
the outside, due to the open states of voltage-insensitive channels. The opening
of voltage-sensitive channels becomes regenerative when membrane potential is
depolarised beyond critical threshold values that are unique for each type of



Fig. 1: A. Voltage sensitive ion channels in excitable cell membranes with the
normal direction of ionic flux when open indicated. Several subtypes of Na, Ca
and K channels are expressed in different cell types and species, differing in
protein structure and activation/inactivation kinetics. B. Schematic illustration
of regenerative depolarization (action potential) and recovery of the transmem-
brane resting potential following activation of ion channels like those shown in
A. The magnitude and time course of these phenomena vary between cell types,
depending on the number, density and types of voltage-sensitive ion channels.

channel protein. Opening of Na+ or Ca2+ channels admits positively charged
ions into the cell, further depolarising the membrane and causing more chan-
nels to open. This positive feedback is frequently sufficient to bring about a
rapid reversal in the membrane potential (inside becoming positive, rather than
negative). The polarity of the membrane is then restored by a combination of
delayed voltage-dependent inactivation and delayed activation of other channels,
typically K+-channels, that enable flux of positive ions along concentration gra-
dients from inside to out. This interplay between ion channels of different types
is the basis of the depolarization/repolarization that is used to propagate signals
along axons and between cells (Figure 1).

In vertebrate skeletal muscle, action potentials are trigged by axonal con-
tacts at neuromuscular junctions (NMJs). Each presynaptic motor nerve ter-
minal contains neurotransmitter molecules (acetylcholine) packaged into 30 nm
spheres (synaptic vesicles), some of which are tethered to the intracellular surface
nerve membrane at “active zones”. An incoming nerve action potential triggers
fusion of about 50 vesicles with the nerve terminal membrane, releasing their
contents into the synaptic cleft. This process of exocytosis is executed following
influx of Ca2+ ions through Ca2+-selective, voltage sensitive ion channels in the
nerve terminal membrane. These ions then bind to signaling proteins integrated
into the active zone molecular complex [23, 24]. Molecules of neurotransmitter
released by exocytosis diffuse rapidly across the narrow (50 nm) synaptic cleft
between motor nerve terminal and muscle fibre, where they bind to specific
protein receptors located in high density (> 105 µm−2) at the crests of mem-



brane folds of the motor endplate, the muscle surface opposed to the sites of
presynaptic neurotransmitter release. Activation of these receptors generates an
inward postsynaptic ionic current, which depolarizes the motor endplate mem-
brane. When the membrane potential at the motor endplate reaches around
−65 mV , voltage-sensitive Na-channels (NaV channels) located in the crypts of
the junctional folds are activated, leading to a regenerative depolarization that
is similar in character to the neuronal action potential [30, 29, 11]. The muscle
action potential is propagated along the muscle surface membrane and into a
network of invaginations known as t-tubules. Here, proteins are coupled to those
controlling the release of Ca2+ from the sarcoplasmic reticulum, an intracellular
membrane-bound storage depot [4]. Binding of released Ca2+ brings about an
energy-dependent conformational change in other muscle proteins, enabling force
generation or muscle shortening via recycling of molecular cross-bridges between
an orderly array of cytoskeletal filaments comprising the protein molecules actin
and myosin [26]. Neuromuscular function is similarly initiated and executed in
invertebrate muscles, including those of Drosophila larvae. The most distinctive
chemical and structural differences are that larval NMJs utilise glutamate as a
neurotransmitter and the postsynaptic membrane folds, rich in glutamate recep-
tors, are more extensive than in vertebrates and is normally referred to as the
sub-synaptic reticulum.

Action potentials in vertebrate muscle fibres are obligatory for excitation-
contraction coupling: if NaV channels in muscle are selectively blocked phar-
macologically, then synaptically-evoked endplate potentials (EPPs) at neuro-
muscular junctions, though tens of millivolts in amplitude, fail to trigger mus-
cle contraction [29, 17]. By contrast, muscle fibres in the abdominal muscles of
larval Drosophila, do not express NaV channels. Instead, they contain voltage-
sensitive Ca2+ and K+ channels. But as noted above, the functional significance
of voltage-sensitive Ca2+ and K+ channels in larval Drosophila muscle fibres is
unclear. It is generally regarded that they are of little physiological significance
since they are only reliably observed in recordings from muscles in which extra-
cellular Ca2+ concentration is increased beyond normal physiological maxima,
or when membrane K+ permeability is reduced by adding selective channel
blocking drugs [22, 10, 21, 6].

However, action potentials are also occasionally observed in larval muscle fi-
bres under more normal physiological recording conditions [25, 31]. Figure 2(A)
shows an intracellular microelectrode recording obtained from a filleted prepa-
ration of a 3rd instar larval Drosophila, which clearly shows a train of spikes: re-
generative depolarising action potentials. Larval fillet preparations and intracel-
lular recordings were made using standard techniques [27]. The preparation was
bathed in a normal HL3.1 physiological saline (containing 1.5mM Ca2+; 4mM Mg2+)
without any ion channel blockers. The muscles were impaled with glass micro-
electrodes, resistance 10 − 40MΩ. Segmental nerves were aspirated into a fire-
polished 10µm diameter suction pipette/electrode and stimulated with 0.2ms
pulses 1-10V in amplitude. Trigger and current pulses were delivered and record-
ings were captured via a Digidata 1550B interface using pClamp-10 software



Fig. 2: Trace obtained during impalement of Muscle 4, in normal HL3.1 bathing
medium and in the absence of any ion channel blockers. B. Combined optical
recording of twitch contractions (arbitrary units) of Muscle 12 in a 3rd instar
larval fillet preparation (upper trace) and simultaneous intracellular recording of
membrane potential in response to progressive 2nA increments in the strength
of current pulses injected through the recording microelectrode (lower trace) in
normal HL3.1 medium. Baseline drift was due to slight movement of the prepa-
ration during recording. C: Intracellular recording of a nerve-evoked excitatory
synaptic (junctional) potential (EJP) in Muscle 6, sufficient to activate a regen-
erative action potential (three successive sweeps at 2s intervals). D: Spontaneous
hyperpolarisation of the resting potential by about 10 mV, in the same muscle
fibre as C, abolished the regenerative depolarisation, leaving only a large EJP
in response to nerve stimulation. The prepulses in C,D are responses to ±1 nA
rectangular pulses injected through the recording microelectrode, used to check
membrane integrity (resistance and capacitance).

(Molecular Devices, San Jose, USA). Images were captured using a QImaging
Optimos camera (Teledyne Photometrics, Tucson, USA) driven by public do-
main Micromanager software (micro-manager.org). Images were postprocessed
and muscle contractions recording in FiJi (imagej.net/Fiji) using the Muscle
Motion plugin (github.com/l-sala/MUSCLEMOTION).

A brief discharge of action potentials diminished in frequency as the rest-
ing membrane potential spontaneously hyperpolarised. The identified muscle in
this case was Muscle 4 but we have observed similar phenomena in intracellu-
lar recordings from muscles 5, 6, 7, 12, and 13. Figure 2(B) shows combined
optical recording of twitch contractions of Muscle 12 in 3rd instar larval fillet



preparation (upper trace) and simultaneous intracellular recording of membrane
potential in response to progressive 2nA increments in the strength of current
pulses injected through the glass recording microelectrode (lower trace), in nor-
mal HL3.1 medium. Contractile responses were only elicited when membrane
depolarisation exceeded the firing threshold for regenerative responses. Sum-
mative contractile responses were evoked when membrane depolarisation was
sufficient to evoke action potential doublets.

The experience from the Ribchester Lab is that about 10% of freshly-dissected
larval preparations bathed in normal (or even reduced) Ca2+ containing media
show action potentials and these are associated with brisk muscle contractions
(c.f. Figure 2(B)). The mechanism of these regenerative responses, which ac-
tivate at a much higher threshold than vertebrate muscle action potentials, is
wholly consistent with published data on the voltage-dependence of Ca2+ chan-
nels and K+-channels expressed in larval muscle: specifically, a form of L-type
Ca2+ channel with an activation threshold of about −25mV , as well as several
types of K+-channels [21, 6]. Sixteen of these recordings were from muscle fi-
bres that showed sufficient membrane integrity and stability to warrant further
analysis and simulation.

2.2 Hodgkin-Huxley type models

In 1952 Hodgkin and Huxley proposed and tested a model to account for the
propagation of action potentials in the squid giant axon, the most favourable
preparation at that time for comparing empirical data with computational anal-
ysis [7]. The Hodgkin-Huxley formulation was based on the notion that mem-
brane ionic permeability is voltage- and time-dependent and that permeabili-
ties to ions, specifically Na+ and K+, are associated with distinct activation
and inactivation kinetics. In their model, the cell membrane is represented as
a dielectric separating conducting ionic media, thus conferring transmembrane
capacitance, in parallel with batteries representing transmembrane voltages. Se-
lective ionic permeabilities were represented by separate variable conductances.
Based on this abstraction they applied and numerically solved a set of nonlin-
ear ordinary differential equations (ODEs) to describe the flow of membrane
current and to predict the change in transmembrane voltage during the action
potential [7].

The voltage-sensitive ionic permeabilities envisaged by Hodgkin and Hux-
ley were subsequently shown to be mediated by protein molecules embedded in
membranes and that functioned as ion channels in their open state [18]. Subse-
quently such models were adapted to other excitable cell types, including cardiac
and skeletal muscle, and are now widely used in membrane biophysics due to
their computational efficiency and relative mathematical simplicity.

2.3 Particle swarm optimisation

PSO is a stochastic optimisation technique for continuous non-linear functions
introduced by Eberhart and Kennedy in [5] and is inspired by social behaviour of



bird flocking or fish schooling. The algorithm initialises and maintains a swarm
of particles where each particles represents a random solution with a velocity in
the search space. Each particle moves through the search space based on its own
the best solution, and the best global solution, obtained thus far. It was demon-
strated in [32] that a GPU based implementation can result in performance
improvements for large swarm sizes and many dimensional problems.

3 Model

The structure of the model presented here is based on a Hodgkin-Huxley type
model [7] of myocyte action potentials in the AV node of the mammalian heart
published by Inada et al. [9]. We based the model on nodal cells of myocardium,
as we hypothesised the same ionic properties (Ca2+ : K+ gating) underlie the
generation of action potentials in larval Drosophila muscle. Our model assumed
one cellular compartment (inside-outside) and was modified to accommodate
different kinetics appropriate to the larval muscle fibres. Functional homologues
for channels known to occur in Drosophila muscle but which are absent from the
cardiac muscle were added.

The model represents the change in voltage across the cell membrane based on
the temperature, membrane capacitance and atmospheric pressure (all treated
as constants and specified in Appendix A) and a sum of ionic currents flow-
ing through open ion channels. The total voltage change was determined as a
function of ionic current based on the following equation

d

dt
V =

−Itotal
Cm

+
d

dt
Vinit, Itotal = ICv + IKv1 + IKv2 + IKv3 + Ib + If

giving the change in membrane voltage as a function of time and ionic currents
in Drosophila muscle cells. Vinit is a function representing the magnitude and
time course of initial depolarisation that results from activation of ligand-gated
glutamate channels by neurotransmitter at the NMJs and which then triggers
activation of the voltage-gated currents. This function aims to account for the
dataset consisting of evoked responses as the synaptic signal which it represents
is not integral to action potential occurrence but is present in our dataset.

Ion channels in the model are characterised using sets of ODEs, which are
used to determine the expected proportion of channels which are in open (con-
ducting) state, as opposed to closed (non-conducting) states. The proportion of
channels in the open state is dependent on their activation and inactivation rates
as a function of membrane voltage, values of which are dependent on a set of
equations expressing sensitivity of the channel to voltage and time.

The total current passing through the ion channels is dependent on the con-
ductance of ion channels which represents the population of channels present
on the cell surface. In this paper, we explore different parametrisations of the
conductance values to identify the channels which contribute the most to the
characteristics of the Drosophila muscle action potential.



The model under consideration consists of 6 ion channels and the initiali-
sation current – one channel (Cv2) modelling the inward currents, three (Kv1,
Kv2, Kv3) modelling the outward current and finally two pacemaking currents
(Ib, HCN) modelling channels which conduct inwards at highly negative mem-
brane voltages and outwards in more positive voltages. The ODE formulations
of the channels, along with their empirically found parametrisations of the ac-
tivation and inactivation rates, are from papers [9] and [1]. In the following we
give a brief description of the channels and their functions in the model. The
ODE formulations of the channels are given in Appendix A.

Cv2 current The channel gives the inward Ca2+ current underlying muscle
activation in Drosophila embryos. The formulation of Cv2 model was taken from
the model of rabbit atrioventricular cell by Inada et al. [9], due to their functional
resemblance to mammalian L-type channels.

Kv1 current (Shaw) Kv1 channel in Drosophila larvae conducts a transient
outward potassium current. It is a voltage dependent, fast inactivating potassium
channel, which controls (and prevents) repetitive firing of the cell by prolong-
ing and enhancing hyperpolarisation of the cell in response to depolarisation.
The formulation for Kv1 current used in this paper taken from its mammalian
homologue in rat Purkinje cell neurons[1].

Kv2 current (Shab) Kv2 carries a delayed-rectifier potassium current. The
channel slowly opens and closes in response to depolarising voltage. The delayed
activation kinetics are important to control the duration of action potential in
3rd instar Drosophila and mammalian neurons. The formulation of Kv2 current
considered here was taken from [9] formulation for IKr.

Kv3 current (Shaker) Kv3 channels are low conductance ion channels acti-
vated at depolarised voltages which generate atypical, delayed voltage-dependent
slowly activating and non-inactivating currents. These contribute to maintain-
ing of the resting membrane potential but have little effect on action potential
parameters. In traditional Hodgkin-Huxley type models these channels could be
considered K+ leak channels. As for Kv1 current the formulation for Kv3 is
modelled after its mammalian homologue Kv3.3 from rat Purkinje cells [1].

Background current Ib As there is only one type of functional voltage-gated
excitatory ion channel, with relatively high activating threshold (around−25mV ),
in order to observe spontaneous action potentials a depolarising driving force
(pacemaker current) is necessary. The formulation for fast pacemaking back-
ground current was taken from rabbit heart background pacemaker as in [9].

HCN current If In previous versions (Margetiny, unpublished), the fits of the
model to experimental data were seen to improve when an HCN channel (or
channel with HCN-like kinetics) was added. However, whether or not such a
channel occurs in Drosophila muscle tissue is unknown. We consider the original
model from rabbit cardiomyocyte [9] in the context of regenerative responses in
Drosophila muscles. Similarly to background current, HCN is hypothesised to
be a multiple-ion permeable channel, albeit with much slower kinetics.



Initialisation current The initialisation current is modelled through its time-
dependent effect on the voltage by

Vi(t) = βi

(
t

αi

)
exp

(
1− t

αi

)

4 Parameter estimation problem

The general parameter estimation problem we are aiming to solve is the fol-
lowing: what are the parameters θ such that the deterministic model f(t,θ)
serves as a good predictor to the voltage response during an action potential as
observed in the experimental time-series data. In the following we describe the
available experimental data as well as the preprocessing steps.

4.1 Data preprocessing

The available data is in the form of time series measurements of voltage response
to stimulus provided by current injections. Figures 3a and 3b give two examples
of available time series. Figure 3a shows the voltage response to a single induced
synaptic stimulus triggering an action potential while Figure 3b shows five con-
secutive stimuli. Note that in this case only one of the current injections has
triggered the action potential behaviour.

The measurements from the experiments started with a depolarising current
intended to test the membrane resistance and is not relevant to the fitting of the
model (c.f. Figure 2(C)). The timings for testing the membrane resistance are
consistent throughout the dataset and thus we have simply dropped measure-
ments before 0.2 seconds. For hence forward we are considering the time series
with the prepulse removed.

From there, we need to identify the parts of the time series corresponding
to the action potential behaviour. The method for identifying parts of the time
series is done in the following way. For each time series

– we identify the indices {i1, · · · , in} corresponding to peaks in the time series
using standard implementations of peak finding algorithms.

– we identify the indices {j1, · · · , jn} corresponding to where the peaks start.
For that we first use Savgol-Goyal high pass filter [19] to smooth the time
series resulting in a series for which we can numerically calculate derivatives.
Working backwards from a peak we find where the derivatives change sign.

– we split the time series into n parts corresponding to single instances of action
potentials in the following way. The k-th series corresponds to the values of
the original time series between the indices jk and jk+1. We normalise the
time by taking the initial time to be 0.0. For each point between jk and jk+1

we consider the time passed since the measurement at index jk. Secondly, we
normalise voltages by considering the voltage differences between the base
of the peak at index jk each point in the new time series.
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(a) Response to a single synaptic
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(b) Five consecutive synaptic stimuli, only
the third of which triggered as regenerative
response

Fig. 3: Time series data for voltage response during action potential.

– Note that not all such generated time series correspond to action potentials.
We pick a threshold voltage of −10mV for the peaks that are likely to
correspond to the action potential phenomenon.

– In order to reduce the computational load we are going to consider a sub-
sample of the generated time-series.

Figure 4 gives examples of the results of the process. In particular, the dots rep-
resent an 18 point sub-sample of the experimental time series showing the action
potential. The number of sampling points is an arbitrary choice and can be easily
changed as long as the sub-sample sufficiently captures the shape characteristics
of the traces. The resulting dataset from the available recordings consists of 16
instances of action potentials.

4.2 PSO fitting

For this preliminary study of fitting the Hodgkin-Huxley type action potential
model we used a standard particle swarm optimisation (PSO) algorithm over a
given search space. The fitness calculations are given by the following. Given a
single action potential time series consisting of points (t0, V0), · · · , (tm, Vm) and
a model f(t,θ) parametrised by θ we consider the simple distance measure

K(θ) =

m∑
i=0

(f(ti,θ)− f(0,θ)− Vi)2

where f(ti,θ) − f(0,θ) gives the difference of the voltages predicted by the
model at time 0 and ti and Vi gives the same quantity for the experimental time
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(b) Consecutive synaptic responses (same
recording as Fig. 3b)

Fig. 4: Generated time-series sub-sampled at 18 points.

series. Similarly to the multi-swarm method presented in [15] we perform the
optimisation algorithm for multiple initialisations of the swarm. In our case the
initialisations are provided by the distinct time-series of action potentials.

4.3 Implementation

The standard PSO algorithm adapted for the described problems proceeds through
the following steps:

1. Particles are initialised with uniformly sampled values from the search space
and velocities. An alternative initialisation of particles through Latin hyper-
cube sampling, as done in [20] can be considered in further work.

2. For each particle the set of ODEs giving the corresponding system dynamics
is solved.

3. Based on the ODE solutions each particle gets a reward value.

4. Global maximum reward is found.

5. The location of a particle, θ, in the search space is updated based on the
global maximum θgbest and individual best previous location of the particle
θibest. In particular, the update between the i-th and (i+ 1)-th iteration for
an individual particle takes the following form

θi+1 = θi + wvi + c1ri1(θibesti − θi) + c2ri2(θgbesti − θi)

where ri1 , ri2 are random numbers in the interval [0, 1] and w (weight given to
previous velocities), c1 (called cognitive weight) and c2 (called social weight)
are parameters of the optimisation algorithm.

6. Go back to Step 2.



In the implementation we made use of the fact that PSO is easily parallelisable on
graphics processing units (GPUs) [32, 15] so that each particle is assigned a single
GPU thread. In particular, for the standard PSO given above all steps other than
Step 2 are easily parallelisable. Reward evaluations are slightly more complex
consisting of two steps: the integration step for solving the system of ODEs
and the actual reward calculation. However, storing the trajectories resulting
from numerical integration in memory would severely limit the scalability of the
algorithm to large numbers of particles. Instead, we can update the value of the
reward function on the fly after each step of the numerical integration. This way
only the point necessary for the next iteration of numerical integration is stored
in memory. The integration for reward calculations in this paper was performed
by the simple Euler forward method. For the model presented in this paper this
was found to be sufficient but other fixed time-step methods, like Runge-Kutta
fourth-order method, can be easily considered. Finally, the boundary conditions
are enforce in the following way: if the particle is about to violate the boundary
for a given parameter its position in the component of this parameter is set to
the boundary value while reversing the relevant component of its velocity.

5 Results

The parameters under investigation are the conductance values for each of the
channels (gCv, gKv1, gKv2, gKv3, gIb , gf ), the reversal potential Eb for the back-
ground pacemaker current and the shape parameters αi, βi for the voltage change
due to the initial current injection. The bounds for each of the parameter values
are set to encompass a range of physiologically plausible values. For conductances
this was the interval between 0.0µS and 0.016µS. The viable shape parameters
for the initialisation current were set so that the induced voltage would reach its
peak between values 10 mV and 25 mV before 0.5ms in order to feasibly set up
the action potential. We conducted two sets of experiments: a) parameter gf was
held at 0.0 ,disabling the channel in the model and b) the HCN channel corre-
sponding to gf conductance values was enabled. For both sets of experiments we
ran the PSO on the action potential traces 6 times – each with different random
seeding and a varying weight parameter w from {0.7, 0.72, 0.74, 0.76, 0.78, 0.80}
to further perturb the behaviour of the particle swarms between different exper-
iments in order to find as many different optima as possible. We set the values
c1 = c2 = 2.0 as in [5]. The effect of varying the social and cognitive weights
for this problem was not explored and is left for further work. We ran a fixed
number (2000) of iterations. Little can be said about the convergence properties
of the PSO for the given fitness function, but in experiments we saw that 2000
iterations generally allowed the swarms to settle to some local optimal values.

In the multi-swarm implementation we associated each instance of observed
action potential with its own fitness function. Not averaging over the collected
AP samples and running the PSO algorithm on each sample multiple times allows
us to effectively find a set of plausible parametrisations of the proposed model.
This gives an alternative way to generate a population of models aiming to take
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Fig. 5: Blue and red trajectories correspond to best model fittings for the time-
series presented in Figure 4. a) and b) respectively.

Table 1: Mean and standard deviation of fitted conductance values for the model
with the HCN channel disabled.

mean std.

gCv2 0.0106 0.0031
gKv1 0.0093 0.0043
gKv2 0.0091 0.0041

mean std.

gKv3 0.0083 0.0053
gb 0.0102 0.0038
Eb 2.8 23.4

into account the cell-to-cell variability similarly to [2] [13]. Figure 5 shows the
model fitted to sub-samples of the time series shown in Figure 4. The results of
the fitting are summarised by combined box and violin plots in Figures 6 and 7,
describing the shape of the distributions of found parameter values. Table 1
gives mean and standard deviation summary statistics for the model fitting with
the HCN channel disabled. We have discarded parameters which give rise to
voltage responses that do not recover to the interval −50mV to −30mV after
the occurrence of an action potential or result in overly low fitness values.

From the results of parameter fitting with HCN channel disabled we first
note that the summary plots indicate that conductance values of gCv2 and gb
close to 0 are unlikely to fit the experimental traces well. This seems to confirm
the necessity for involvement of both Cv2 channels and a pacemaker current
Ib to facilitate action potentials in Drosophila. In addition, slightly tighter in-
terquartile range for the Kv2 channel conductance compared to the other two
K+ channels (Kv1, Kv3) points towards its more significant effect in shaping
of the action potentials while Kv1 and Kv3 are permitted to vary more. This
is consistent with previously understood physiology of Drosophila muscle ionic
activity as Kv1 and Kv3 are expected to be important in regulation of repeated
firing and unlikely to influence the parameters of a single action potential. Sur-
prisingly, the modelling experiments might indicate a higher reversal potential
for Ib than originally expected (median −1.5 mV with mean 2.8 mV and stan-
dard deviation 23.4, as opposed to −22 mV ). A higher reversal potential for Ib
may suggest a more complex current consisting of several ion channel conduc-
tances, or a single channel which is more biased towards inward current than
previously estimated. This inspires further modelling and experimental enquiry
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Fig. 6: Violin and box plots of fitted parameter values for the model the HCN
channel disabled.
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Fig. 7: Violin and box plots of fitted parameter values for the model including
the HCN channel.

into the nature of channel or channels responsible for the generation of back-
ground pacemaking current. Further, we experimented with addition of HCN
channels. The resulting dispersion of fitted conductance values gf is similar to
Kv1 and Kv3 indicating that the presence of the HCN channel in the model
is of little importance for fitting Drosophila action potentials. Moreover the fit-
ness calculations do not show quantitatively better fits being achieved with the
addition of the HCN channel.

All optimisation runs were conducted with 2000 iterations where a swarm
of 64 particles was assigned to each of the 16 trajectories, thus simulating 1024
particles in parallel. Each run took approximately 4 minutes to complete on a
machine equipped with Nvidia Titan X GPU with the equivalent single-threaded
execution on a laptop CPU taking around 19 minutes. Additionally, the GPU
implementation provided better scalability for the same optimisation problem,
with the total of 2048 and 4096 particles taking 7 and 12 min in the case of the
GPU implementation and 38 and 78 min in the case of the CPU implementations.

6 Conclusion

We have presented a new model of excitability of the abdominal muscles of lar-
val Drosophila, observed experimentally following excitatory depolarisation at



a minority of NMJs, and used this model to explore techniques for modulation
of its parameters via a novel GPU-based implementation of the particle swarm
optimisation method. This approach was computationally very efficient and sup-
ported an ensemble model view, allowing each action potential recording to be
used to obtain a plausible set of parameters that might be used, for example, to
account for cell-to-cell variability in the incidence, magnitude and time course
of regenerative action potentials in larval muscle recordings.

From a functional standpoint, our unpublished preliminary data suggest that
when freely moving larvae undergo rapid peristaltic locomotion, for example to
escape a potential predator there is insufficient time for more than one brisk and
powerful twitch contraction per abdominal segment. Combined measurements of
synaptic potentials and muscle shortening indicate that single EJPs are not suf-
ficient to account for this escape behaviour (M.Fjeldstad and R.R.Ribchester,
unpublished). Thus, we hypothesise that rapid contractile responses of larval
muscle fibres are enabled by an endogenous mechanism that modulates the mus-
cle fibre resting membrane potential and this permits synaptic depolarization to
trigger a regenerative response (Figure 2 (C,D)). This results, as in vertebrate
muscle, in brisk muscle contraction (Figure 2 (B)). This hypothesis implies that
further analysis of the characteristics and mechanism of regenerative membrane
depolarization in larval Drosophila muscle will yield deeper insight into their
function. Computational modelling of these events and exploring the scope and
causes of their variability from moment to moment will facilitate the analysis.

Due to the nature of the model, distinct channels expressed in the model
are capable of compensating for each other resulting in widely dispersed viable
parameter values. Thus analysis of correlations between the parameter values as
well as refinements and alterations of the model would be of interest for further
work. In many such scenarios the small size of the currently available dataset
would be a limiting factor. On a practical level, dynamic modelling (including
parameter fitting) in real time would be a valuable tool that could complement
experimental approaches, such as the dynamic clamp technique: an experimental
procedure that enables electrophysiologists to explore the consequences and po-
tential functional significance of varying the specificity and kinetics of different
ionic currents and determining their transitory effects on membrane potential
[28, 16]. Computational speed is an essential consideration for real time feedback
between dynamic modelling and dynamic clamp to be feasible and practical.
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Appendix A Model

The following appendix gives the ODE formulations of the channels considered
in this paper. The ODEs are characterised by general Hodgkin-Huxley scheme,
with a transitions between channels in open and shut states modelled as a first
order chemical reaction

open
α

β
shut

Transition rate expressions α and β provided for the channels in this model
correspond to number of openings or closures of channel per second.

The functions for dL∞ , m∞, n∞, y∞ determine the proportion of channels
in a particular (generally open) state under equilibrium conditions. This value
changes as a function of the membrane voltage via a change in voltage dependent
rates α and β. While change in equilibrium proportion happens instantly, change
in real proportion of channels in open state does not: the rate at which the
proportion of dL, m, n, d, y changes towards its equilibrium value is given by
a differential equation. The time constant τ is an expression of how fast this
equilibrium is achieved and is dependent on the innate properties of channel and
its sensitivity to voltage. Channels Cv1 and Kv2 have more than one inactivation
mode – one happening at a slower time-scale than the other. These are denoted
fL,fast, fL,slow for the Cv1 channel and pa,fast and pa,slow for the Kv2 channel.

Reversal potential EK for potassium and calcium calcium channels at tem-
perature 294.15K (laboratory conditions) were calculated using the Nernst equa-
tion based on expected intracellular and extracellular concentrations of potas-
sium and calcium

E =
RT

zF
ln

[ion concentration ouside]

[ion concentration inside]

where R is the universal gas constant, T the temperature in Kelvins, F the Fara-
day constant and z valency of the ion. For Drosophila the intracellular concentra-
tions are estimated to be 0.05 mmol and 140 mmol for calcium and potassium
respectively. Extracellular solution for the experiments used 5.0 mmol potas-
sium and 1.5 mmol calcium concentration. Finally, Q10 is experimentally [1]
determined time change constant for the Kv1 potassium channel.

Background current Ib

Ib(V ) = gb(V − Eb)



HCN current If

y∞(V ) =
1.0

1.0 + exp(V +83.19
13.56

)

τy(V ) = 0.250 + 2.0 exp(− (V + 70.0)2

500.0
)

d

dt
y =

y∞ − y

τy

If (V ) = gfy(V − Ef )

Cv1 current

dL∞(V ) =
1

1 + exp
(

V +18.2
−5

)
αdL(V ) =

−26.12(V + 35.0)

exp
(

V +35.0
−2.5

)
− 1

+
−78.11V

exp (−0.208V ) − 1

βdL(V ) =
10.52(V − 5.0)

exp (0.4 × (V − 5.0)) − 1.0

ICv2(V ) = gCvdL(0.675fL,fast + 0.325fL,slow)(V − ECaL)

d

dt
dL =

dL∞ − dL
τdL

d

dt
fL,fast =

fL,fast∞ − fL,fast

τL,fast

d

dt
fL,slow =

fL,slow∞ − fL,fast

τL,slow

τdL =
1

αdL + βdL

Kv2 current

pa,fast∞(V ) =

pa,slow∞(V ) =
1

1 + exp
(

V +10.22
−8.5

)
τpa,fast(V ) =

1
17 exp (0.0398V )+

0.221 exp (−0.051V )

τpa,slow(V ) = 0.33581

+0.90673 exp

(
−(V + 10.0)2

988.05

)
d

dt
pa,fast =

pa,fast∞ − pa,fast
τpa,fast

IKv2(V ) = gKv2 (0.9pa,fast + 0.1pa,slow) pi(V − EK)

pi∞(V ) =
1

1 + exp
(
V +4.9
15.14

)×(
1 − 0.3 exp

(
−V 2

500

))
αpi(V ) = 92.01 exp (−0.0183V )

βpi(V ) = 603.6 exp (0.00942)

τpi =
1

αpi + βpi

d

dt
pi =

pi∞ − pi
τpi



Kv1 current

αn(V ) = 0.12889 exp

(
−V + 45.0

−33.90877

)

βn(V ) = 0.12889 exp

(
−V + 45.0

12.42101

)

n∞(V ) =
αn(V )

αn(V ) + βn(V )

τn = Q10
1

αn + βn

d

dt
n =

n∞ − n

τn

IKv1 = gKv1n
4(V − EK)

Kv3 current

αmShaw(V ) = 0.22 exp

(
V + 16

26.5

)

βmShaw(V ) = 0.22 exp

(
−V + 16

26.5

)

m∞(V ) =
αn

αn + βn

τmShaw =
1

αmShaw + βmShaw

d

dt
m =

m∞ −m

τmShaw

IKv3 = gKv3m
4(V − EK)


