
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inhibition effect of different interstitial materials on thermal
runaway propagation in the cylindrical lithium-ion battery module

Citation for published version:
Yuan, C, Wang, Q, Wang, Y & Zhao, Y 2019, 'Inhibition effect of different interstitial materials on thermal
runaway propagation in the cylindrical lithium-ion battery module', Applied Thermal Engineering, vol. 153,
pp. 39-50. https://doi.org/10.1016/j.applthermaleng.2019.02.127

Digital Object Identifier (DOI):
10.1016/j.applthermaleng.2019.02.127

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Applied Thermal Engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Apr. 2024

https://doi.org/10.1016/j.applthermaleng.2019.02.127
https://doi.org/10.1016/j.applthermaleng.2019.02.127
https://www.research.ed.ac.uk/en/publications/993a720a-99c8-4f5f-8e82-ef0eb34161ca


Inhibition effect of different interstitial materials on thermal runaway 1 

propagation in the cylindrical lithium-ion battery module 2 

 3 

ChengchaoYuana,b, QingsongWangc, Yu Wangd, Yang Zhaoa,b* 4 

a Department of Precision Machinery and Precision Instrumentation, University of Science and 5 

Technology of China, Hefei, Anhui 230027, PR China 6 

b CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and 7 

Technology of China, Hefei, Anhui 230027, PR China 8 

cState Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, 9 

PR China 10 

dSchool of Engineering, BRE Centre for Fire Safety Engineering, University of Edinburgh, 11 

Edinburgh EH9 3JL, United Kingdom 12 

 13 

 14 

Nomenclature 

A surface area [m2] 

Ccan average mass specific heat of the can and cell material residual [J kg-1 K-1] 

Ccell average mass specific heat of the vented cell materials [J kg-1 K-1] 

Ctotal average mass specific heat of single cell [J kg-1 K-1] 

hconv convective heat transfer coefficient [W m-2 K-1] 

k effective thermal conductivity [W m-1 K-1] 

mcell mass of an 18650 cell's components [kg] 

mcan mass of an 18650 cell's stainless-steel casing [kg] 

mtotal mass of an 18650 cell [kg] 

�̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 convective heat transfer at the cell boundaries [W m-2] 

�̇�𝑄𝑟𝑟𝑟𝑟𝑟𝑟 radiative heat transfer at the cell boundaries [W m-2] 

�̇�𝑄r chemical reaction heat generation rate [W] 

�̇�𝑄f solid electrolyte interface (SEI) decomposition heat generation rate [W] 



�̇�𝑄n Negative-Solvent reaction heat generation rate [W] 

�̇�𝑄p Positive-Solvent reaction heat generation rate [W] 

�̇�𝑄e electrolyte decomposition heat generation rate [W] 

t time [s] 

T temperature [K]   

T0 initial exothermic temperature [K] 

dT/dt the derivative of the temperature [K s-1] 

  

Greek symbols 

ε Emissivity of the battery surface 

σ Stefan-Boltzmann constant, 5.67e-8 [W m-2 K-4] 

  

TRT TR triggering temperature 

HIGHLIGHTS 15 

Inhibition effect of interstitial materials on TR in battery modules is studied. 16 

CFD model is used to analyze battery temperature under different conditions. 17 

The simulation is experimentally compared and verified by basic safety units. 18 

Composite graphite sheet and Al extrusion can effectively control the thermal path. 19 

 20 

ABSTRACT 21 

With the growing demand for high specific energy density of lithium-ion battery 22 

pack in electric vehicle to relieve range anxiety, thermal stability in abused conditions 23 

is becoming increasingly important in battery pack safety design. Most of the fire 24 

accidents are resulted from the thermal runaway (TR) of a single cell and then propagate 25 

to the battery modules and entire pack. This study focuses on the safety enhancement 26 

methods for battery module, which is filled with different interstitial materials. The 27 

basic safety unit is composed of 11 commercial 18650 cylindrical cells, which is 28 

isolated from the electric vehicle pack as the test module. The test modules were 29 

intentionally triggered into TR by heating wire to evaluate the TR propagation 30 



resistance. A model based on finite volume method was established to simulate the TR 31 

propagation. The results of both simulation and experiments show that the protection 32 

of neighboring cells from different interstitial materials varies significantly. Graphite 33 

composite sheet and Al extrusion as interstitial materials could effectively suppress TR 34 

propagation. The results also indicate that for safety design of battery pack, thermal 35 

path should be effectively controlled, and particularly the combustion of expelled 36 

electrolyte must be directed away from adjacent cells. 37 

 38 

Key words: Electric vehicle; Lithium-ion battery safety; Thermal runaway; Interstitial 39 

material; Thermal runaway propagation 40 

 41 

1. Introduction 42 

Lithium-ion (Li-ion) batteries, as the state-of-the-art energy storage units, have 43 

been mainly applied in the fields of Energy Storage System (ESS) [1], such as Electric 44 

Vehicle (EV) [2], auxiliary power unit (APU), smart grids, etc. The industry of EV has 45 

boomed worldwide since 2009 due to the concerns of dependence on oil-based fuels 46 

consumption and the pressure of carbon emissions. Battery electric vehicles access the 47 

mass market rapidly with their advantages of zero emission and also the generous 48 

subsidies from governments. Rechargeable li-ion batteries have been widely used in 49 

consumer electronic devices, such as cell phones and computers [3-6]. Due to its high 50 

gravimetric and volumetric energy densities [7], Li-ion battery is currently the best 51 

power source candidate for BEV compared to NiMH or lead-acid battery. However, 52 

higher energy density may cause greater thermal hazard if this energy is released 53 

abruptly because of contamination, manufacturing defect, mechanical insult, 54 

overcharging or internal short circuit caused by overheating [8-10], etc. The rapid 55 

discharge of electrical energy inside the cell will raise its temperature and causes series 56 

reactions, including 1) reaction between cathode and electrolyte; 2) thermal 57 

decomposition of electrolyte; 3) reaction between electrolyte and anode; 4) thermal 58 



decomposition of anode; 5) thermal decomposition of cathode [11-13]. This auto-59 

acceleratory exothermic process is called thermal runaway (TR), which generates 60 

combustible gases, and results in expulsions of the cell components [14-16]. Generally, 61 

there are three ways to improve the safety performance of lithium-ion battery to prevent 62 

TR: 1) enhance thermal stability of the electrode materials; 2) improve the electrolyte 63 

of lithium-ion battery to avoid burning; 3) propose new design and management of 64 

lithium-ion battery through some external methods, such as safety design and insulation 65 

of cells, safety valves and the process improvement [17-19]. 66 

The safety issues of Li-ion batteries have drawn tremendous attention and become 67 

an urgent problem to be solved in the development of Li-ion batteries. Some typical 68 

battery pack safety accidents are shown in Table 1. However, the risk of thermal 69 

runaway becomes even more severe in large scale battery pack since failure of a single 70 

cell could trigger a TR propagation in the whole pack, which may cause catastrophic 71 

damages. 72 

 73 

Table 1 74 

Typical accidents related to Li-ion batteries  75 

Date/Place Brand Power type Cause 

May 2011/USA Chevrolet Volt BEV Caught fire after crash test 

2012/Texas Fisker Karma HEV Unknown 

Jan 7 2013/Boston's Logan 

International Airport 
Boeing 787 Dreamliner APU Internal short circuit 

Jan 1 2016/ Norway Gjerstad Tesla MODEL S BEV Distribution box short circuit 

Apr 9 2016/Shanghai BYD HEV Foreign body in exhaust pipe 

May 14 2016/Zhuhai Yinlong BEV Battery short circuit 

June 23 2016/Beijing JAC iEV5 BEV Unknown 

 76 

For a battery pack that is in working status, there are several factors that may lead 77 

to thermal runaway, such as mechanical abuse (puncture, crush), electrical abuse 78 

(overcharge, over-discharge, short circuit), thermal abuse, etc [20, 21]. Generally, 79 



Battery Management System (BMS) and Battery Thermal Management System (BTMS) 80 

[22, 23] can monitor and control the real-time safety related parameters (temperature, 81 

voltage, current, pressure, etc.) to prevent the batteries from being abused. However, 82 

the manufacturing defects (loose connection, separator damage, foreign debris) inside 83 

the batteries cannot be monitored or controlled by BMS and BTMS, which may still 84 

cause thermal runaway of batteries. Passive inhibition methods are required to limit the 85 

TR propagation, and thus avoid catastrophic break down of the whole system. 86 

Currently, some experimental and simulation works about safety are based on cell 87 

level. Saw et al. have improved the safety performance of single cell by studying the 88 

surface roughness and coating thickness of boron nitride added on battery casing [24]. 89 

Coman et al. [25] have studied different processes of cylindrical cell during TR in a 90 

model with venting and quantified the mass fraction of electrolyte leaving the cell can. 91 

In addition, there are a few researches aiming at enhancing the safety of battery module. 92 

Guo et al. [26] have developed three-dimensional thermal abuse model on the high 93 

capacity lithium-ion batteries, which contributes to the design of cooling system in the 94 

battery packs. In the normal working status, a 3D thermal model of lithium-ion battery 95 

pack is developed to simulate the thermal behaviors of the EV power battery [27]. 96 

What’s more, there are some novel thermal studies about battery module: aluminum 97 

foam with porosity control used as cooling system [28], influence of discharging 98 

treatment and module shape on the thermal failure propagation [29], and the impact of 99 

electrical connections on 18650 cell TR propagation and failure behaviors of pouch 100 

cells [30], etc. Abada et al. [31] summarized the phenomenon, mechanism and safety 101 

approach of thermal runaway in both cell level and module level. 102 

For different kinds of ESS, a price and weight competitive safety grouping scheme 103 

is needed to improve the TR resistance of the lithium battery module. Therefore, we 104 

proposed four interstitial materials (air, Al plate, graphite composite sheet and Al 105 

extrusion) with different potential application values, and studied their inhibition 106 

effects on TR propagation. The system studied in this paper is a simplified form of a 107 

certain module in the battery pack, which contains 11 parallel cells with various TR 108 

propagation paths once TR occurs, and we call it Basic Safety Unit (BSU). Different 109 



interstitial materials are inserted between cells to investigate their effects on thermal 110 

inhibition, and the middle cell of the module was heated into TR in the mode of top 111 

venting or side rupture. The TR propagation results were studied in both simulation and 112 

experimental methods. 113 

 114 

2. Development of Thermal Model 115 

2.1 Thermal runaway mechanism 116 

The understanding of the mechanism of TR in a lithium-ion cell is critical when 117 

designing the thermal management systems, which should mitigate the effects of TR 118 

and impede cell-to-cell propagation. TR means uncontrolled temperature rise of a single 119 

cell caused by the exothermic chain reactions and is characterized by a distinct rapid 120 

increase of temperature, rather than a steady temperature rise. Energy released during 121 

TR in a cell includes cell body energy, top venting energy and side rupture energy, as 122 

shown in Fig. 1. The heat released from an abused cell can activate chain reactions in 123 

the neighboring cells, causing catastrophic failure of the whole battery module or pack. 124 

 125 

 126 

Fig. 1. Schematic of energy constitution (Physical and model drawing). 127 

A TR propagation model was built to analyze the heat transfer through different 128 

paths. To simplify the analysis and to focus on the propagation process, some 129 

assumptions are proposed as follows [32-34]: the heat transfer condition of TR is set to 130 

be adiabatic; residual burning is not considered; the cell is considered as a thermally 131 

lumped system; vented gases are not considered as reactive and no combustion is taking 132 

place in between the cells. Structural integrity and material properties are assumed to 133 



be constant at high temperatures. Every cell conforms to the energy balance equation, 134 

as illustrated in Fig. 2 [35]. The increase of the internal energy of each cell is determined 135 

by the heat generation inside the cell and the heat dissipation rate. The heat generation 136 

is induced by chemical reaction and Joule heating due to electrical short circuit. The 137 

heat dissipation includes conduction, convection and radiation. 138 

 139 

Fig. 2. Energy balance equation of a single cell. 140 

In the normal working conditions, �̇�𝑄s is the main source of the heat generation. 141 

When TR occurs in the system, the energy release rate due to chemical reaction �̇�𝑄r is 142 

much larger than �̇�𝑄s from Joule heating rate [32], thus only the effect of �̇�𝑄r is taken 143 

into consideration. Generally, �̇�𝑄r contains the following four parts: 144 

�̇�𝑄𝑟𝑟 = �̇�𝑄𝑓𝑓 + �̇�𝑄𝑐𝑐 + �̇�𝑄𝑝𝑝 + �̇�𝑄𝑒𝑒               (1) 145 

Where �̇�𝑄 f is the heat generation rate due to the decomposition of SEI, �̇�𝑄n due to 146 

Negative-Solvent reaction, �̇�𝑄p due to Positive-Solvent reaction, and �̇�𝑄e is the heat 147 

generation rate due to the decomposition of electrolyte. 148 

The heat dissipates from the system to the surroundings through convection and 149 

radiation, and can be written as follows: 150 

�̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴�𝑇𝑇 − 𝑇𝑇𝑓𝑓�                 (2) 151 

�̇�𝑄𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜀𝜀𝜀𝜀𝐴𝐴(𝑇𝑇4 − 𝑇𝑇𝑤𝑤4)               (3) 152 

Based on energy balance equations as shown in Eq. (1) - (3), the temperature 153 

distribution inside the system under a certain TR condition can be solved using 154 

numerical simulation tool - FLUENT. The results from the simulation can be used to 155 

predict the most possible location where TR occur and make it possible to prevent it 156 

from happening in advance. 157 



2.2 Calibration of thermal properties of single cells 158 

Accelerating rate calorimeter (EV-ARC, Thermal hazard technology, UK) was 159 

used to measure the thermal hazard and runaway characteristics of commercial 18650 160 

lithium-ion batteries, as shown in Fig. 3(a). The thermal runaway energy distribution 161 

can be calibrated during the experiment [32, 35]. The change of the temperature during 162 

TR is recorded in an adiabatic environment, as shown in Fig. 3(b) & (c). 163 

A standard heat-wait-search (HWS) procedure is the most characteristic and 164 

prevalent way to determine the onset temperature of self-heating. The tests evaluated 165 

the thermal hazard characteristics, such as initial exothermic temperature (T0) and self-166 

heating rate (dT/dt), as shown in Fig. 3 (d) & (e). The maximum self-heating power of 167 

commercial 18650 cylindrical lithium-ion battery cells (Samsung 18650-33G) of 100% 168 

state of charge (SOC) was measured to be 9.95 kW, and the maximum temperature 169 

reached 889 oC. 170 

 171 

Fig. 3. Accelerating rate calorimeter (ARC) test process. (a)ARC test device; (b) & (c) Cell status 172 

before & after ARC test; (d) Thermal runaway temperature of a cell; (e) energy release variation 173 

curve of a cell; (f) Temperature rate as a function of temperature, T0 was defined as the point at 174 

which the heating-rate curve rises from constant to quasi-exponential. 175 

After the experiment proceeded for 960 seconds, it was recorded that the rate of 176 



the temperature rise of the cell increased rapidly. T0 was defined as the point at which 177 

the heating-rate curve rises from constant to quasi-exponential [36], and was used as 178 

the TR triggering temperature (TRT) to determine if the cell was forced into TR in 179 

simulation. T0 was 160.6±1.2 oC on average recorded from 8 repeated tests. Fig. 3 (d), 180 

(e) & (f) is the ARC test result from one cell. Cell temperature went up to 889 oC within 181 

a few seconds. The heat generation of the cell during TR was estimated with following 182 

equations: 183 

𝐶𝐶𝑡𝑡𝑐𝑐𝑡𝑡𝑟𝑟𝑡𝑡 =  (𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐)
(𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐)

= 1100 Jg−1K−1        (4) 184 

Where Ctotal is the average mass specific heat of single cell, Ccell the average mass 185 

specific heat of the vented cell materials, Ccan the average mass specific heat of the can 186 

and cell material residual, mcell the mass of the cell materials, mcan the mass of the 187 

stainless steel can and mtotal is the total mass of the single cell. According to the 188 

measurements: 189 

𝑚𝑚𝑡𝑡𝑐𝑐𝑡𝑡𝑟𝑟𝑡𝑡 =  𝑚𝑚𝑐𝑐𝑒𝑒𝑡𝑡𝑡𝑡 + 𝑚𝑚𝑐𝑐𝑟𝑟𝑐𝑐 =  0.047 kg           (5) 190 

𝑄𝑄𝑡𝑡𝑐𝑐𝑡𝑡𝑟𝑟𝑡𝑡 = 𝑚𝑚𝑡𝑡𝑐𝑐𝑡𝑡𝑟𝑟𝑡𝑡𝐶𝐶𝑡𝑡𝑐𝑐𝑡𝑡𝑟𝑟𝑡𝑡∆𝑇𝑇 = 0.047 × 1100 × (889 − 160.6) = 37658.28 J   (6) 191 

𝑄𝑄𝑐𝑐𝑟𝑟𝑐𝑐 = 𝑚𝑚𝑐𝑐𝑟𝑟𝑐𝑐𝐶𝐶𝑐𝑐𝑟𝑟𝑐𝑐∆𝑇𝑇 = 4374 J            (7) 192 

𝑄𝑄𝑐𝑐𝑒𝑒𝑡𝑡𝑡𝑡 = 𝑄𝑄𝑡𝑡𝑐𝑐𝑡𝑡𝑟𝑟𝑡𝑡 − 𝑄𝑄𝑐𝑐𝑟𝑟𝑐𝑐 = 33284.28 J              (8) 193 

𝑄𝑄𝑐𝑐𝑒𝑒𝑡𝑡𝑡𝑡/𝑄𝑄𝑡𝑡𝑐𝑐𝑡𝑡𝑟𝑟𝑡𝑡 = 33284.28/37658.28 = 0.88         (9) 194 

Where Qtotal is the total energy released by the TR cell, Qcan is the energy of the can and 195 

cell material residual, and Qcell is the energy carried by the vented cell materials. 196 

 197 

2.3 Experimental study of TR propagation within a test unit 198 

There are several methods to initiate the TR such as nail penetration, heating and 199 

overcharge. This study used electrical resistance (Joule) heating to drive the cell into 200 

TR (Fig. 4).  201 



 202 

Fig. 4. Schematic of triggering process of thermal runaway by heating. 203 

During the experiment, the triggering cell was heated to TR and forced to release 204 

energy in the form of top venting or side rupture. A gas vent is located at the top of the 205 

18650 cell to allow for an internal pressure release when gas builds up inside the cell. 206 

Large amount of gas generated inside the cell at TR state would sharply increase 207 

internal pressure which could mostly activate the gas vent and release gas from the top 208 

of the cell. The practical application of the technique to avoid side rupture is to weaken 209 

the strength of the top or the base of cell [37]. Therefore, based on the contrary concept, 210 

the top of the cell was enhanced to increase the chance of side rupture. In this 211 

experiment, the top of the cell was glued and attached with a metal plate for 212 

reinforcement to achieve side rupture intentionally. 213 

Commercial cells (Samsung 18650-33G) were used, which are brand new and on-214 

purpose purchased for the experiment. The anode material of the cell is NCA (NiCoAl), 215 

the cathode material is graphite, and the electrolyte is mainly ethylene carbonate (EC) 216 

with LiPF6. Cells were assembled into a BSU and the assembly procedure is illustrated 217 

in Fig. 5 (a)-(d). Cells were set between two symmetrical ABS plastic sheet, and the 218 

battery spacing were kept 2 mm. A resistance heating wire (Cr20Ni80) was wound 219 

around cell #7 in the central section of the cell (Fig. 5 (l)) for 8 rounds. The winding 220 

area accounts for half of the surface area of the cell. Cell #7 was heated during the 221 

experiment as triggering cell. The thermal couples were erected against the central 222 

surface of each cell, located on the side away from cell #7 (Fig. 5 (e), (m), Fig. 6 (c)). 223 

The signals from the thermal couples were collected by a data logger (LR8400-21, 224 

HIOKI Japan) (Fig. 7(b)), and the temperatures of the cells were recorded in real time. 225 



Different materials were inserted in the interval between the cells, and their materials 226 

are listed in Table 2. The arrangements of interstitial layers are illustrated in Fig. 5(g)-227 

(j). The thickness of both Al plates and graphite sheets are 2.1 mm. When BSU is 228 

assembled, the cell and the interstitial material are closely contacted (Fig. 5 (k)). BSU 229 

is locked by bolts. Tiny gaps are inevitable but can be ignored in the actual assembly. 230 

It should be noted that the graphite sheets are sandwich structures. And the outer layers 231 

are graphite (0.2 mm thickness) with the thermal conductivity of 800 W m-1 K-1 in plane 232 

direction and 25 W m-1K-1 in axial direction, while the middle layer (1.7 mm thickness) 233 

is a thermal barrier with the thermal conductivity of 0.02 W m-1 K-1. 234 

 235 

 236 

Fig. 5. Photographs of BSU modules with different interstitial material. (a)-(d) Assembling 237 

procedure for BSU (with graphite sheet); (g)-(j) BSU with different interstitial materials: (g)Air 238 

(natural state), (h) Al plate, (i) Graphite composite sheet, (j) Al extrusion; (k) top view of uncovered 239 

BSU; (l) triggering cell binding with heating wire and thermal couple in the central section of the 240 

cell; (m) neighboring cell binding with a thermal couple. 241 

Eight BSUs were assembled with 4 interstitial materials and 2 venting options. All 242 

the BSUs were charged to 100% SOC (Fig. 6(a)) and sealed in a casing made of 243 

aluminum (Fig. 6(b)). The Al casing has a gas vent on the top. Fig. 6 shows an exploded 244 



view, which exhibits the configurational structure. The Al casing structure was settled 245 

into a test chamber (1000 mm x 500 mm x 500 mm, 3 mm thickness, made of steel) as 246 

shown in Fig. 7(a) for experiment, which simulated the TR in a battery pack and ensured 247 

safety. 248 

 249 

 250 

Fig. 6. Photograph and schematic of a BSU. (a) Charging setup for BSU. (b) BSU sealed in Al 251 

casing. (c) BSU configuration showing cell numbers and locations of triggered cell (cell 7) and 252 

adjacent cells (cell1-10). Thermal couples were placed on cell 1-7, while their positions are 253 

represented by red dots. 254 

 255 

 256 

Fig. 7. Devices for thermal runaway experiment 257 

During the experiment, the heating wire heated up cell #7 at power of 80 W by the 258 

resistance heating wire until cell #7 run into TR. The temperatures of all cells were 259 

recorded in real time. 260 

Table 2 261 

Characteristics of Samsung 18650-33G and different interstitial materials 262 

Item Density 

(kg m-3) 

Cp(J kg-1 

K-1) 

Thermal Conductivity(W m-1 K-1) 



Samsung 18650-33G 2800 1143 Radial Axial 

5 1 

Al plate 2700 880 230 230 

Graphite composite 

sheet (lightweight) 

2200 700 plane/axial barrier 

800/25 0.02 

Al extrusion 2700 880 230 230 

 263 

2.4 Simulation process 264 

The simulation is based on the BSU containing 11 cells in parallel with various 265 

interstitial materials. The center cell was triggered into energy releasing in the form of 266 

top venting or side rupture. The released energy was transferred to the neighboring cells 267 

through conduction, convection (natural and forced convection) and radiation. 268 

Interstitial materials are directly in contact with the enclosure of BSU, which exchanges 269 

heat with surroundings by convection, as shown in Fig. 6. Mesh of the model is 270 

established by the meshing tool Hypermesh. Nodes between the cell and the interstitial 271 

material and those between the interstitial material and the enclosure are 272 

continuous/uninterrupted, as shown in Fig. 8(a). 273 

Finite element method software - Fluent [38] is employed to simulate and analyze 274 

the ability of various interstitial materials to restrain the temperature rise of the 275 

neighboring cells, and furthermore supply theoretical guidance for the TR propagation 276 

in battery module level. The maximum temperature of each single cell will be achieved 277 

during the simulation process. Boundary conditions of the simulation are as follows: 278 

ambient temperature is 27 oC; the Al casing is set to have a gas vent in the top to 279 

simulate the real situation of the cell in a module; the gas ejected during the top venting 280 

is exhausted outside the casing, while the gas ejected during the side rupture is 281 

contained in the casing; the heat exchange between Al casing and external environment 282 

is natural convection with gravity; the battery casing is in intimate contact with the 283 

interstitial material. The middle cell of the module is set to release energy in the form 284 

of top venting and side rupture as shown in Fig. 8(b). Graphite composite sheet and Al 285 



plate are in direct contact with the surface of cell body, and the interface contact thermal 286 

resistance is ignored. In side rupture condition, hot gas energy is contained within the 287 

enclosure. 288 

 289 

Fig. 8. Simulation model diagram. (a) Schematic of model mesh for numerical simulation; (b) Two 290 

modes of energy releasing: top venting and side rupture. 291 

The simulation model is composed of enclosure, ABS plastic plates, thermal pad, 292 

four kinds of interstitial materials, cells with 2 mm gap, which is the same as the 293 

experiments. For comparation purpose, two mesh sizes (0.5 mm and 1 mm) are 294 

produced with 2.33 M and 0.6 M structured meshes, respectively. And nodes are 295 

continuous between meshes. No difference is observed between two results. For faster 296 

calculation convergence, 1 mm mesh size and continuous nodes between meshes is set 297 

for simulation. The ambient temperature is set at 27 oC and material properties are 298 

shown in Table 2. The quantified energy released by the triggering cell is illustrated 299 

in Fig. 3(d) & (e) and Eqs. (4)-(8). And the heat transfer coefficient of convection 300 

between the shell and the ambient surrounding is 5 W m-2 K-1. 301 

 302 

3. Results and discussion 303 

The presented work details the TR propagation behavior of the BSUs with both 304 

simulation and experiment methods. The center cell was heated into TR. Meanwhile, 305 

the temperatures of the center cell and 6 abutting cells were monitored in real-time 306 

during the experiments. Experimental and simulation results with different interstitial 307 

materials are elaborated in Fig. 9 and Fig. 10, separately. 308 

3.1 Experimental results 309 

Eight BSUs with four different interstitial materials were tested. Cell #7 at the 310 

center was heated to TR in the mode of either top venting or side rupture, and the 311 



temperatures of cells were recorded. Experimental results are shown in Fig. 10. The 312 

relationship between the serial number and the interstitial materials is the same as that 313 

in Table 3. Table 3 summarizes the results of each BSU, including TRT and the time to 314 

TR of cell #7, maximum temperature and TR values of neighboring cells. 315 

(a) BSU with none interstitial material and top venting mode: 316 

TR was triggered in cell #7 after it was heated for 160 s and TRT was recorded as 317 

178 oC approximately. Then the temperature of the adjacent cells rose from 33 oC. The 318 

temperatures recorded exceeded the TR temperature (160.6 oC), which means the 319 

occurrence of TR propagation. It should be noted that the temperature of adjacent cells 320 

around cell #7 fluctuated drastically, which might due to the unstable sporadic, 321 

intermittent hot vapor released by the surrounding TR cells. 322 

The temperature recorded to reach TR of the experimental module is greater than 323 

TRT of the ARC test on single cell. The reason is that ARC test is a slow heat-wait-324 

search process under the assumption of uniform temperature within the cell.  While in 325 

the BSU tests, the heating wire heats up the cell from outside at a much higher rate, and 326 

the nonuniformity of the temperature within the cell is significant. Therefore, the 327 

temperature at the outer shell of the cell is several degrees higher than that at inner part 328 

of the cell, which is the criterial to trigger TR. In the following cases, there are also 329 

varying degrees of temperature differences. 330 

(b) BSU with none interstitial material and side rupture mode:  331 

The temperature of cell #7 reached TRT of 182 oC after it was heated for 115 s. 332 

Almost immediately the temperature of the adjacent cells rose sharply and TR 333 

propagation occurred. The temperature dropped slowly not until after 350s.The 334 

temperature of cell #1 rose much slower than other cells. This may due to the reason 335 

that the side rupture direction of cell #7 is facing off the direction of cell #1. Therefore, 336 

cell #1 is not directly affected by the explosion, but is subjected to relatively slow heat 337 

radiation. 338 

(c) BSU with Al plate as interstitial material and top venting mode:  339 

The temperature of cell #7 reached TRT of 184 oC after it was heated for 240 s. 340 

There were small fluctuations of the adjacent cells’ temperatures. The Al plate acts as 341 



a heat sink and absorbs the heat energy of cell #7. The maximum temperature of the 342 

adjacent cells reached is about 120 oC, and no TR propagation occurs. 343 

(d) BSU with Al plate as interstitial material and side rupture mode: 344 

Cell #7 was forced to TR after heated for 240 s. The temperatures of adjacent cells 345 

rose sharply along with the TR of cell #7, and TR propagation occurred in the BSU. 346 

The energy released by side rupture of cell #7 is all wrapped in the module. The Al 347 

plate is saturated as heat sink. Therefore, the heat energy is transferred to the 348 

surrounding cells. In the case of top venting (c), part of the energy was released outside 349 

the module along with the material explosion, so no TR propagation was observed in 350 

Fig. 17(c). The direction of side rupture might face to cell #2, #4, and #6, so the 351 

temperature of these cells rose faster than cell #1, #3, and #5 as shown in the inset of 352 

Fig. 17(d). Moreover, due to the heat sink and space isolation effect of the aluminum 353 

plate, the energy dissipation is relatively stable during the cooling process of the entire 354 

module, so the temperature drop is relatively stable compared to (a) and (b). 355 

(e) BSU with graphite composite sheets as interstitial material and top venting 356 

mode: 357 

Cell #7 was heated to trigger TR. Moderate temperature rise (slightly above 100 358 

oC) of the adjacent cells was recorded and no TR propagation was observed, as in the 359 

case of (c). Furthermore, the maximum temperature of the triggered cell reached about 360 

800 oC, and is much smaller than those in modules with TR propagations, which is 361 

above 1000 oC. This is due to the large amount of energy released during TR 362 

propagations in the modules causing excessive temperature rise in the center of the 363 

modules. 364 

(f) BSU with graphite composite sheets as interstitial material and side rupture 365 

mode: 366 

The temperature of the center cell reached TRT of 178 oC after it was heated for 367 

150 s. Moderate temperature rise of the adjacent cell that is directly in the rupture 368 

direction of the TR cell was recorded. And no TR propagation was observed after 369 

temperature rise fluctuations. Hence, graphite composite sheet can prevent TR 370 

propagation in BSU even in the side rupture mode. The graphite sheet has a high 371 



thermal conductivity in plane direction (800 W m-1K-1), which can spread out the heat 372 

released from the TR cell rapidly to the Al casing. On the other hand, the graphite sheet 373 

has a low thermal conductivity in the axial direction (25 W m-1K-1) due to the sandwich 374 

structure, which can effectively shelter the cells adjacent to the TR cell. Therefore, the 375 

temperature distribution among the whole module is quite uniform even in this side 376 

rupture mode. 377 

(g) BSU with Al extrusion as interstitial material and top venting mode:  378 

Cell #7 was forced to TR. TR lasted for around 10 s and the maximum temperature 379 

reached 850 oC. The temperature of the neighboring cell 3 reached highest value of 102 380 

oC, which did not trigger TR and the rest cells remained stable. 381 

(h) BSU with Al extrusion as interstitial material and side rupture mode:  382 

Cell #7 was forced to TR. The temperature of adjacent cell #2 reached a maximum 383 

temperature around 115 oC, and did not trigger TR. 384 



 385 



Fig. 9. Experiment results of 7 cells (a) with air as interstitial material and top venting; (b) with air 386 

as interstitial material and side rupture; (c) with Al plate as interstitial material and top venting; (d) 387 

with Al plate as interstitial material and side rupture; (e) with graphite sheet as interstitial material 388 

and top venting; (f) with graphite sheet as interstitial material and side rupture; (g) with Al extrusion 389 

as interstitial material and top venting; (h) with Al extrusion as interstitial material and side rupture. 390 

 391 

Table 3 392 

Summary of experiment results of all BSUs. The results include venting mode, triggering 393 

temperature and time to TR of cell #7, maximum temperatures and TR values of neighboring cells. 394 

'T' means 'Top venting', 'S' means 'Side rupture'. 'Fail' means that TR propagation occurs in the 395 

module, while 'Pass' means that no TR propagation occurs in the module 396 

 (a) (b) (c) (d) (e) (f) (g) (h) 

Interstitial material Air(air) Al plate graphite composite sheet Al extrusion 

Venting mode T S T S T S T S 

Time to TR (s) 160 115 240 240 248 150 210 159 

TRT (oC) 178 182 184 180 157 178 184 181 

Max Temp (oC)   120  100 120 102 115 

TR value Fail Fail Pass Fail Pass Pass Pass Pass 

 397 

3.2 Simulation results 398 



 399 

Fig. 10. Simulation results of the temperature responses of BSU (a) with air as interstitial material 400 

and top venting; (b) with air as interstitial material and side rupture; (c) with Al plate as interstitial 401 

material and top venting; (d) with Al plate as interstitial material and side rupture; (e) with graphite 402 

sheet as interstitial material and top venting; (f) with graphite sheet as interstitial material and side 403 

rupture; (g) with Al extrusion as interstitial material and top venting; (h) with Al extrusion as 404 

interstitial material and side rupture. 405 

Fig. 10 illustrates the numerical simulation results of the temperature distribution 406 



inside the modules with various interstitial materials. The center cell was hidden to 407 

strengthen the color difference generated from the temperature gradient since the 408 

temperature difference between neighboring cells and the center cell are drastic during 409 

the energy release process. The energy generated by chain reactions is ignored in order 410 

to reduce the complexity of simulation. It is a low cost method to evaluate the safety 411 

and reliability of module design to obtain a simple and clear criterion of thermal 412 

runaway onset. During the simulation, the energy is loaded on the center cell, whose 413 

value is determined from the ARC test. The temperature of the center cell increased to 414 

about 800 oC within 5 s after it was triggered. The neighboring cells reach their peak 415 

temperature after the center cell does. In the experiment process, the thermal couple of 416 

cell #1-#6 was erected against the central surface of each cell, located on the side facing 417 

off from cell #7 (Fig. 6 (c)). In the simulation, the temperatures of neighboring cells are 418 

monitored at locations that are facing away from the center cell, which are the same as 419 

those in the experiment. These recorded temperatures are taken as the criteria of thermal 420 

runaway onset. Sample illustration of simulated temperature results for neighboring 421 

cells is shown in Fig. 11. Temperatures rise rapidly for cells with none interstitial 422 

material and top venting mode (Fig. 11(a)), and no high temperature is found for cells 423 

with Al extrusion and side rupture mode (Fig. 11(b)). The temperatures and outcomes 424 

are shown in Table 4. The triggering temperature is 160.6±1.2 oC acquired from ARC 425 

test. 426 

 427 

Table 4 428 

Max temperature of neighboring cells in simulation. 'T' means 'Top venting', 'S' means 'Side 429 

rupture'. 'Fail' means that TR propagation occurs in the module, while 'Pass' means that no TR 430 

propagation occurs in the module 431 

No. (a) (b) (c) (d) (e) (f) (g) (h) 

Interstitial material None(air) Al plate graphite composite sheet Al extrusion 

Venting mode T S T S T S T S 

Cell Temp.(℃) 869 828 80 812 153 120 83 80 



TR value Fail Fail Pass Fail Pass Pass Pass Pass 

 432 

3.3 Summary 433 

Table 5 434 

Results of TR experiment. 'Pass' means no TR propagation occurring in the BSU, while 'Fail' means 435 

TR propagation occurring in the BSU. 436 

Interstitial material Mode Simulation 

results 

Experiment 

results 

Air Top venting Fail Fail 

Side rupture Fail Fail 

Al plate Top venting Pass Pass 

Side rupture Fail Fail 

Graphite composite sheet Top venting Pass Pass 

Side rupture Pass Pass 

Al extrusion Top venting Pass Pass 

Side rupture Pass Pass 

 437 

 438 

Fig. 11. Temperature results of BSU with Al extrusion as interstitial material and side rupture mode 439 

for both simulation and experiment. Curves “E1-E6” are temperature records of cell #1-#6 in 440 

experiment; Curves “S1-S6” are simulation calculated temperature results for cell#1- #6. 441 

Temperature results of BSU with Al extrusion as interstitial material and side 442 



rupture mode for both simulation and experiment are shown in Fig. 11. The 443 

temperatures of neighboring cells #1-#6 agreed well, which provides a basis for 444 

consistency of simulation and experimental results. 445 

The simulation and experiment results are summarized in Table 5. The outcomes 446 

of the experiments are shown in Fig. 12. Generally, the results of experiment and 447 

simulation agreed well, except certain temperature differences. From the simulation and 448 

experimental results, it can be seen that under the current module energy density and 449 

battery spacing conditions, only air in the gap cannot prevent the TR propagation in any 450 

form. In the case of top venting, the aluminum plate has the function of heat sink and 451 

heat conductor, which successfully prevents the TR propagation, but is overwhelmed 452 

in the case of side rupture. The graphite composite plate and Al extrusion can 453 

successfully prevent the TR propagation under both modes (top venting and side 454 

rupture). The high in-plane thermal conductivity of the graphite in the graphite 455 

composite plate and the thermal insulation of the intermediate interlayer effectively 456 

prevent the heat from being transferred to adjacent cells. The Al extrusion can absorb 457 

the heat generated from the TR cell as a robust heat sink, which can effectively prevent 458 

the TR propagation. 459 

 460 

 461 

Fig. 12. BSUs with (a) and without (b) the propagation of thermal runaway. 462 

Graphite composite plates are light in weight but expensive, and are not suitable 463 

for common consumer product applications. It is suitable for applications where energy 464 

density and safety requirements are relatively high, such as space and military battery 465 

unit. The Al extrusion is relatively heavy but has a lower cost than graphite composite 466 

sheet, and it can prevent the TR propagation mostly. It can be used in the case of weight-467 

insensitive products such as heavy duty electric machines, energy storage power 468 



stations. 469 

 470 

4. Conclusion 471 

The objective of this study is the inhibition effect on TR propagation utilizing 472 

different interstitial materials when TR of a cell occurs in a module. Four interstitial 473 

materials were evaluated in both simulation and experimental methods. And the 474 

commercial application prospects of the battery module design were also discussed. In 475 

this study, modules composed of 11 cells with four interstitial materials (air, Al plate, 476 

graphite composite sheet and Al extrusion) were built as the basic test units. The TR 477 

conditions and properties of a single cell were calibrated by ARC test. In simulation 478 

these properties were loaded on the center cell as initial condition to calculate the 479 

temperature distribution of the neighboring cells, while the chain reactions were not 480 

considered. The center cell was triggered into TR by an 80W heating wire and the 481 

temperature of all the cells were monitored in the experiment process. 482 

TR is a drastic energy releasing process, especially in side rupture condition. In 483 

battery module design, air alone cannot prevent the TR propagation. Aluminum plate 484 

has a certain safety protection against TR，but failed in the case of side rupture. The 485 

graphite composite sheet can significantly prevent the TR propagation, due to the high 486 

in-plane thermal conductivity of the graphite sheet layers and relatively low thermal 487 

conductivity in cross-plane direction of the graphite sheet layers, particularly the high 488 

thermal insulation and fire resistance of intermediate layer. Even though Al extrusion 489 

is slightly heavy, but it shows the best performance in restraining TR propagation, 490 

which can stabilize the temperature of the entire module in a moderate range. This 491 

approach is most likely to be applicable for lithium-ion batteries which have an energy 492 

density not higher than that used. At present, the results of this study are more inclined 493 

to be applied to cylindrical batteries. It may also be useful for prismatic and pouch cells 494 

with higher energy, while the structure design and material parameters need to be 495 

further adjusted according to different application states. 496 

It can be seen that side rupture of the triggering cell can significantly increase the 497 



possibility of TR propagation and managing the top venting path is critical for thermal 498 

management. It is a feasible way to improve the safety of the high specific energy 499 

lithium ion battery by utilizing different interstitial materials to change the thermal path 500 

in the battery module. A proper safety valve should be designed in the bottom of cell to 501 

release the pressure and heat, which is a critical means to help avoiding side rupture. 502 

Furthermore, for safety concern, the combustion of expelled electrolyte must be 503 

directed away from adjacent cells in the battery packs. 504 
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