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Abstract 

Nuclear size normally scales with the size of the cell, but in cancer this "karyoplasmic 

ratio" is disrupted. This is particularly so in more metastatic tumors where changes in the 

karyoplasmic ratio are used in both diagnosis and prognosis for several tumor types. 

However, the direction of nuclear size changes differs for particular tumor types: for 

example in breast cancer larger nuclear size correlates with increased metastasis while for 

lung cancer smaller nuclear size correlates with increased metastasis. Thus there must be 

tissue-specific drivers of the nuclear size changes, but proteins thus far linked to nuclear 

size regulation are widely expressed. Notably, for these tumor types ploidy changes have 

been excluded as the basis for nuclear size changes and so the increased metastasis is 

more likely to have a basis in the nuclear morphology change itself. We review what is 

known about nuclear size regulation and postulate how such nuclear size changes can 

increase metastasis and why the directionality can differ for particular tumor types. 
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Introduction  

Breaking the microscope's 1 µm resolution barrier in the mid-1800s revealed phenotypic 

and morphological changes in cell nuclei during cancer progression. An early description 

of these changes published in 1860 by Lionel S. Beale (King’s College London) reported 

alteration of nuclear size and shape in the sputum of a patient with cancer of the pharynx 

(1). Eighty years later George Papanicolaou developed a stain to visualize cytoplasmic 

and nuclear structural features for the diagnosis/staging of cervical cancer, setting a 

standard tool still used today. Though subsequent advances added many other nuclear 

features to fine-tune diagnoses such as chromatin organization and numbers and sizes of 

nucleoli, the nuclear size and shape changes are the most microscopically evident 

characteristics in tumor progression and are highly characteristic for a given tumor type; 

hence, size is used prognostically for stage and progression of each tumor type (2). It is 

notable that in many tumor types where nuclear size is used prognostically the size 

changes have been shown to be independent of ploidy changes (3). Changes in ploidy 

greatly expand the number of indirect mechanisms that could lead to increased metastasis 

that would include increasing the burden of proper mitotic segregation. In this short review/ 

hypothesis paper we will only focus on the types of cancer where ploidy has been 

excluded as a factor in nuclear size changes and thus where the size change itself is more 

likely to contribute to the increase in metastatic potential. Determining the function and 

mechanism of these nuclear size changes in cancer, is nonetheless made complicated 

because they tend to be tissue-specific in degree and direction — e.g. smaller nuclei 

indicate increased metastasis in osteosarcoma and lung carcinoma (4,5) while larger 

nuclei indicate increased metastasis in breast, prostate, liver, ovarian, pancreatic and 

colorectal cancers and small-cell cervical, epidermal squamous, papillary thyroid and 

urinary bladder carcinomas (6–15). 



 Nuclear size varies in different cell types and through differentiation, but the 

karyoplasmic ratio — of nucleoplasmic to cytoplasmic volume — is generally maintained 

for most cell types. Thus, nuclear size generally scales with cell size (16). The 

karyoplasmic ratio is maintained during the cell cycle (17,18) during which the nucleus 

typically increases several fold in volume and a general mechanism for this size scaling is 

conserved to yeast (19,20). This scaling of the karyoplasmic ratio has broken in more 

metastatic cancer cells, raising the question whether the scaling disruption or the nuclear 

size change itself contributes an advantage to the tumor? With the many functions now 

known for the nuclear envelope (NE), advantages could range from changes in gene 

regulation/signaling to mechanical nuclear aspects enabling faster migration or the easier 

squeezing through cell junctions to invade different tissues. 

 

Possible mechanisms of nuclear size regulation through the NE  

The NE is comprised of outer (ONM) and inner (INM) nuclear membranes and associated 

proteins (21,22). The membranes are separated by a lumen and connected where nuclear 

pore complexes (NPCs), comprised of ~30 core proteins, are inserted (23,24). NPCs 

contain only three transmembrane proteins, but there are hundreds of other Nuclear 

Envelope Transmembrane proteins (NETs) in both membranes (25–28). Functions of 

ONM NETs are just beginning to be discovered, but many connect to cytoplasmic 

filaments (27,29–32) while others function in cell cycle regulation (33–35). Thus far many 

INM NETs characterized make connections important for genome organization, gene 

regulation, and signalling (36–43). INM NETs also connect to a polymer of the type V 

intermediate filament nuclear lamins that confers structural stability to the nucleus 

(22,29,44). The NE disassembles in mitosis of higher eukaryotes and the reassembled 

daughter nuclei are much smaller. This is because at the end of S-phase the genome has 

doubled to 4N, the chromatin is decondensed and the nucleus is filled with proteins and 



RNA whereas the reforming NE surrounds a 2N genome that is highly condensed. In 

general the nucleus volume increases around 2 fold through the cell cycle (45). 

 As the NE is the outer shell that delimits the nucleus, many NE proteins could be 

limiting for nuclear size. These range from NPC transport functions to the lamin scaffolding 

to the connections to cytoplasmic filaments or proteins involved in lipid synthesis. Such 

proteins could be under a feedback regulatory mechanism for amounts synthesized or a 

timed mechanism that links nuclear size increases during the cell cycle to the length of a 

particular stage. Thus changes to gene expression and cell proliferation in cancer cells 

might underlie nuclear size changes. Notably, such changes in gene expression could 

themselves be influenced by nuclear size changes if this alters the relative amount of 

peripheral heterochromatin and gene silencing (Fig. 1A).  

 It is also possible that a completely independent sensor mechanism maintains the 

karyoplasmic ratio, for example sensing a change in tension between chromatin contacts 

and the NE on one side and connections with cytoplasmic filaments on the other. If this 

were the case then changes in cancer cells to NE-chromatin or NE-cytoplasmic filament 

interactions might underlie nuclear size changes. Such changes could also explain nuclear 

shape changes and NE blebbing that often accompanies the size changes in cancer cells 

(Fig.1B). 

 A third mechanism might involve post-translational modifications, particularly 

phosphorylation cascades that often go awry in cancer cells. Such modifications are 

important for both the stability of the lamin polymer and for NE-chromatin interactions. 

Indeed, mitotic disassembly of the lamin polymer is coupled with hyperphosphorylation of 

both lamins and NETs to break the interactions between them and their interactions with 

chromatin (Fig. 1C). 

 

Factors found to regulate nuclear size 



Lamins  

Lamins are good candidates to regulate nuclear size as they form an intermediate filament 

polymer, the nuclear lamina, that provides the main mechanical stability to the nucleus 

(46–48). Moreover, lamins are also the most abundant NE proteins at ~9 million copies per 

mammalian cell nucleus (49). Thus their limitation might be predicted to restrict nuclear 

growth. Accordingly, lamins influence nuclear size in Xenopus laevis embryos in a manner 

that depends on import of lamin B3 and this lamin is reported to be required for NE growth 

during egg development (50). Both Xenopus and mammalian studies have concluded that 

lamins are essential for nuclear scaling during interphase and their limitation leads to 

failure in nuclear growth (51–53). Notably, from the standpoint of a limiting function, 

several NPC proteins have also been linked to cancer and nuclear size regulation (54). 

Lamins could also contribute to nuclear shape changes in cancer cells as their loss or 

mutation in several heritable diseases yields defects in nuclear morphology (55,56). 

 Despite these results, it is unlikely that, apart from being limiting for growth, lamins 

could control nuclear size on their own as both the total amount of lamin protein and the 

relative amounts of different lamin subtypes in the nuclear lamina change during 

development (57–59). A-type lamins, encoded by the LMNA gene, are present in the 

earliest embryonic stages from maternal protein, but new protein is not expressed at these 

stages so that it disappears for most embryonic stages and reappears later in tissue 

differentiation (60,61).  

 The change in lamina constitution in development is interesting in light of changes 

observed in lamina constitution in some cancer types. The general tendency observed is 

that B-type lamins continue to be expressed in tumors while A-type lamins are down-

regulated (62–64). Because A-type lamins appear later in development, this led to the idea 

that their loss reflects retro-differentiation or de-differentiation and so might drive or at least 

reflect the return to a more proliferative and undifferentiated state (65). However, research 



in this direction was dropped when it was observed that for some cancer types such as 

colorectal cancer the more metastatic tumors had increased A-type lamin levels (66). 

Though at the time this appeared to kill the retro-/de-differentiation theory, subsequent 

work found that in colonic crypt epithelia the earliest progenitor cell lineages at the base of 

the crypts in fact express lamin A and this disappears as cells differentiate and migrate up 

the sides of the crypt. Then in the more differentiated cells at the top of the crypts lamin A 

becomes expressed again (66). Thus, the less differentiated more proliferative cell likely 

gives rise to the more metastatic tumor. This study additionally revealed a potential 

mechanism for lamin A in metastasis: that lamin A functions inside the nucleus can 

influence the expression of genes encoding proteins that contribute to actin bundling and 

dynamics such as they showed for T-plastin (66). The effects on actin dynamics could 

explain how a lamin A-expressing tumor could lead to metastasis and tumor spread as cell 

mobility would be increased and, indeed, other studies with lamin A knockout cells found 

that in the absence of lamin A cells migrated into a scratch wound more slowly (47,67). 

Interestingly, while this beautifully explains how lamin A-expressing tumors can be more 

metastatic, it leaves us even more in the dark to understand the contribution of loss of 

lamin A in most cancer types to tumorigenesis.  

 

Perinuclear structures  

 Connections between the nucleus and the cytoskeleton contribute to both the 

overall mechanical stability of the cell and its migratory capacity (46–48). Such 

connections could in theory — particularly in context of the principles of tensegrity (68,69) 

— enable all major cytoplasmic filament systems to contribute to nuclear size regulation 

and impact on cell migration as actin microfilaments, microtubules and intermediate 

filaments all connect to the NE (27,30,70). One recent report identified formins, an actin 

nucleating family, as players in nuclear protection during confined migration: when formins 



were knocked down nuclei tended to rupture more when migrating through confined 

channels compared to wild-type cells (71). This kind of function, however, cannot account 

for tissue specific phenotypes found in different cancer types. In contrast, the proteins that 

connect the nucleoskeleton to the cytoskeleton have been directly linked to nuclear size 

regulation and some NETs that contribute to such connecting complexes are tissue-

specific. The core proteins involved in this connection are SUN-domain containing proteins 

of the INM and KASH-domain containing proteins of the ONM. Together these form the 

Linker of Nucleoskeleton and Cytoskeleton (LINC) complex (29) that also supports 

mechanosignal transduction to the nucleus (67,72). SYNE/nesprins are a family of KASH-

domain containing proteins and disruption of LINC using a dominant-negative nesprin 

mutant leads to nuclear size defects (73). Moreover two nesprins in particular, Nesprin-2 

and Nesprin-3, are proposed to form a cytoplasmic cage around the nucleus to contribute 

to its mechanical support (73). As for lamins, nesprins also contribute to nuclear shape, so 

that mutations in nesprins have been linked to Emery-Dreifuss muscular dystrophy where 

aberrant NE organization is observed (74). Thus, in theory, alteration of the expression of 

nesprins in cancer could lead to changes in cytoskeleton and nuclear stiffness and 

elasticity, nuclear shape, and nuclear size and accordingly enable extravasation of tumor 

cells during metastatic spread. These functions are particularly interesting in that analysis 

of patient sequences in the TCGA cancer database (75) revealed relatively high mutation 

frequencies in this family with mutations in SYNE1 (encoding nesprin 1) reaching 26% in 

Stomach Adenocarcinoma, 24% in Skin Cutaneous Melanoma and 21% in Colon 

Adenocarcinoma. Other nesprins were also highly mutated in specific tumor types with 

SYNE2 (encoding nesprin 2) mutated in 20% of Liver Hepatocellular Carcinoma patients 

and more than 10% in at least four different cancer types. Interestingly, SYNE3 (encoding 

nesprin 3) was only highly mutated in Pancreatic Adenocarcinoma, at 24% of patients, with 

the next highest mutation frequency being at just 3% in Lung Adenocarcinoma, indicating 



considerable tissue-specificity even just amongst this protein family in its potential 

relationship to cancer. Notably, several different cancers had much lower levels of 

mutations in SYNE/nesprin proteins, often as much as 100-fold lower (Fig. 2). 

 Tissue-specific NETs also contribute to these complexes. NET5/Samp1 is not 

detected in most tissues, but has distinct splice variants in brain and muscle (76). NET5 

was found in TAN-lines, nucleo-cytoskeletal connections involved in nuclear migration 

(77). NET5 was also found to be important for associations between the nucleus and the 

centrosome that organizes microtubules (31). 

 

Nuclear Envelope Transmembrane proteins (NETs) 

Both the nesprins and SUN proteins are NETs and, just like these two protein families 

largely segregate between the ONM and INM, so do other NETs. There are now many 

hundreds of NETs that have been identified in the NE by proteomics and most of which 

are tissue-restricted in expression (26,28,36,38), suggesting they might contribute to the 

tumor tissue-type specificity of nuclear size effects in cancer. Over 50 NETs have been 

characterized by super resolution microscopy for their accumulation in the ONM or INM, 

with a strong majority favoring the INM (78). Some ONM NETs, like nesprins, contribute to 

mediation of interactions with cytoplasmic filaments. Others are involved in cell cycle 

regulation, for example NET4/Tmem53 activates a stress-induced p38 kinase pathway that 

results in cell cycle withdrawal when its levels are perturbed (33). Another ONM NET 

affecting the cell cycle, NET31/Tmem209, is able to alter cancer cell growth when 

overexpressed in lung cancer cells and interestingly is up regulated in lung cancer cells 

and normal testis that contains highly proliferative cells (79). As loss of proliferation 

controls is a hallmark of cancer cells, these NETs could also be highly relevant to 

metastatic tumors, though they have thus far not been linked to nuclear size regulation. 

Very little is known about most other ONM NETs.  



 Many INM NETs interact with lamins and chromatin and play important roles in 

gene/chromosome positioning, chromatin organization and epigenetics, and genome 

regulation (34,36,80–82). Though most of general radial chromosome positioning is based 

on gene density (83), each tissue also has a subset of genes and chromosomes that 

reposition during differentiation in a tissue-specific manner (40,41,84,85). The general 

positioning trends appear to be driven by heterochromatin interactions with lamins and the 

NET lamin B receptor (LBR) that binds directly to heterochromatin protein 1 (HP1) (80). In 

general, the periphery tends to be a more silencing environment based on expression 

profiles and epigenetic marks of genome-wide identified genes that reside there (86). The 

more tissue-specific gene and chromosome repositionings are directed by tissue-specific 

NETs. For example, liver NETs NET45/Dak and NET47/TM7SF2 are important for 

positioning to the NE of chromosome 5 in liver cells (76) and muscle NETs 

NET39/PPAPDC3, Tmem38A, and WFS1 are important for positioning to the NE of 

several genes that need to be tightly shut down in a temporal fashion later in muscle 

differentiation though they are needed in earlier stages (36). Interestingly, there are also 

many genes that reposition to the more repressive environment of the NE in tissue 

differentiation that support cell proliferation and must be shut down because most 

differentiated cells no longer cycle (36–38) Thus, alteration of the normal expression 

patterns for such NETs in cancer could support metastasis by increasing expression of 

proliferative genes.  

 Though little is known about most NETs to determine their likelihood of contributing 

to cancer progression or metastasis, analysis of NETs identified in NE proteomic studies 

for changes in different tumour types using the TCGA cancer database (75) revealed that 

many tend to be lost or inappropriately expressed in a variety of tissue-specific tumor 

types. One example is the NET LPCAT3, a protein expressed relatively widely, but not in 

ovary. Its expression profile changes drastically in certain cancer types, with it being 



strongly upregulated in ovarian cancer but down-regulated in lung cancer (3,87). The 

tissue-specific differences characteristic of each tumor type may be explained by such 

changes in these tissue specific NETs during cancer progression.  

 

What advantages can nuclear size changes confer to cancer cells?  

The central conundrum that faces us is how can both nuclear size increases and 

decreases promote increased metastasis in different tumor types? A smaller nuclear size 

could obviously convey the advantage of being able to squeeze through junctions between 

cells during invasion of other tissues, but one might expect that a larger nuclear size would 

hinder this. This apparent contradiction might be resolved when considering that the NE 

connects to both cytoplasmic filaments on one side and chromatin on the other side. The 

largest molecules in the cell are the chromosomes that reach gigadalton masses and 

dwart even actin stress fibers in total size. Several studies have shown that chromatin 

connections to the NE are similarly important as the intermediate filament lamin polymer 

for nuclear shape and mechanical stability (88,89). If the increase in nuclear size is 

associated wjth a reduction of dense chromatin (particularly at the periphery, then the 

strength of heterochromatin interactions with the NE might diminish to enable the even 

larger nucleus to distort and squeeze between cell-cell junctions for invasion (Fig. 3A). It is 

interesting that there is precedent for a third type of change where in neutrophil 

differentiation an increase in NE-chromatin connections and compacted chromatin drives 

formation of a 5-lobed nucleus that resembles sausage links (90). As each lobe/ link is 

very thin, this could also facilitate squeezing through tight junctions. 

 Notably, the neutriphil nuclear lobulation is also driven by changes in nucleo-

cytoskeletal connections associated with increased lamin B2 levels and reduced lamin A 

levels (91). Several studies have shown that lamin A contributes more to nuclear strength 

and stability than other lamin subtypes and in vitro binding assays revealed lamin B2 to 



have the weakest and least stable interactions (46,92). Such connections might provide an 

even simpler explanation if both nuclear size increases and decreases are associated with 

changes in cytoplasmic filament connections that facilitate cell migration. The separate 

findings that altering levels of lamins and LINC components affects cell migration in wound 

healing assays (47) indicates the likelihood of this possibility. Furthermore, tissue-specific 

NETs that contribute to lamin-LINC-cytoplasmic filament connections could confer the 

tumor type specificity for this nexus. Importantly, such disruption of the even larger 

chromatin-lamin-LINC-cytoplasmic filament nexus could additionally weaken the 

mechanical stability of the nucleus to explain the changes in nuclear shape that include 

blebbing at the NE that often accompany nuclear size changes (Fig. 3B). 

 A larger nuclear size accompanied by a reduced heterochromatin interaction with 

the nuclear periphery might also enable faster proliferation for metastasis, not just through 

changes in gene expression or post-translational modifications as mentioned above, but 

also by having less late-replicating peripheral heterochromatin and having to break fewer 

genome-NE contacts when replicating the genome. Changes in such contacts could also 

influence overall genome stability whether due to loss of lamin A or a tissue-specific NET. 

Notably, lamins also bind pRb and can affect proliferation by sequestering or releasing 

pRb (35,93). Similarly, several NETs bind transcriptional regulators and Smads  

are sequestered by the NET MAN1 away from target genes in the nucleoplasm such that 

altering MAN1 can yield bone disorders (94–96). Thus both lamins and tissue-specific 

NETs can influence metastasis through effects on proliferation that could parallel nuclear 

size changes from the same proteins. 

  

 

Conclusions 



It is clear that characteristic nuclear size changes correlate with particular tumor types; 

however, it remains unproven whether these changes are secondary to driver changes in 

the cancers or if they directly influence the cancer progression and metastasis. There are 

many ways noted above that both the size change itself or associated changes in NE-

chromatin or NE-cytoplasmic filament connections can provide advantages to cancer cells. 

These range from migratory aspects of metastasis such as increased cell migration and an 

enhanced ability to squeeze through cell junctions in invading other tissues to an 

increased proliferative capacity and altered gene expression. Despite the obvious logic of 

this, the NE is extremely under-investigated in cancer research and so there are no 

conclusive studies demonstrating a role of nuclear size regulation in promoting cancer 

progression or metastasis. Similarly, there is little data available regarding the three 

mechanisms (limiting, mechanical sensor, post-translational modification) suggested to 

underlie the loss in nuclear size control. That to date the strongest supporting studies have 

all to do with a limiting function most probably only reflects the complexity of NE building 

blocks as the proteins identified with such functions are all widely expressed and most 

nuclear size changes in cancer are specific to a particular tumor type. We postulate that 

many of the tissue-specific NETs will be found to play critical roles in such tumor type 

specific characteristic changes in the karyoplasmic ratio. Due to their tissue-specificity 

such NETs would be fantastic targets for cancer therapies as their specificity should 

reduce toxic side effects in treatment while, being more directly linked to the metastasis, 

they might significantly improve survival of more metastatic tumors. 
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Figure legends 
 
FIG 1 Potential mechanisms of nuclear size regulation. A. Control of levels for scaffolding 

proteins regulating nuclear size. Reduction of scaffolding proteins such as lamins 
through gene misregulation could be limiting for nuclear size increases (left). At the 
same time, upregulation of such proteins could promote nuclear growth (right). B. 
Sensor mechanism regulating the karyoplasmic ratio. The sensor might sense 
alterations of tension between the NE and chromatin and/or the cytoskeleton and 
alter nuclear size accordingly. C. Post-translational modifications occurring on NE 
proteins. Similar to how hyperphosphorylation of lamins triggers their disassembly in 
mitosis, modifying proteins at the NE to break connections could alter nuclear size. 

 
 
 
FIG 2 Alteration of SYNE genes encoding nesprins, members of the LINC complex, in 

different cancer types. Accumulation of mutations in SYNE genes differs for each 
gene and for each tumor type. For example, SYNE3 is only highly mutated in 
Pancreatic Adenocarcinoma while SYNE1 and SYNE2 are highly mutated in a 
larger, but partly distinct, set of cancers. Blca: Bladder Urothelial Carcinoma; Brca: 
Breast Invasive Carcinoma; Coadread: Colon Adenocarcinoma; Gmb: Glioblastoma 
Multiforme; Hnsc: Head and Neck Squamous Cell Carcinoma; Kich: Kidney 
Chromophobe; Kirc: Kidney Renal Clear Cell Carcinoma; Luad: Lung 
Adenocarcinoma; Lusc: Lung Squamous Cell Carcinoma; Ov: Ovarian Serous 
Cystadenocarcinoma; Paad: Pancreatic Adenocarcinoma; Stad: Stomach 
Adenocarcinoma; Thca: Thyroid Carcinoma.   

 
 
 
FIG 3 Advantages to cancer cells of nuclear size changes. A. Smaller nuclei with more 

compact chromatin could more readily squeeze between tight cell-cell junctions to 
invade a tissue (top). If a bigger nucleus has fewer interactions with chromatin 
and/or more euchromatin, this might enable greater malleability for the nucleus to 
change shape to squeeze between cell-cell junctions (bottom). B. Alterations of 
lamin and LINC complex connections. Loss of lamins can weaken the mechanical 
properties of the nucleus, allowing easier deformability in squeezing through cell-
cell junctions and so increasing metastasis (upper panels). The connections 
between the nucleoskeleton and cytoplasmic filaments also affect cell migration in 
wound healing assays and so their disruption could result in an increased speed for 
migration of the cancer cell (bottom panels). Note that in this case both changes to 
larger and smaller nuclear size could alter nuclear migration properties. 

  



Fig 1 

 

 

  



Fig 2 

 

  



Fig 3 

 

 

 


