Biological Characterization of Human Immunodeficiency Virus Type 1 Clones Derived from Different Organs of an AIDS Patient by Long-Range PCR

MATTHIAS T. DITTMAR, GRAHAM SIMMONS, YVONNE DONALDSON, PETER SIMMONDS, PAUL R. CLAPHAM, THOMAS F. SCHULZ, AND ROBIN A. WEISS

Virology Laboratory, Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, and Department of Medical Microbiology, University of Edinburgh Medical School, Edinburgh EH8 9AG, United Kingdom

Received 1 November 1996/Accepted 2 April 1997

In order to characterize the biological properties of human immunodeficiency virus type 1 (HIV-1) variants from different tissues (peripheral blood mononuclear cells [PBMC], lymph node, spleen, brain, and lung) of one patient, we have chosen long-range PCR to amplify virtually full-length HIV proviruses and to construct replication-competent viruses by adding a patient-specific 5’ long terminal repeat. To avoid selection during propagation in CD4+ target cells, we transfected 293 cells and used the supernatants from these cells as challenge viruses for tropism studies after titration on human PBMC. Despite differences in the V3 loop of the major variants found in brain and lung compared to lymphoid tissues all recombinant HIV clones obtained showed identical cell tropism and replicative kinetics. After infection of human PBMC these viruses replicated with similar kinetics, with a slow/low-titer, non-syncytium-inducing phenotype. In contrast to the prediction of macrophage tropism, drawn from the V3 loop sequence, none of these viruses infected monocyte-derived macrophages. The challenge of blood dendritic cells by these recombinant viruses in the presence of tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, and interleukin-4 resulted in a productive infection only after adding stimulated CD4+ T lymphocytes. Therefore, the biological properties of the HIV-1 variants derived from nonlymphoid tissue of this patient did not differ from those of HIV-1 variants from lymphoid tissue with respect to tropism for primary cells such as PBMC, macrophages, and blood dendritic cells.

The coexistence of natural variants of genetically distinct human immunodeficiency virus type 1 (HIV-1) within individuals has been clearly demonstrated (2, 16, 26, 39, 49). Isolates of HIV-1 derived from peripheral blood mononuclear cells (PBMC) are highly variable over time and show changes in the biological phenotype during the course of infection (15). It has been demonstrated that early in infection HIV-1 isolates show a slow/low-titer, non-syncytium-inducing (NSI) phenotype and preferentially infect monocyte-derived macrophages (MDM) and PBMC. With the onset of AIDS, most but not all patients harbor rapid/high-titer viruses, often with a syncytium-inducing (SI) phenotype, which infect T-cell lines efficiently but may have a reduced ability to infect MDM (1, 52–54).

Studies of HIV-1 variants from tissues other than PBMC suggest they harbor distinct variant populations compared to PBMC. Viruses from the central nervous system are genetically and phenotypically different from viruses in the blood or spleen (10, 23, 45). Some neurological HIV-1 variants infect microglial cells and brain capillary endothelial cells (40, 47), whereas HIV variants recovered from the bowel show differences in induction of cytopathology and sensitivity to neutralization compared to blood isolates (3).

Until recently, there has been no systematic attempt to quantify and characterize HIV-1 variants throughout the body at different disease stages. Donaldson et al. (20, 21) demonstrated large amounts of HIV provirus in nonlymphoid tissues (brain, lung, colon, and kidney) in AIDS patients, whereas patients who died in the asymptomatic phase did not have consistently detectable provirus in these tissues. The analysis of the V3 loop sequence derived from AIDS patients revealed differences between HIV variants from lymphoid tissues and nonlymphoid tissues (21). To investigate whether these sequence differences reflected variation in the phenotype of HIV-1 in different tissues, we employed the long-range PCR technique to construct full-length proviruses derived from lymphoid tissue (PBMC, lymph node, and spleen) and nonlymphoid tissue (brain and lung) and compared the biological properties of the molecular clones containing the major V3 loop variants found in these tissues with respect to tropism for primary cells such as PBMC, MDM, and blood dendritic cells (BDC).

To our knowledge, this is the first time that replication-competent viruses have been constructed by long-range PCR amplification of genomic DNA prepared directly from different tissues. Although the sensitivity has to be improved to avoid potential recombination events occurring during the amplification steps (61), the approach described here allows the recovery of full-length infectious molecular clones without passages on donor PBMC and can provide tissue-specific reference clones with respect to the genotype and phenotype present in vivo.

MATERIALS AND METHODS

Patient samples. DNA samples used for PCR amplification were derived from various tissues from an AIDS patient by autopsy. Patient 4 (20) died 5 years after...
infection with HIV-1 was chosen because of the relative high provirus load covering the primer binding site up to the 3’ end of the primer. DNA from patient 4 were sufficient to obtain a 9.0-kb amplification product in a 100-μl reaction mixture containing 200 μM Tris-HCl (pH 8.7), 100 μM MgCl2, 20 μM dNTPs, 1 mg of bovine serum albumin, 250 μM (each) deoxynucleoside triphosphate, and 2 pmol of each primer. All reactions were run on an Omegene Thermal Cycler (40 cycles of 96°C for 30 s, 60°C for 30 s, and 68°C for 10 min).

To construct a full-length provirus, we amplified in a separate PCR a 5’-end fragment with the primer pair 5′(GCAAGGGGCTAGGAGATGAG) and 5′(5′GAAGGGGCGAGTTTGCCTCATTGGCAG) (41). The underlined sequences mark the recognition sites for the restriction enzymes HinfI, and NorI, respectively, to facilitate the cloning of the 9.0-kb fragment into pGEM-3-LTR (see below). The long-range PCR products were performed with a mixture of AmpliTaq (Perkin-Elmer Cetus) and Pfu polymerase (Stratagene) in an 8× volume. The resulting 0.6-kb product was digested with HindIII and SfiI and cloned into pGEM13-LTR. All 9.0-kb PCR products were cloned into this vector by using the restriction enzymes NorI (primer binding site) and NotI (3′-LTR).

Construction of recombinant proviruses. A nested primer pair to amplify the 3′ half of the proviral genome was also designed. Modifying primers described by Kusumi et al. (32) in length and restriction enzyme recognition sites, we amplified a 3′-end fragment with genomic DNA from all tissues obtained (brain, lung, lymph node, and spleen). The outer primer pair was 4955(5′)-5′(GTTAATGAACTCGTTGAAAGGTGAAGGGAGAAGTTGCTCACTGGCAGA) and 9690(3′) (5′GAAGGGGCGAGTTTGCCTCATTGGCAG). The second, nested PCR was performed with the primer pair 5048(5′)-5′(AATATTGGAATGATGGAGTTGACCTCAGTGAAGTTAATGAACTCGTTGAAAGGTGAAGGGAGAAGTTGCTCACTGGCAGA) (restriction enzyme recognition site underlined) and 9624(3′)-3′(TAAAGGGGCCGGGAGAAGTTATTGGAATGATGGAGTTGACCTCAGTGAAGTTAATGAACTCGTTGAAAGGTGAAGGGAGAAGTTGCTCACTGGCAGA) (7437) and 7405(3′) (5′GAAGGGGCGAGTTTGCCTCATTGGCAG). From the 3′ end of the proviral genome, by using Lipo-

Sensitivity of the long-range PCR approach and construction of PBMC-derived full-length HIV-1 clones. The long-range PCR performed with different amounts of proviruses per given DNA concentration revealed successful amplification of the 9.0-kb fragment when at least 4×10⁵ proviruses were present in the reaction. The number of proviruses necessary could not be reduced by employing a second round (Fig. 1). By using the primer pairs to amplify only the 3′ half of the proviral genome, a much higher sensitivity was obtained. The nested PCR approach yielded 9.0-kb fragments which were present in the reaction. This high sensitivity allowed the amplification of 3′-half viral genomes from genomic DNA prepared from lymph node, spleen, brain, and lung tissue collected postmortem from patient 4 (21). Because of the high proviral concentration in PBMC from this patient, we were

RESULTS

Sensitivity of the long-range PCR approach and construction of PBMC-derived full-length HIV-1 clones. The long-range PCR performed with different amounts of proviruses per given DNA concentration revealed successful amplification of the 9.0-kb fragment when at least 4×10⁵ proviruses were present in the reaction. The number of proviruses necessary could not be reduced by employing a second round (Fig. 1). By using the primer pairs to amplify only the 3′ half of the proviral genome, a much higher sensitivity was obtained. The nested PCR approach yielded 9.0-kb fragments which were present in the reaction. This high sensitivity allowed the amplification of 3′-half viral genomes from genomic DNA prepared from lymph node, spleen, brain, and lung tissue collected postmortem from patient 4 (21). Because of the high proviral concentration in PBMC from this patient, we were

Immunostaining of HIV-infected cells. The immunostaining method was similar to that described by Chesbro and Wehrly (11), adapted for a β-galactosidase conjugate as described earlier (14).
able to amplify a 9.0-kb fragment by using 200 ng of genomic DNA. This fragment was cloned into pGEM13-LTR. The sequencing of the V3 loop revealed exactly the same V3 loop amino acid sequences as published previously (21) (Fig. 2). Two of 12 full-length HIV clones derived from PBMC DNA replicated after infection of donor PBMC (data not shown).

It is possible that recombinant genomes are generated during PCR amplification. This could occur if an unfinished strand annealed to a different parental sequence. The strand would then be completed with the second sequence as template. To assess such recombination during the PCR process for the 4.5-kb fragments, we performed long-range PCR using two different provirus-containing plasmids (pHXB2 and pGUN-1wt) at equal target numbers (10^2 targets). After cloning the PCR products, a restriction analysis and partial sequencing revealed that four of 11 (36%) 4.5-kb clones contained recombinants between pHXB2 and pGUN-1wt. (Cloned fragments with 3' sequences characteristic of one infectious clone and 5' sequences characteristic of the other were considered to be recombinants.)

Construction of recombinant HIV clones with tissue-specific 3' halves. In contrast to PBMC (see above) the proviral load in other tissues was relatively low. Because of the low sensitivity of the 9.0-kb long-range PCR, we decided to amplify only proviral 3' halves and to construct recombinant viruses with the PBMC-derived full-length infectious clone as a backbone. Restriction enzyme analysis revealed a single EcoRI site in all amplified 4.5-kb fragments 85 nucleotides upstream of the tat open reading frame. We constructed 20 full-length clones containing 3' halves derived from different tissues as follows: 7 from lymph node, 5 from spleen, 5 from brain, and 3 from lung. Each of these clones showed exactly the same V3 loop sequence described by Donaldson et al. (21) for the major variants found in these different tissues. The major V3 loop sequence from lymphoid tissue (PBMC, lymph node, and spleen) differs in six amino acids from the major sequence found in nonlymphoid tissue (brain and lung). Figure 2 shows only those virus clones that were replication competent in PBMC. These recombinant HIV clones were transfected in 293 cells, and the harvested virus was used for titration on donor PBMC and for all challenge experiments. To investigate the possibility that inhibitory sequences in the 5' half of the PBMC-derived HIV clone HIV_E4 might interfere with tropism for macrophages (4, 29, 57), we constructed two recombinant viruses carrying the 3' halves of HIV_GUNwt, a dual-tropic HIV clone infecting T-cell lines and macrophages (38), and the 3' half of HIV_SF162, a monocytotropic HIV clone (10), by using long-range PCR and the same cloning strategy as described for the patient 4 tissue-specific recombinant viruses. These recombinant viruses were transfected into 293 cells and titrated in the same way.

Replication kinetics of recombinant viruses after infection of PBMC. After titration of all recombinant HIV clones, 10^6 PBMC were infected with 10^6 TCID, and the replication kinetics were monitored by using a p24^agg ELISA (HIV-1 p24 core profile ELISA; Du Pont) over the following 28 days. As shown in Fig. 3, all viruses showed a peak in p24^agg production in the culture supernatants after approximately 10 days. No virus-induced syncytia in these cultures or in CD4+ T-cell lines (C8166, MolT4, and MT-2) were observed. Therefore, all viruses showed a NSI phenotype. The amount of p24^agg in the culture supernatants after infection with the recombinant clones was about 10 times less than in the culture supernatants infected with the laboratory-adapted, SI HIV-1 strains HIV_HXB2 and HIV_GUNwt (data not shown). The replication kinetics did not reveal a clear difference between recombinant viruses derived from lymphoid tissue and those derived from nonlymphoid tissue (Fig. 3).

Tropism studies with MDM and BDC. Because of the close resemblance of the V3 loop sequences of all recombinant HIV clones with the consensus sequence for primary lymphocyte and macrophage-tropic viruses (34), we expected productive infection of MDM and BDC by these viruses. The infection experiments were performed by using 5 \times 10^3 infectious units of each recombinant virus (assessed on PBMC) plated onto 5 \times 10^5 MDM and BDC (multiplicity of infection = 1), respectively. The MDM cultures were maintained over 21 days, and supernatants collected on days 7, 14, and 21 did not contain detectable levels of p24^agg (HIV-1 p24 core profile ELISA; detection limit, 12.5 pg/ml). After 21 days PHA-stimulated PBMC were added to the cultured MDM in order to amplify a low-level HIV-1 replication. But this virus rescue assay as well as an immunostaining for p24^agg in culture supernatants after infection with the recombinant viruses showed a NSI phenotype. The replication kinetics of recombinant HIV clones after infection with the recombinant viruses E4/GUNwt and E4/SF162 (Fig. 2) clearly indicates the absence of inhibitory sequences in the 5' half of the PBMC-derived provirus, such as mutations in the basic domain of p17^agg (4). The sequences of the chimeric vpr genes obtained due to the recombination at the EcoRI site do not differ from those of the wild-type vpr and do not encode premature stop codons (29, 57). Although the recombinant viruses derived from patient 4 contain V3 loop amino acid sequences that predict a macrophage-tropic virus, none of them could infect macrophages.

After challenge of 5 \times 10^5 BDC with the recombinant viruses (5 \times 10^5 TCID50), we did not detect p24^agg in the cell supernatants up to 20 days, nor could we see immunostained cells after fixation (Table 1). However, if stimulated autologous T cells were added one day after challenge, p24^agg was detected as early as 5 days after infection. Using CD19+ primary B cells instead of BDC, we did not detect p24^agg after the coculture with autologous T cells (data not shown). Therefore,
BDC were able to pass virus to T cells in the coculture system, but they do not support a productive infection with HIV-1 on their own. The replication kinetics in this BDC–T-cell coculture system did not show any difference between molecular clones derived from lymphoid tissue (PBMC, lymph node, and spleen) and molecular clones derived from nonlymphoid tissues (brain and lung).

Coreceptor use of tissue-derived envelope glycoproteins. To assess the efficiency with which the tissue-derived envelope glycoproteins mediate early events of HIV-1 infection, an env complementation assay (30) was utilized. Pseudotype HIV-1 viruses were produced by cotransfection of COS-1 cells with two plasmids, pHXB2ΔenvCAT and pSVIII. Different pSVIII plasmids encoding the envelope glycoproteins derived from selected tissue-derived clones, E4 (PBMC), LN15 (lymph node), S6 (spleen), B5 (brain), and molecular clones derived from nonlymphoid tissues (brain and lung), were used. An equal amount of p24-containing supernatant was incubated with CCC/CD4 cells transiently expressing the chemokine receptors CCR3, CCR5, and CXCR4. A CAT-ELISA performed 3 days after the infection of the target cells revealed that all tissue-derived envelope glycoproteins are able to utilize the chemokine receptors CCR3 and CCR5 but not CXCR4 (Fig. 4). The usage of CCR3 and CCR5 correlates with the finding that all recombinant viruses are of the NSI phenotype but does not explain the lack of macrophage tropism. The use of U87/CD4 cells stably expressing the chemokine receptors CCR3, CCR5, and CXCR4 (kindly provided by D. Littman) and the recombinant viruses confirmed the findings of the env complementation assay (data not shown).

DISCUSSION

Construction of replication-competent HIV clones by using long-range PCR. In order to construct replication-competent HIV clones representing the genotype present at a specific time point in a specific tissue we used long-range PCR. This approach allowed us to construct full-length proviruses containing the major V3 loop sequence found in PBMC of patient 4.

![Genomic structures of PBMC-derived full-length clone HIV_E4 and the subsequently cloned recombinant viruses containing the 3' half from the different organs indicated. V3 loop amino acid sequences were determined for all replication-competent clones. All recombinant viruses contain the tissue-specific V3 loop amino acid sequence representing the major variant in each tissue as determined by Donaldson et al. (22). Ratios in parentheses are the frequencies of the corresponding V3 loop variant in the observed variants (data from reference 22).](image)
did the study of Yang et al. (61). The differences might result from a lower input of targets per PCR and the amplification of only a 4.5-kb fragment, whereas Yang et al. (61) amplified a 8.2-kb fragment. Thus, a minority of the 3’-half proviral clones described here could result from recombination events during the PCR. Since we were unable to find any phenotypic differences in the molecular clones generated, it is likely that any recombinants resemble the bona fide clones generated. Nevertheless, the sensitivity to detect and obtain long-range PCR products needs to be improved to reduce the frequency of such recombinations.

The recently described molecular cloning of full-length HIV genomes directly from plasma viral RNA (24) is likely to yield a larger amount of replication-competent clones, although this has yet to be formally demonstrated. Successful amplification of proviral 3’ halves derived from different tissues made it possible to construct recombinant proviruses containing the tat, rev, vpu, and nef genes together with the entire env gene present in each tissue. The envelope genes in the recombinant viruses reflect copies of the actual envelope genes present in these tissues. Since the envelope contains the major determinants for tropism (31, 42, 48, 51, 59, 60), the characterization of the recombinant viruses constructed as described here might provide a better understanding of the biological properties of HIV variants present in different tissues. Full-length molecular clones of viruses, amplified directly from genomic DNA or from viral RNA obtained from tissues, should produce viruses with the actual phenotype present at a specific time point in a specific tissue. The long-range PCR will result in a remarkable increase of reference sequences from different viral subtypes (46) and aid the analysis of the structure of mosaic subtypes such as A/E recombinations (7). Furthermore, this method allows the characterization of cell-type-specific virus variants by using separated cell populations (BDC, monocytes, and CD4⁺ T lymphocytes) to prepare genomic DNA. The availability of cell-type-specific clones could provide definitive evidence for tropism switches to BDC (43) and immature thymocytes (56) late in the infection.

Biological characterization of recombinant HIV clones derived from different tissues. Following transfection in 293 cells, the rescued virus was titered on uninfected PBMC and the replication kinetics were assessed after challenging donor PBMC at a multiplicity of infection of 0.01 (Fig. 3). All recombinant clones replicated like slow/low-titer viruses and did not induce syncytia or infect any of the T-cell lines tested (C8166, Molt4, and MT-2).

It has been shown that a rapid decline in CD4⁺ T lymphocytes often correlates with the development of rapidly replicating SI viruses (15, 52–54). However, in 50% of cases disease progression also occurs in patients from whom only NSI viruses can be isolated from the peripheral blood (54). Patient 4 died of AIDS about 5 years after HIV-1 infection without rescue of SI viruses at the time of death. The molecular clones HIV-1_E4, LN15, S8, B8, and L5 were also tested for their infectivity and usage and in a single-round infectivity assay showed positive results only when the chemokine receptors CCR5 and CCR3 were present (19) (Fig. 4). They were unable to utilize the chemokine receptor CXCR4, which has been described as the main coreceptor for SI isolates adapted to replicate in T-cell lines (25).

NSI virus variants are reportedly able to infect blood MDM, although with variable kinetics (9, 15). The HIV-1 recombinant clones described here encode a V3 loop amino acid sequence resembling the sequence described for primary lymphocyte- and macrophage-tropic viruses (34) and are able to use the coreceptors CCR5 and CCR3 (12, 18, 19, 22). However, they do not infect MDM, suggesting that macrophages might express these chemokine receptors differently than transfected cell lines or PBMC. Thus, some HIV-1 isolates or HIV-1 molecular clones are able to use CCR5 or CCR3 only if it is expressed in a certain way. Our results, however, underline that macrophage tropism can be correctly assessed only by performing an infectivity assay using macrophages as target cells rather than cell lines expressing CD4 and different chemokine receptors. The possibility that mutations in the basic domain of p17gag or the vpr gene by these recombinant clones resulted in the nonproductive infection of macrophages observed (4, 29, 57) appears unlikely since the recombinant viruses E4/GUNwt and E4/SF162 readily infected macrophages. The nef gene is also required for the replication of HIV in macrophages (36). However, a nef defect would not explain the restriction for virus entry, as shown by entry PCR.

Patterson et al. (43) reported a higher provirus concentration in BDC from AIDS patients compared to asymptomatic HIV-positive patients. To study the susceptibility of BDC to infection with late HIV-1 variants, we challenged these cells with each of the recombinant infectious clones we had constructed. We did not detect any p24gag in the supernatant of purified BDC unless they were cocultured one day after infection with autologous T lymphocytes. Although data for the susceptibility of dendritic cells are inconsistent (reviewed in reference 6), it appears that BDC do not support HIV repli-
cation on their own (5, 44) in vitro, although several studies have reported a productive infection with macrophage-tropic viruses (8, 33, 58). Tsunetsugu-Yokota et al. (55) detected a higher provirus concentration in BDC infected with the SI strain HIVLAI than in BDC infected with the NSI, macrophage-tropic strain HIV Ba-L, but they did not detect p24 gag in lysates of CCC/CD4 cells transiently expressing CCR3, CCR5, and CXCR4, derived envelope glycoproteins. Amounts of CAT (determined by CAT ELISA) were consistently higher in BDC infected with the NSI, macrophage-tropic strain HIV Ba-L than in BDC infected with the SI strain HIVLAI (8, 33, 58).

Recent evidence shows that cultured dendritic cells express the chemokine receptors CCR4 and CXCR4 and are sensitive to HIV-1 entry (27). We have shown that several of the recombinant clones derived from different tissues utilize CCR5 (19). However, it is currently not known whether virus rescued in the BDC–T-cell coculture is derived from virus adsorbed on the surface of BDC or from a reactivation of HIV replication in BDC halted during the reverse transcription stage. Whether cultured dendritic cells express CCR3 and are susceptible to HIV isolates which can use CCR3 as a coreceptor remains to be shown.

Using genomic DNA from different tissues obtained postmortem from one AIDS patient, we found that the long-range PCR approach allows the construction and characterization of HIV variants present at a single time point in individual tissues. By avoiding any selection due to isolation of HIV variants capable of replicating in PHA-stimulated PBMC, these molecular clones reflect genotypes and phenotypes actually present in these tissues. Characterization of these recombinant clones revealed no differences in tropism for any primary cell tested.

ACKNOWLEDGMENTS

We thank A. McKnight, J. Reeves, and D. Wilkinson for helpful discussions and critical reading of the manuscript. We are grateful to J. E. Bell (Department of Neuropathology, University of Edinburgh) for providing the tissue samples, Y. Takeuchi (Chester Beatty Laboratories) as well as N. Shimizu and H. Hoshino (both at Gunma University Medical School, Japan) for kindly providing the molecular clones. J. E. Bell (Department of Neuropathology, University of Edinburgh) as well as N. Shimizu and H. Hoshino (both at Gunma University Medical School, Japan) for kindly providing the molecular clones. We are grateful to J. E. Bell (Department of Neuropathology, University of Edinburgh) for providing the tissue samples, Y. Takeuchi (Chester Beatty Laboratories) as well as N. Shimizu and H. Hoshino (both at Gunma University Medical School, Japan) for kindly providing the molecular clones. J. E. Bell (Department of Neuropathology, University of Edinburgh) as well as N. Shimizu and H. Hoshino (both at Gunma University Medical School, Japan) for kindly providing the molecular clones. We are grateful to J. E. Bell (Department of Neuropathology, University of Edinburgh) for providing the tissue samples, Y. Takeuchi (Chester Beatty Laboratories) as well as N. Shimizu and H. Hoshino (both at Gunma University Medical School, Japan) for kindly providing the molecular clones.

REFERENCES

5. Cameron, P. U., P. S. Freudenthal, J. M. Barker, S. Gezelter, K. Inaba, and ...

Clapham. 1996. Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J. Virol. 70:3855–3860.

