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Abstract 

Unusual subextensive configurational entropies that vary with particle size and tend to zero per atom in 

macroscopic samples are predicted for AMO3–zNz oxynitrides with perovskite type crystal structures. These 

materials are crystallographically disordered on the atomic scale, but local anion order produces chains of M–

N–M bonds that undergo a 90° turn at each M cation, giving rise to subextensive entropies in materials such 

as SrTaO2N, LaNbON2, and EuWO1.5N1.5. A general Pauling ice-rules formula is used to calculate the 

extensive molar entropies for other cases such as SrMoO2.5N0.5 and BaTaO2N. The subextensive oxynitrides 

are usefully classified as showing an “open order”, related to the correlated order of displacements in 

ferroelectric perovskites such as BaTiO3. This raises the possibility that further open-ordered oxynitride or 

molecular structures may be accessible, and other states such as spins and charges may also show novel open 

orders. 

 

Introduction 

Configurational entropies provide useful information about atomic correlations and local order, and they may 

sometimes be predicted from simple statistical models as in Pauling’s famous calculation of the residual 

entropy of ice.
[1]

 Configurational entropies for crystalline materials containing atomic disorder are normally 

extensive, being proportional to the number of atoms. A recent study has revealed that AMO3–zNz perovskite 

oxynitrides contain chains of M–N–M bonds that undergo a 90° turn at each M cation, for which Pauling ice-

rules predict zero configurational entropy despite the apparent structural disorder.
[2]

 This unusual observation 

prompted the full entropy analysis presented here. 

The ideal AMX3 perovskite structure consists of small M cations at the vertices of a simple cubic cell bridged 

by anions X at the centers of all edges and a large A cation at the cell center. The lattice contains an infinite 

cubic network of vertex sharing MX6 octahedra. Most perovskites are based on a single anion such as oxide or 

fluoride, but transition-metal oxynitride perovskites AMO3–zNz have been of recent interest for their optical 

and electronic properties.
[3, 4]

 Although full long-range anion order is not observed in these materials, a recent 

analysis of SrMO2N (M = Nb, Ta) showed that well-defined cis-MO4N2 octahedra are present, resulting in 

disordered zigzag MN chains within two-dimensional perovskite layers.
[2]

 Perovskite-like layers of disordered 

zigzag chains are also expected in the K2NiF4-type oxynitrides Sr2NbO3N,
[5]

Sr2TaO3N,
[6]

 and Ba2TaO3N.
[7]

 

The constraint that the chains must turn by 90° at each M site (with the same condition on zigzag MO chains 

in AMO3–zNz when z > 1.5, e.g. LaNbON2)
[8]

 is not observed in other materials or in magnetic analogues of 

crystalline atomic materials such as spin ices. Here we explore the configurational entropies of the principal 

AMO3–zNz structural models that arise from this unusual structural constraint. Some structures have the 

unusual property of being subextensive, where the entropy per atom tends to zero in macroscopic samples, 
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while others have extensive entropies that are estimated by extending Pauling’s ice model. We also report a 

new classification of structures based on their sets of long- and short-range correlation vectors, from which the 

unusual “open ordered” nature of the subextensive oxynitride structures is apparent. 

 

Results 

(i) Pauling Entropies of Perovskite Oxynitrides 

Configurational entropies of AMO3–zNz perovskites are estimated by extending Pauling’s ice model to a 

general lattice of N M cations, each connected to n other M cations by either M-N-M or M-O-M bridges, so 

there are in total nN/2 bridges. The number of M-N-M bridges emanating from each M cation is denoted by x 

(x = 2z for AMO3–zNz perovskites) so that the total number of M-N-M bridges is xN/2 and the fractions of M-

N-M and M-O-M bridges are f = x/n and (1 – f), respectively. In the absence of local bonding constraints, the 

number of ways of arranging the M-N-M bridges is 

 

A mean-field approximation for the fraction of allowable configurations is p
N
, where 

 

is the probability of an M ion having its bonding constraints satisfied, and w is the number of ways of 

orienting M-N-M bridges to the M cation’s n neighbors. Using Stirling’s approximation (ln N! ≈ N ln N – N), 

the entropy is 

 

As a check, identifying M-N-M and M-O-M bridges with donor and acceptor hydrogen bonds in ice, there are 

w = 6 local configurations per molecule, n = 4 hydrogen bonds for each O atom, and a fraction f = 
1
/2 of donor 

hydrogen bonds; this recovers Pauling’s famous estimate S = Rln(
3
/2) for hexagonal water ice,

[1]
 which is 

accurate to within 1% of values from more detailed calculations and experimental measurements.
[9]

 

The two anion distributions found in AMO2N perovskites (and AMON2 analogues) are represented by 

SrTaO2N and BaTaO2N. In SrTaO2N types (including materials such as SrNbO2N, EuTaO2N, EuNbO2N, and 

CaTaO2N),
[10]

 the zigzag M-N-M chains are confined to two-dimensional planes
.[2]

 Assuming that each 

possible structure is degenerate, ordered structures such as that in Fig. 1a are possible but statistically unlikely 

(and have not been observed experimentally), and it is overwhelmingly likely that any randomly generated 

structure will show disorder, such as that shown in Fig. 1b. This corresponds to a cis variant of the square-ice 

lattice,
[11]

 where M–N/M–O bonds map on to short/long O–H bonds in ice, and only structures in which the 
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two short O–H bonds are adjacent (cis) to one another are allowed.
[12]

 This variant of the well-known ice 

model
[13]

 is little explored, although other variants have been devised for ferroelectric ordering in KH2PO4[14] 

and for antiferroelectric orders.
[15] 

The AMO2N model for SrTaO2N types has n = 4 bridges per M atom and a 

fraction of M-N-M connections f = 
1
/2, but the cis constraint restricts the number of allowed local 

configurations to w = 4 (the number of edges of a square) and gives S = 0, as noted previously.
[2]

 Such 

structures that give S = 0 in the Pauling approximation have subextensive entropies, as described in section 

(ii). 

 

 

Figure 1. Models for the cis-anion chains in oxynitride perovskites, where heavy/light lines correspond to M-

N-M/M-O-M connections: (a) long-range ordered and (b) disordered (but open-ordered) configurations of cis-

MN chains confined to two-dimensional planes within AMO2N materials such as SrTaO2N. The solid and 

dashed arrows on part b, respectively, represent long-range (ξ → ∞) and short-range (ξ = 0) anion ordering 

correlations parallel to the horizontal axis. This structure has subextensive configurational entropy. (c) Three-

dimensionally disordered cis-MN chains in BaTaO2N; the fraction of M-N-M connections is 1/3, and the 

structure has extensive configurational entropy. (d) Cross-linked chains in the AMO1.5N1.5 perovskites where 
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three mutually cis M-N-M bridges meet at each M cation and define three-dimensional zigzag patterns on a 

cubic lattice. The entropy is subextensive, and the structure has three-dimensional open order. 

BaTaO2N does not show deviations from cubic symmetry that would reflect confinement of the N atoms to 

two-dimensional planes,
[16]

 so the zigzag TaN chains are assumed to propagate in all three dimensions (Fig. 

1c). Two cis M-N-M bridges link each metal ion on a cubic lattice son = 6 and f = 
1
/3. The number of ways for 

an M cation to be linked by two M-N-M bridges in a cisconformation is w = 12 (the number of edges of an 

octahedron). These parameters give an extensive (nonzero) configurational entropy of S = 2R ln(
4
/3) ≈ 0.58R 

per mole (where R = 8.314 J K
–1

 mol
–1

 is the molar gas constant). Hence, the molar configurational entropies 

of AMO2N materials are predicted to vary from zero in the two-dimensional SrTaO2N limit, to 0.58R in the 

disordered cubic BaTaO2N structure. Intermediate situations might be realized by quenching SrTaO2N from 

high temperatures where some propagation of TaN chains between planes was observed,
[2]

 so that the order is 

not purely two-dimensional. 

In the proposed model for AMO1.5N1.5 perovskites such as magnetoresistive EuWO1.5N1.5,
[17]

and the pigment 

(La0.5Ca0.5)TaO1.5N1.5,
[18]

 each M cation is bonded to three nitrogen atoms in a mutual cis conformation—also 

known as the fac (facial) configuration of an octahedron—so that the M-N-M bridges define three-

dimensional zigzag patterns on a cubic lattice (Fig. 1d). Each M cation has n = 6 neighbors, the fraction of M-

N-M bridges is f = 
1
/2, the number of ways for M to be linked by x = 3 M-N-M cis bridges in a fac 

conformation is w = 8 (the number of faces of an octahedron), and so the Pauling estimate of the entropy is S 

= 0. 

In oxynitride perovskites with z = 0.5, such as SrMoO2.5N0.5,
[19]

 each M cation has one N neighbor. If these are 

distributed equally in all three dimensions, then there are w = 6 local configurations (the number of vertices of 

an octahedron) for the connection of an M cation to its n = 6 neighbors; the fraction of M-N-M bridges is f = 

1
/6 and the molar configurational entropy is S = (R/2) ln(3125/1296) ≈ 0.44R. If the N atoms were confined to 

planes as in SrMO2N (M = Nb, Ta), then the parameters would change to n = w = 4 and f = 
1
/4, and the molar 

configurational entropy would be S = (R/2) ln(27/16) ≈ 0.26R. Confinement of N atoms to one of the three 

cubic axes gives n = w = 2 and f = 
1
/2, giving another case where S = 0. Detailed neutron studies of anion 

distributions in AMO2.5N0.5 perovskites have not been reported, so there is no experimental evidence for two- 

or one-dimensional confinements of the N atoms. 

The expected evolution of configurational entropy with composition in AMO3–zNz perovskites is summarized 

in Fig. 2. The striking feature is the suppression of a measurable entropy near z = 1.5 due to the formation of 

subextensive states, and at z = 1 and z = 2 when the minority anions are confined to planes, as observed in 

SrTaO2N, LaNbON2, etc. This is contrary to normal expectations for a disordered system such as AMO3–zNz, 

where the maximum extensive entropy is expected to occur at the z = 1.5 midpoint. The EuWO3–zNz series, 

which has a wide composition range 1.5 < z < 2.2 reflecting variable cation oxidation states, is thus predicted 

to show two configurational entropy minima at z = 1.5 and 2.0.
[17]
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Figure 2. Plot of predicted molar configurational entropy against composition for AMO3–zNz perovskites. 

Data are shown per mole of M cations, with the minority anions (N for z < 1.5, O for z > 1.5) constrained in 

cis conformations to two dimensions (2D—open symbols, dashed lines) or to three dimensions (3D—filled 

symbols, solid lines). 

 

(ii) Subextensive Perovskite Oxynitrides 

Several of the above models are predicted to have zero configurational entropy, but it is unclear in the Pauling 

approach whether a small finite entropy would be obtained from a more detailed treatment. An exact result is 

obtained by noting that the bonding constraints for structures such as those in Fig. 1b and d generate strictly 

alternating M-N-M and M-O-M bridges along the rows of the lattice. Hence, there are only two possible 

sequences for each row. In the SrTaO2N model where the MN chains are confined to layers as in Fig. 1b, the 

number of configurations of an L × L × L lattice of L layers each containing 2L rows is W = 2
2L2

. For N = L
3
 M 

cations, the configurational entropy is S = kB ln W = 2N
2/3

kB ln 2, where kB is Boltzmann’s constant. This type 

of entropy is “subextensive”, as the exponent of the number of atoms N is less than one, so that the entropy 

per atom becomes vanishingly small for large N, in asymptotic agreement with the Pauling result. Particles 

containing N formula units have a configurational entropy of S = (2R ln 2)/N
1/3

 per mole of SrTaO2N, showing 

that the entropy of such a subextensive material is strongly dependent on the particle size. A single crystal 

containing one mole (N = NA, the Avogadro number) of SrTaO2N has S ≈ 10
–7

R, which would not be 

measurable, but a powder of 40 nm nanoparticles, each containing N ≈ 10
6
 formula units, has a significant 

configurational entropy of S ≈ 0.1R per mole of SrTaO2N. 
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The configurational entropy of the AMO1.5N1.5 perovskite model is similarly subextensive. Here the M-N-M 

bridges define three-dimensional zigzag patterns on a cubic lattice, and these bonding constraints imply 

alternating M-N-M and M-O-M bridges along any row of the cubic lattice. Following the previous argument, 

the exact number of configurations is W = 2
3L2

 for 3L
2
rows in an L × L × L cubic lattice and so S = 3N

2/3
kB ln 

2, which is again subextensive. Hence, the molar configurational entropy of EuWO1.5N1.5, like that of 

SrTaO2N, is predicted to be strongly dependent on the particle size. Confinement of N atoms to one of the 

three cubic axes in AMO2.5N0.5 perovskites would also create subextensive states, although no experimental 

evidence for this partial anion order has been reported. 

 

(iii) Open Order 

The unusual nature of the anion ordering in oxynitride perovskites is illustrated by the subextensive 

configurational entropies predicted above. Subextensive phases form an intermediate category of 

translationally ordered matter, between perfectly ordered crystals such as β′-CuZn (β′-brass) and quasicrystals, 

which ideally have zero configurational entropy, and disordered crystals, such as the random alloy β-CuZn (β-

brass), which have extensive configurational entropies. The configurational entropies of subextensive 

materials are practically zero in the macroscopic limit, but they appear crystallographically disordered. 

Disordered packings of well-ordered chains or layers (e.g., random stacking of close-packed slabs is observed 

in many intercalation compounds such as the battery cathode material LiCoO2) also have subextensive 

entropies, but the unusual nature of the oxynitrides is apparent from the crystal directions in which atoms are 

correlated. The model for oxynitride planes in SrTaO2N (Fig. 1b) shows that M-N-M and M-O-M bridges 

alternate perfectly along vectors in the vertical and horizontal directions but order over only a few unit cell 

lengths in other in-plane directions defined by sums or differences of the vertical and horizontal vectors. This 

is expressed below using correlation lengths ξ, where the probability that atoms at two sites separated by 

distance d satisfies a particular ordering rule is proportional to exp(−d/ξ). 

Perfect crystals of linear dimension La (where a is the cubic lattice spacing) have long-range order with ξ  

La (written here as ξ → ∞) in all lattice directions, whereas disordered crystals have zero or short-range 

correlations ξ  La (written as ξ = 0) in all directions. The correlation lengths in all possible [UVW] directions 

(for vector Ua + Vb + Wc, where a, b, and c are the unit cell vectors and U, V, and W are integers) fall into ξ 

→ ∞ and ξ = 0 sets. For perfectly ordered crystals such as β′-CuZn, all [UVW] vectors are in the ξ → ∞ set 

and the ξ = 0 set is empty. In mathematical terminology, these sets are “closed” under addition or subtraction 

operations, as all sums or differences of [UVW] vectors fall into the same ξ → ∞ set as the [UVW] vectors 

themselves, and the null ξ = 0 set is also closed under these operations. The two sets are also closed under 

addition or subtraction operations for disordered structures such as that of β-CuZn, as all [UVW] vectors fall in 

the ξ = 0 set. 
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A full classification of the subextensive states for two-state (Ising) orderings (e.g., of O/N at anion sites in the 

oxynitride models in section (ii)) along the crystal axes is shown in Table 1. Perfectly ordered alternating 

chains parallel to the axes can be formed in up to c = 3 directions. Atomic planes defined by two of these 

chain-ordered axes may be fully ordered, so the maximum possible number of ordered planes p is 
c
C2. For c = 

2 axes, only the plane defined by these axes may be ordered; for example, only the xy plane for chains parallel 

to the x and yaxes, but for c = 3 directions, up to three planes (xy, xz, and yz) may be ordered. The p = 3 

condition implies the full long-range order of a perfect crystal. 

 

c p S/kB ln 2 ordered (ξ → ∞) set closure disordered (ξ = 0) set closure atomic and displaciveexamples 

0 0 N closed (null) closed β-CuZn 

1 0 N
2/3

 closed open VO(H2AsO4)2 

2 0 2N
2/3

 open closed SrTaO2N 

2 1 N
1/3

 closed open LiCoO2 

3 0 3N
2/3

 open closed EuWO1.5N1.5, C-BaTiO3 

3 1 N
2/3

 +N
1/3

 open closed T-BaTiO3 

3 2 2N
1/3

 open closed O-BaTiO3 

3 3 0 closed closed (null) β′-CuZn, R-BaTiO3 

 

Table 1. Types of Translationally-Ordered Structures, Classified by the Number of Orthogonal Axes along 

Which Long-Range Ordered (ξ → ∞) Chains Are Oriented (c), and the Number of Long-Range Ordered 

Planes Containing These Chains (p). The configurational entropy in each case is shown for Ising-like systems 

of N atoms, each having two possible states (e.g. oxide/nitride site occupation). The open or closed nature of 

the sets of [UVW] lattice vectors with correlation length ξ → ∞ or ξ = 0 is indicated (see text). The c = p = 0 

(top row) and c = p = 3 (bottom row) cases correspond to normal disordered and ordered crystals with 

extensive and zero configurational entropies, respectively. The intermediate cases have subextensive 

entropies, and the unusual oxynitrides also have open sets of ξ → ∞ vectors (“open order”). Examples of 

atomic and displacive orderings are shown in roman and italic text, respectively. 

 

Structures with subextensive entropy have ξ → ∞ in some directions within the crystal and ξ = 0 in others, and 

one of the two sets of [UVW] vectors is not closed (hence “open”) under addition or subtraction operations. 

Disordered stackings of well ordered chains or planes have an open ξ = 0 set. For instance, when c = 2 and p = 

1, long-range ordered layers stacked randomly in the z direction have all [UV0] vectors in the ξ → ∞ set, so 

this is closed, but the ξ = 0 set is open, e.g. because the subtraction of [101] from [201] gives [100] in the ξ → 

∞ set. However, the subextensive oxynitrides fall into a separate class where the ξ → ∞ set is open; for 

example, for xy-plane oxynitride layers such as those in Fig. 1b with c = 2 and p = 0, there are ξ → ∞ vectors 

parallel to [100] and [010] but not to [110] or [1 10]. ξ = 0 vectors also run parallel to [100] and [010], as 

shown in Fig. 1b, and in all other directions, so the ξ = 0 set contains all [UVW] vectors and is thus closed. 
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The above set closure conditions are usefully shortened to “closed/open order/disorder”, where “closed/open” 

refers to whether or not a set of [UVW] vectors is closed under addition or subtraction operations, and 

“order/disorder” refers to the ξ → ∞/ξ = 0 sets. Hence, perfectly ordered crystals and random alloys show both 

closed order and closed disorder. Subextensive states have open order or disorder; those based on random 

stackings of well-ordered chains or layers have open disorder, but the oxynitride structures are distinctive 

from other types of translationally ordered structure by having open order. 

Although subextensive atomic orders are rare in simple solids, analogous displacive orders are better-

established and provide useful comparisons. For example, the formation of VO
2+

 vanadyl groups within 

chains of corner-linked VO6 octahedra gives rise to randomly oriented O- - -V-O- - -V-O- - -V-O- - -V-O 

chains parallel to a single axis in VO(H2AsO4)2,
[20]

 corresponding to the c= 1 case in Table 1. The open-

ordered c = 3 AMO1.5N1.5 structure is directly related to ferroelectric perovskites such as BaTiO3 and LiNbO3. 

In AMO1.5N1.5, each M cation is connected to three mutually cis N atoms, and three mutually cis O atoms, 

while local displacements of Ti toward an octahedral face in BaTiO3 result in three mutually cis short Ti–O 

bonds and three mutually cis long Ti--O bonds. However, the long-range orderings of the constituent units 

along rows in the two cases are opposite to one another (Fig. 3). In the oxynitrides, the long-range anion-

ordered structure N-M-O-M-N-M-O-M-N creates antiferroelectrically aligned dipoles →←→← (→ = N-M-

O), whereas the O- - -Ti-O- - -Ti-O- - -Ti-O- - -Ti-O structure in BaTiO3constitutes ferroelectric ordering of 

the dipoles →→→→ (→ = O- - -Ti-O). 

 

 

Figure 3. Illustrations of the structural analogy between correlated anions in AMO1.5N1.5 and atomic 

displacements in ferroelectric perovskites: (a) an oxynitride perovskite plane showing M-N-M/M-O-M 

connections as heavy/light lines; (b) an analogous ferroelectric plane in BaTiO3, obtained by replacing N-M-O 

connections from left to right and top to bottom in part a with O- - -Ti-O connections in part b. Short Ti–

O/long Ti- - -O bonds are shown as heavy/light lines. Both structures have subextensive configurational 
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entropies. The correlated displacive order in part b gives rise to a net electrical polarization for each plane as 

displayed by the arrows, whereas in part a the chains are antiferroelectric but the relative order of dipoles is 

analogous. The drawn configurations have long-range order between the vertical chains but zero or short-

range correlations between successive horizontal chains. Part b illustrates the order in the intermediate 

orthorhombic and tetragonal phases of BaTiO3, where chain polarizations are long-range ordered parallel to 

two and one of the three perovskite axes, respectively. 

 

BaTiO3 undergoes a series of transitions between phases of different symmetry on heating: rhombohedral (R) 

→ orthorhombic (O) → tetragonal (T) → cubic (C). The first three structures are ferroelectric while the cubic 

phase is paraelectric, and they have been described using an order–disorder model of dipole chains.
[21]

 In the 

limit that the dipole correlations within chains parallel to the three cubic axes (c = 3 in Table 1) are of long-

range, as proposed in a recent computational study,
[22] 

the sequence of phase transitions corresponds to 

decreasing the number of ordered planes: p = 3 → 2 → 1 → 0 on heating. The p < 3 phases have subextensive 

configurational entropies, and the measured BaTiO3 transition entropies are found to be consistently small 

(0.02R–0.06R);
[23]

 the recent study suggested that changes in the phonon spectrum are the main 

contribution.
[22]

 This relationship raises the question of whether ordered phases of AMO1.5N1.5 analogous to 

the three ferroelectric phases of BaTiO3 can be formed (see Fig. 3). Achieving long-range order of anions is a 

future challenge for perovskite oxynitride chemistry—careful high-temperature annealing studies will be 

needed to investigate this possibility. 

 

Discussion 

Translationally ordered matter falls into three classes on the basis of the exponent s for the variation of 

configurational entropy with number of atoms, S  N
s
. Classical ordered and disordered crystals respectively 

have s = 0 and 1, and the intermediate class of subextensive matter described above has 0 < s < 1. 

Subextensive phases represent the most highly correlated states of matter that are possible without adopting a 

full long-range ordered crystal structure. Within the subextensive category, open atomic order is unusual, as it 

requires atoms to participate in intersecting well-ordered chains or layers without generating long-range order 

in intermediate directions. The two-dimensional AMO2N (Fig. 1b) and three-dimensional AMO1.5N1.5 (Fig. 

1d) structures are canonical examples of atomically open-ordered arrangements. In the latter model, each M 

atom lies at the intersection of three perfectly ordered N-M-O-M-N-M-O-M-N chains parallel to the cubic 

axes, but no long-range order arises in any other direction. Open-ordered structures arise spontaneously in 

these oxynitrides due to the strong preference for cis-N-M-N bonding. We note that molecular chemistry can 

be used to synthesize larger units that possess the same geometric characteristics, such as cis isomers of 
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square planar MX2Y2 complexes, or fac-MX3Y3 octahedra, and open-ordered packings may result when either 

X...Y or X...X and Y...Y intermolecular interactions dominate. 

Direct magnetic analogues of the atomic and displacive open orders on simple cubic lattices are not known 

and present a challenge for the design of new magnetic systems. Open spin orders on frustrated lattices have 

been reported; for example, antiferromagnetic Ising models (AFMIMs) on a honeycomb lattice
[24]

 and on an 

elastic triangular lattice
[25]

 have subextensive entropies which scale as N
1/2

 per layer (equivalent to the N
2/3

 

scaling for the SrTaO2N-type structure in Results section (ii), where stacks of layers were considered). 

Throughout this work it has been assumed that the energies of all configurations are equal, so configurational 

contributions to the free energy are insufficient to drive an ordering transition on cooling. A recent study of 

the elastic AFMIM identified an “order by disorder” mechanism by which the degeneracy of the ground states 

may be lifted, leading to a stabilization of partially disordered zigzag arrangements of ferromagnetically 

aligned spins stabilized by the phonon contribution to the free energy.
[24]

 In the unfrustrated perovskites 

displaying open anion or displacive orders, Coulombic forces are likely to drive the system to a full long-

range closed order, as observed in the low-temperature rhombohedral form of BaTiO3. 

Many other atomic variables such as ionic charges in mixed-valent materials and orbital states (and their 

consequent Jahn–Teller displacements) can show order/disorder phenomena on periodic lattices. Open charge 

orders could be of interest in the context of charge fluctuation mechanisms for superconductivity in doped 

copper oxides. Arrangements of larger objects such as colloidal particles in optical crystals
[26]

 can also show 

classical ordered and disordered states, and again it is intriguing to consider whether open orders could be 

achieved on the mesoscale and what the resulting properties might be. 

 

Conclusions 

AMO3–zNz perovskite oxynitride structures provide interesting examples of ice-type disorder on square or 

cubic lattices. The local cis-coordination rule gives rise to predicted subextensive entropies in materials such 

as SrTaO2N, LaNbON2, and EuWO1.5N1.5. The subextensive structures are usefully classified as showing an 

“open order”, related to the correlated local order of displacements in ferroelectric perovskites such as 

BaTiO3. 
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