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Abstract

Interior point methods for optimization have been around for more than 25 years now.
Their presence has shaken up the field of optimization. Interior point methods for linear
and (convex) quadratic programming display several features which make them particularly
attractive for very large scale optimization. Among the most impressive of them are their low-
degree polynomial worst-case complexity and an unrivalled ability to deliver optimal solutions
in an almost constant number of iterations which depends very little, if at all, on the problem
dimension. Interior point methods are competitive when dealing with small problems of
dimensions below one million constraints and variables and are beyond competition when
applied to large problems of dimensions going into millions of constraints and variables.

In this survey we will discuss several issues related to interior point methods including
the proof of the worst-case complexity result, the reasons for their amazingly fast practi-
cal convergence and the features responsible for their ability to solve very large problems.
The ever-growing sizes of optimization problems impose new requirements on optimization
methods and software. In the final part of this paper we will therefore address a redesign
of interior point methods to allow them to work in a matrix-free regime and to make them
well-suited to solving even larger problems.
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1 Introduction

Linear programs (LPs) have been at the centre of attention of the optimization field since the
1940s. For several decades the simplex algorithm [60, 23] was the only method available to
solve this important class of optimization problems. Although in theory the simplex method is
a non-polynomial algorithm (in the worst-case it might have to make a very large number of
steps which depends exponentially on the problem dimension), in practice it has proved to be
a very efficient and reliable method. By its design, the simplex method visits the vertices of
the polytope defined by the constraints and, because their number may be astronomical, the
method is exposed to a danger of having to visit many of them before reaching an optimal one.
No polynomial simplex-type pivoting algorithm is known to date and it is hard to believe that
one will ever be found although researchers have not lost hope, and continue their search for
one [99].

The first polynomial algorithm for LP was developed by Khachiyan [66]. His ellipsoid algorithm
constructs a series of ellipsoids inscribed into the feasible set. The centres of these ellipsoids form
a sequence of points convergent to an optimal solution of the LP. The construction of ellipsoids
provides a guarantee that steady progress towards optimality can be made from one iteration
to another. The development of the ellipsoid method made a huge impact on the theory of
linear programming but the method has never become a competitive alternative to the simplex
method because the per-iteration cost of the linear algebra operations to update the ellipsoids
is too high [41].

Karmarkar’s projective LP algorithm [61] could be interpreted as a refinement of the ellipsoid
method. Instead of inscribing an ellipsoid into the ill-conditioned corner of the feasible polytope,
Karmarkar’s algorithm employs projective geometry to transform this “corner” into a regular
well-conditioned simplex polytope, inscribes a ball into it, and exploits the fact that optimization
on a ball is a trivial operation. Additionally, Karmarkar’s method uses a notion of a potential
function (a sort of merit function) to guarantee a steady reduction of a distance to optimality
at each iteration. Although a single iteration of Karmarkar’s method is expensive (it requires a
projection operation to be applied, and this operation changes at each iteration), optimality is
reached after a relatively small number of iterations which makes the algorithm computationally
attractive.

Karmarkar’s proof of the worst-case complexity result was rather complicated. Its development
was accompanied by claims of unprecedented efficiency for the new method, which managed
to attract huge interest from the optimization community. The efforts of numerous researchers
soon led to improvements and clarifications of the theory. Gill et al. [40] established an equiva-
lence between Karmarkar’s projective method and the projected Newton barrier method. This
increased interest in the role of barrier functions in the theory of interior point methods and
has drawn the community’s attention to numerous advantageous features of logarithmic barrier
functions. (Interestingly, the use of a logarithmic barrier method in the context of optimiza-
tion had already been proposed in 1955 by Frisch [37] and studied extensively by Fiacco and
McCormick [32] in the context of nonlinear optimization.)

It is broadly accepted today that an infeasible-primal-dual algorithm is the most efficient interior
point method. A number of attractive features of this method follow from the fact that a
logarithmic barrier method is applied to the primal and the dual problems at the same time.
This was first suggested by Megiddo [77]. Independently, Kojima, Mizuno and Yoshise [69]
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developed the theoretical background of this method and gave the first complexity results.
Further progress was made by Kojima, Megiddo and Mizuno [68] who provided good theoretical
results for the primal-dual algorithm with extra safe-guards and those could be translated into
computational practice. The interpretation of interior point methods as algorithms which follow
a path of centres (central trajectory) on their way to an optimal solution was gaining wide
acceptance [47]. In the late 80’s, Mehrotra and independently Lustig, Marsten, Shanno and
their collaborators made impressive progress in the implementation of interior point methods
and provided also a better understanding of the crucial role played by the logarithmic barrier
functions in the theory [76]. By the early 90’s sufficient evidence was already gathered to justify
claims of the spectacular efficiency of IPMs for very large scale linear programming [78, 73, 74].
A new class of optimization methods able to compete with the simplex method was quickly
gaining wide appreciation.

It is worth mentioning at this point that the presence of interior point methods have put consid-
erable pressure on developers of commercial simplex implementations and have led to impressive
developments of the simplex method over the last 25 years [13, 33, 54, 75, 98]. Both methods
are widely used nowadays and continue to compete with each other. Although the large size of
the problem generally seems to favour interior point methods, it is not always possible to predict
the winner on a particular class of problems. For example, the sparsity structure of the problem
determines the cost of linear algebra operations and therefore determines the efficiency of a
given algorithm leading sometimes to astonishing results by significantly favouring one method
over the other. The simplex method easily takes advantage of any hyper-sparsity in a problem
[54] but its sequential nature makes it difficult to parallelise [53]. On the other hand, interior
point methods are able to exploit any block-matrix structure in the linear algebra operations
and therefore significant speed-ups can be achieved by massive parallelisation [44].

Having applied a nonlinear programming technique (based on the use of logarithmic barrier
function) to solve the linear optimization problem was the key reason of IPMs success. Soon
after the major role played by the logarithmic barrier function [40] had been understood, a
similar methodology was applied to solve quadratic [103] and nonlinear optimization problems
[104] and indeed, as it was nicely pointed out by Forsgren et al. [34] “an especially appealing
aspect of the interior-point revolution is its spirit of unification, which has brought together
areas of optimization that for many years were treated as firmly disjoint”.

Nesterov and Nemirovskii [85] provided an insightful explanation why the logarithmic function
is such a well-suited barrier function. Its advantage results from the self-concordance property
which makes the logarithmic function particularly attractive to be applied in an optimization
technique based on the Newton method. The theory of self-concodrant barriers [85] expanded
further the area of IPM applications and covered a semidefinite programming and more gener-
ally a conic optimization which also includes another important class of the second-order cone
programming. In this survey we will focus on the linear and convex quadratic programming
problems, the classes of optimization problems which are by far the most frequently used in
various real-life applications. The readers interested in nonlinear, semidefinite and second-order
cone programming are referred to excellent surveys of Forsgren et al. [34], Vandenberghe and
Boyd [101], and Lobo et al. [70], respectively.

In this paper we will (gently) guide the reader through major issues related to the fascinating
theory and implementation of IPMs. The survey is organised as follows. In Section 2 we will
introduce the quadratic optimization problem, define the notation used in the paper and discuss
in detail an essential difference between the simplex and interior point method, namely the way in
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which these methods deal with the complementarity condition. In Section 3 we will perform the
worst-case analysis of a particular interior point algorithm for convex quadratic programming.
We will analyse the feasible algorithm operating in a small neighbourhood of the central path
induced by the 2-norm. Our proof will follow a scheme set for linear programming in an excellent
textbook on IPMs by Wright [105] and will generalize it to the case of quadratic programming.
In Section 4 we will guide the reader through the issues of implementation of IPMs and we will
discuss several techniques which are responsible for the impressive practical efficiency of these
methods. In Section 5 we will discuss the issues of linear algebra applied in IPMs including direct
and iterative methods for symmetric systems of linear equations. In Section 6 we will discuss
existing and potential techniques which may further accelerate the performance of interior point
methods. In particular we will discuss the recently developed framework in which IPMs can
work in a matrix-free regime, which makes them eligible for solving even larger scale problems
of the future. We will demonstrate the approach when applied to two otherwise intractable
classes of optimization problems: linear relaxations of notoriously difficult quadratic assignment
problems and challenging linear programs arising in quantum mechanics. Finally, in Section 7
we will give our conclusions and comment on possible further developments of interior point
methods.

2 Interior Point Methods: Background

We are concerned in this paper with the theory and implementation of interior point methods for
solving linear and convex quadratic programming problems. We consider the following general
primal-dual pair of convex quadratic programming (QP) problems

Primal Dual

min cT x + 1
2xT Qx max bT y − 1

2xT Qx
s.t. Ax = b, s.t. AT y + s − Qx = c,

x ≥ 0; y free, s ≥ 0,

(1)

where A ∈ Rm×n has full row rank m ≤ n, Q ∈ Rn×n is a positive semidefinite matrix,
x, s, c ∈ Rn and y, b ∈ Rm. In a special case of Q = 0 these problems become the primal-dual
pair of linear programming (LP) problems.

Using Lagrangian duality theory [11] the first order optimality conditions for these problems
can be written as:

Ax = b,
AT y + s − Qx = c,

XSe = 0,
(x, s) ≥ 0,

(2)

where X and S are diagonal matrices in Rn×n with elements of vectors x and s spread across
the diagonal, respectively and e ∈ Rn is the vector of ones. The third equation XSe = 0, called
the complementarity condition, can be rewritten as xjsj = 0, ∀j ∈ {1, 2, . . . , n} and implies that
at least one of the two variables xj and sj has to be zero at the optimum. The way in which
complementarity condition is dealt with determines the type of optimization algorithms.

Active Set Methods and their prominent example, the simplex method for linear programming,
make an intelligent guess that either xj = 0 or sj = 0. They choose a subset of indices
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j ∈ B ⊂ {1, 2, . . . , n} such that xj is allowed to be nonzero and force the corresponding sj = 0,
while the remaining indices j ∈ N = {1, 2, . . . , n} \ B force xj = 0 and allow sj to take nonzero
values.

Interior Point Methods perturb the complementarity condition and replace xjsj = 0 with xjsj =
µ, where the parameter µ is driven to zero. This removes the need to “guess” the partitioning into
active and inactive inequality constraints: the algorithm forces a reduction of µ; the partition of
vectors x and s into zero and nonzero elements is gradually revealed as the algorithm progresses.

The way of handling the complementarity condition has major consequences for the implemen-
tation of the method, its theoretical worst-case complexity and its practical efficiency.

The simplex method allows only one index to be swapped between B and N at each iteration.
(In the more general context of active set methods the index of only one variable and/or active
constraint can be exchanged at each iteration.) The linear algebra techniques used by the
simplex method allow us to eliminate the non-basic part of the constraint matrix and to express
all operations in terms of the basis matrix B, a submatrix of A induced by columns from set
B. Swapping one index between B and N at each iteration means that only one column of
B needs to be replaced and this is exploited in a very efficient updating of the basis inverse
representation. Consequently the cost of a single iteration in the simplex method is usually very
low. However, the choice of which indices to swap relies on local information associated with
the current (B,N ) partition and one cannot control the number of such replacements required
before the optimal partition is found. Klee and Minty [67] constructed a problem of dimension
n, the solution of which requires 2n iterations of the simplex method, which demonstrates that
the simplex method is not a polynomial algorithm. It has to be said, however, that it is only a
theoretical drawback and in practice it is rather exceptional for the simplex method to perform
more than m + n iterations on its way to an optimal solution [13, 33, 54, 75, 98].

Interior point methods, on the other hand, force the convergence to optimality by gradually re-
ducing the perturbation µ in the approximate complementarity condition and eventually driving
it arbitrarily close to zero. Therefore, the decision which of the two variables xj or sj should
be zero is delayed (but certainly not left to “guessing”). All variables (x, y, s) change at each
iteration and the linear algebra operations which are required to update them have to involve
the complete matrix A. This makes a single iteration of the interior point method significantly
more expensive than that of the simplex method. The theory of IPMs focuses on clever ways
of reducing µ to zero and gradually revealing the optimal partition. Normally, IPMs terminate
when an ε-accurate solution (µ ≤ ε) is found. The best known to date IPM algorithm for linear
and quadratic programming finds the ε-accurate solution of an LP or a convex QP problem in
O(

√
n ln(1/ε)) iterations [90]. Accodring to the general theory [83, Ch. 4] the term

√
n is the

best one can expect for an IPM using a self-concordant barrier function such as the logarithmic
barrier.

In practice IPMs perform much better than that and converge in a number of iterations which
is almost a constant, independent of the problem dimension [22].

Interior point methods for optimization exploit the following three tools:

• they use logarithmic barrier functions to “replace” the inequality constraints,

• they apply duality theory to replacement problems involving barriers to derive the first
order optimality conditions which take the form of a system of nonlinear equations, and



IPMs 25 years later 6

• they apply the Newton method to solve this system of nonlinear equations.

Rather than explicitly forcing a nonnegativity constraint xj ≥ 0 in the IPM framework a loga-
rithmic barrier term −µ lnxj is added to the objective of the optimization problem. By replacing
all nonnegativity constraints in the primal problem (1) we obtain the barrier QP subproblem

min cT x +
1

2
xT Qx − µ

n∑

j=1

ln xj s.t. Ax = b, (3)

The parameter µ controls the relation between the barrier term and the original QP objective.
Clearly the smaller the barrier parameter µ the less important influence the barrier term becomes
and therefore more attention is paid to the QP objective. The optimization starts with a large
value of µ, which corresponds to ignoring the original objective and keeping the solution x in the
interior of the positive orthant, that is, preventing any of the components xj from approaching
their boundary value of zero. Next the parameter µ is gradually reduced hence the logarithmic
barrier is weakened allowing the algorithm to minimize the original objective and ultimately to
approach an optimal solution in which some of the components xj may be zero. Associated with
(3) is the Lagrangian

L(x, y) = cT x +
1

2
xT Qx − µ

n∑

j=1

lnxj − yT (Ax − b) (4)

and the first order optimality conditions become

∇yL(x, y) = Ax − b = 0,
∇xL(x, y) = c − AT y − µX−1e + Qx = 0.

(5)

By introducing a new variable s = µX−1e (i.e. XSe = µe) the first order optimality conditions
become

Ax = b,
AT y + s − Qx = c,

XSe = µe,
(x, s) ≥ 0.

(6)

It is worth comparing (2) and (6) and noticing that the only difference is a perturbation of the
complementarity constraint. A consequence of the presence of the logarithmic barrier is that all
complementarity products take the same value µ. It is easy to show (we will do it in Lemma 3.1
below) that if (x, y, s) is primal and dual feasible then the duality gap in the barrier subproblem
is equal to the complementarity gap xT s = nµ, which immediately reveals that the barrier term
µ controls the distance to optimality.

The theory of IPMs focuses on a choice of a suitable sequence {µk}. Large values of µ at the
beginning of the optimization process promote centrality, that is, prevent components of x and s
from getting too small. The reduction of µ moves the balance from centrality to optimality and
eventually allows the algorithm to approach an optimal solution which may be (and in the LP
case it always is) at the boundary of the feasible region. For any µ > 0, system (6) has a unique
solution (x(µ), y(µ), s(µ)), x(µ) > 0, s(µ) > 0 which is called a µ-centre. A family of these
solutions for all positive values of µ determines a (continuous) path {(x(µ), y(µ), s(µ)) : µ > 0}
which is called the primal-dual central path or central trajectory.
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The first two equations in (6) which correspond to primal and dual feasibility conditions in (1)
are linear and only the third equation which corresponds to the perturbed complementarity
condition is (mildly) nonlinear. Interior point algorithms do not have to solve this system of
nonlinear equations to a high degree of accuracy. Recall that (6) is only an approximation of (2)
corresponding to a specific choice of the barrier parameter µ and the barrier term will have to be
reduced to force convergence. IPMs apply the Newton method to solve (6). To be more precise,
IPMs compute the Newton direction and make one step in this direction before reducing the
barrier parameter µ. The Newton direction (∆x,∆y,∆s) is computed by solving the following
system of linear equations





A 0 0
−Q AT In

S 0 X



 ·





∆x
∆y
∆s



 =





ξp

ξd

ξµ



 =





b − Ax
c + Qx − AT y − s

σµe − XSe



 , (7)

where In denotes the identity matrix of dimension n.

It is worth having a closer look at a particular form of the third row of the Jacobian matrix on the
left hand side of the Newton system (7). Due to “symmetry” of the perturbed complementarity
condition XSe = µe this equation becomes

S∆x + X∆s = ξµ.

To guarantee progress in reducing the complementarity gap xT s, interior point algorithms at-
tempt to reduce the barrier term from its current value µ to a new one σµ where σ ∈ (0, 1) and
therefore by using eT e = n and xT s = nµ the third equation in (7) implies

sT ∆x + xT ∆s = σµeT e − xT s = (σ − 1)xT s

and provides the necessary term to estimate the progress of the algorithm. Indeed, when a
damped Newton step is made in the direction (∆x,∆y,∆s), with stepsize α possibly smaller
that 1, the complementarity gap at the new point (x̄, ȳ, s̄) = (x, y, s) + α(∆x,∆y,∆s) becomes

x̄T s̄ = (x + α∆x)T (s + α∆s)

= xT s + α(sT ∆x + xT ∆s) + α2∆xT ∆s

= (1 − α(1 − σ))xT s + α2∆xT ∆s (8)

and if the second order term ∆xT ∆s can be kept small the new gap x̄T s̄ is smaller than the
old one xT s. It is easier to derive the polynomial worst-case complexity result for the feasible
interior point algorithm. Therefore we will assume that all primal-dual iterates belong to F0 =
{(x, y, s) |Ax = b, AT y + s − Qx = c, (x, s) > 0}. The proof of the complexity result requires
swift control of the complementarity product xT s and keeping the second order error term
∆xT ∆s small. This is achieved by containing the iterates to a small vicinity of the central path,
namely by guaranteeing that the error in equation XSe = µe is small. The error is measured by
some norm of the residual of this equation ‖XSe − µe‖. We follow [105] and use the Euclidean
norm in this context hence the following neighbourhood of the central path is defined:

N2(θ) = {(x, y, s) ∈ F0 | ‖XSe − µe‖ ≤ θµ}, (9)

where θ ∈ (0, 1) is an arbitrary parameter and the barrier term is equal to the average com-
plementarity product µ = xT s/n. Such a definition of the neighbourhood of the central path
implies that the size of the neighbourhood is decreasing as long as the central path approaches
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an optimal solution (as long as µ approaches zero). The need for the iterates to stay in the vicin-
ity of the central path is a source of an alternative name for IPMs as path-following methods:
indeed, these algorithms follow the central path on their way to optimality [47].

We summarize this section by giving a general algorithm of the infeasible path-following method
for convex quadratic programming.

Infeasible path-following method for quadratic programming

Parameters

α0 = 0.99 a fraction-to-the-boundary stepsize factor;
σ ∈ (0, 1) barrier reduction parameter;
εp, εd, εo primal feasibility, dual feasibility and optimality tolerances:

IPM stops when
‖ξk

p‖
1+‖b‖ ≤ εp,

‖ξk
d
‖

1+‖c‖ ≤ εd and (xk)T sk/n
1+|cT xk+1/2(xk)T Qxk| ≤ εo.

Initialize IPM

iteration counter k = 0;
primal-dual point x0 > 0, y0 = 0, s0 > 0;
barrier parameter µ0 = (x0)T s0/n;
primal and dual infeasibilities ξ0

p = b − Ax0 and ξ0
d = c − AT y0 − s0 + Qx0.

Interior Point Method

while (
‖ξk

p‖
1+‖b‖ > εp or

‖ξk
d
‖

1+‖c‖ > εd or (xk)T sk/n
1+|cT xk+1/2(xk)T Qxk| > εo ) do

Update (reduce) the barrier µk+1 = σµk;

Solve the KKT system (7): find the primal-dual Newton direction (∆x,∆y,∆s).

Find αP = max{α : xk + α∆x ≥ 0} and αD = max{α : sk + α∆s ≥ 0};
Set αP := α0αP and αD := α0αD ;
Make step

xk+1 = xk + αP ∆x;
yk+1 = yk + αD∆y;
sk+1 = sk + αD∆s.

Compute the infeasibilities: ξk+1
p = b−Axk+1 and ξk+1

d = c−ATyk+1−sk+1 +Qxk+1;
Update the iteration counter: k := k + 1.

end-while

In the next section we will prove that interior point algorithm operating in the N2(θ) neighbour-
hood applied to a convex QP converges to an ε-accurate solution in O(

√
n ln(1/ε)) iterations.

This variant is known in the literature as the short-step path-following algorithm.
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3 Polynomial Complexity Result

Our proof will follow a general scheme set in an excellent textbook on IPMs by Wright [105].
In particular, our proofs of Lemmas 3.3, 3.5, 3.6 and Theorem 3.1 are taken from Lemmas 5.3,
5.4 and Theorem 3.2 in [105]. However, we deal with an IPM for quadratic programming and
this requires care to be taken of some extra terms which were not present in Wright’s proof for
the linear programming case. We will extensively exploit the fact that all iterates belong to
the N2(θ) neighbourhood (9) of the central path. Therefore all iterates are strictly primal-dual
feasible which implies that the right hand side vector in the linear system defining the Newton
direction (7) takes the form (0, 0, σµe − XSe).

Slow but systematic reduction of the complementarity gap (and duality gap) is achieved by
imposing a decrease of the barrier term in each iteration. A marginal per-iteration reduction of
µ is enough to deliver a polynomial complexity for the algorithm. We ask for µk+1 = σµk, where
σ = 1 − β/

√
n for some β ∈ (0, 1) hence σ is barely smaller than 1. We will make an exception

in a small paragraph below and use the letter e to denote the Euler number (the base of natural
logarithm). Everywhere else in the paper e will always denote a vector of ones of appropriate
dimension. Using the observation that if a strictly positive sequence {un} converges to zero then
the following sequence {(1 + un)1/un} converges to the Euler number e, we deduce that after a
number of iterations of order

√
n the achieved reduction of complementarity gap becomes

µk

µ0
= (1 − β/

√
n)

√
n ≈ e−β ,

and after C · √n iterations, the reduction achieves e−Cβ . Therefore, for a sufficiently large
constant C the complementarity gap can become arbitrarily small. In other words, after a
number of iterations proportional to

√
n the algorithm gets arbitrarily close to a solution. In

terms of complexity theory the algorithm converges in O(
√

n) iterations.

First, we need to prove a series of technical results.

Lemma 3.1 If (x, y, s) ∈ N2(θ) then the duality gap is equal to the complementarity gap, i.e.

cT x +
1

2
xT Qx − (bT y − 1

2
xT Qx) = xT s. (10)

Proof. Any point in N2(θ) is primal and dual feasible hence by substituting Qx = AT y + s− c
and using Ax = b we get

cT x +
1

2
xT Qx − (bT y − 1

2
xT Qx) = cT x − bT y + xT Qx = xT s.

�

Lemma 3.2 The Newton direction (∆x,∆y,∆s) defined by the equation system




A 0 0
−Q AT In

S 0 X



 ·





∆x
∆y
∆s



 =





0
0

σµe − XSe



 , (11)

satisfies:

∆xT ∆s = ∆xT Q∆x ≥ 0. (12)
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Proof: From the first two equations in (11) we get A∆x = 0 and ∆s = Q∆x − AT ∆y hence

∆xT ∆s = ∆xT (Q∆x − AT ∆y) = ∆xT Q∆x ≥ 0,

where the last inequality follows from positive definiteness of Q. �

The Newton method uses a local linearization of the complementarity condition. When a step
in the Newton direction (∆x,∆y,∆s) of (11) is made, the error in the approximation of comple-
mentarity products is determined by the second-order term which is a product of ∆x and ∆s.
A series of technical results in Lemmas 3.3–3.6 will provide a bound on ‖∆X∆Se‖.

Lemma 3.3 Let u and v be any two vectors in Rn such that uT v ≥ 0. Then

‖UV e‖ ≤ 2−3/2‖u + v‖2,

where U =diag{u1, · · · , un}, V =diag{v1, · · · , vn}.

Proof: Let us partition all products ujvj into positive and negative ones: P = {j |ujvj ≥ 0}
and M = {j |ujvj < 0} and observe that

0≤uT v=
∑

j∈P
ujvj +

∑

j∈M
ujvj =

∑

j∈P
|ujvj | −

∑

j∈M
|ujvj |.

We can now write

‖UV e‖ = (‖[ujvj ]j∈P‖2 + ‖[ujvj]j∈M‖2)1/2

≤ (‖[ujvj ]j∈P‖2
1 + ‖[ujvj]j∈M‖2

1)
1/2

≤ (2‖[ujvj]j∈P‖2
1)

1/2

≤
√

2‖[1
4
(uj + vj)

2]j∈P‖1

= 2−3/2
∑

j∈P
(uj + vj)

2

≤ 2−3/2
n∑

j=1

(uj + vj)
2

= 2−3/2‖u + v‖2,

which completes the proof. �

Lemma 3.4 If (x, y, s) ∈ N2(θ) for some θ ∈ (0, 1), then (1 − θ)µ ≤ xjsj ≤ (1 + θ)µ ∀j.
In other words, minj∈{1,2,...,n}xjsj ≥ (1 − θ)µ and maxj∈{1,2,...,n}xjsj ≤ (1 + θ)µ.

Proof: Since ‖x‖∞ ≤ ‖x‖, from the definition of the neighbourhood (9) we conclude

‖XSe − µe‖∞ ≤ ‖XSe − µe‖ ≤ θµ.

Hence
|xjsj − µ| ≤ θµ ∀j,

from which the result easily follows. �
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Lemma 3.5 If (x, y, s) ∈ N2(θ) for some θ ∈ (0, 1), then

‖XSe − σµe‖2 ≤ θ2µ2 + (1 − σ)2µ2n.

Proof: Observe first that eT (XSe − µe) = xT s − µeT e = nµ − nµ = 0. Therefore

‖XSe − σµe‖2 = ‖(XSe − µe) + (1 − σ)µe‖2

= ‖XSe − µe‖2 + 2(1−σ)µeT(XSe−µe) + (1−σ)2µ2eT e

≤ θ2µ2 + (1 − σ)2µ2n.

�

Lemma 3.6 If (x, y, s) ∈ N2(θ) for some θ ∈ (0, 1), then

‖∆X∆Se‖ ≤ θ2 + n(1−σ)2

23/2(1 − θ)
µ.

Proof: The third equation in the Newton system has the following form

S∆x + X∆s = −XSe + σµe.

Having multiplied it with (XS)−1/2, we obtain

X−1/2S1/2∆x+X1/2S−1/2∆s=(XS)−1/2(−XSe+σµe).

By applying Lemma 3.3 for u = X−1/2S1/2∆x and v = X1/2S−1/2∆s (with uT v ≥ 0 from
Lemma 3.2) we get

‖∆X∆Se‖ = ‖(X−1/2S1/2∆X)(X1/2S−1/2∆S)e‖
≤ 2−3/2‖X−1/2S1/2∆x+X1/2S−1/2∆s‖2

= 2−3/2‖X−1/2S−1/2(−XSe + σµe)‖2

= 2−3/2
n∑

j=1

(−xjsj + σµ)2

xjsj

≤ 2−3/2 ‖XSe − σµe‖2

minj xjsj

≤ θ2 + n(1 − σ)2

23/2(1 − θ)
µ,

where the expressions in the numerator and the denominator of the last inequality come from
Lemmas 3.5 and 3.4, respectively. �

Recall that the required reduction of the complementarity gap satisfies σ = 1−β/
√

n. Therefore
n(1− σ)2 = β2 and by a choice of sufficiently small constants, for example, θ = 0.1 and β = 0.1
we can easily guarantee that

θ2 + n(1−σ)2

23/2(1 − θ)
≤ 1

2
σθ,
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hence the bound obtained in Lemma 3.6 may be simplified to

‖∆X∆Se‖ ≤ 1

2
σθµ. (13)

The technical results proved so far will be used to show that if the current iterate belongs to the
N2(θ) neighbourhood of the central path and σ = 1− β/

√
n (with θ = 0.1 and β = 0.1) then a

full Newton step is feasible and the new iterate (x̄, ȳ, s̄) = (x, y, s) + (∆x,∆y,∆s) also belongs
to the N2(θ) neighbourhood of the central path. Actually, we will show an even stronger result
that for any step α ∈ (0, 1] in the Newton direction the new iterate

(x(α), y(α), s(α)) = (x, y, s) + α(∆x,∆y,∆s) (14)

is primal-dual feasible and belongs to the N2(θ) neighbourhood.

Consider the third equation in the Newton system (11). The summation of its components gives

eT (S∆x + X∆s) = sT ∆x + xT ∆s = −eT XSe + σµeT e = −xT s · (1 − σ).

Using (8), observe that when a step α is made in the Newton direction the new complementarity
gap becomes x(α)T s(α) = (1−α(1−σ))xT s+α2∆xT ∆s and therefore the corresponding average
complementarity gap is

µ(α) = x(α)T s(α)/n = (1 − α(1 − σ))µ + α2∆xT ∆s/n. (15)

Writing the third equation in the Newton system for a single component j ∈ {1, 2, . . . , n} gives
sj∆xj + xj∆sj = σµ − xjsj hence

xj(α)sj(α)−µ(α) = (xj + α∆xj)(sj + α∆sj) − µ(α)

= xjsj + α(sj∆xj + xj∆sj) + α2∆xj∆sj − µ(α)

= (1−α)xjsj+ασµ+α2∆xj∆sj−(1−α)µ−ασµ−α2∆xT∆s/n

= (1 − α)(xjsj − µ) + α2(∆xj∆sj − ∆xT ∆s/n).

Consequently, the proximity measure for point (x(α), y(α), s(α)) becomes

‖X(α)S(α)e−µ(α)e‖ ≤ (1−α)‖XSe−µe‖+α2‖∆X∆Se−(∆xT∆s/n)e‖. (16)

Lemma 3.7 Let (x, y, s) be the current iterate in N2(θ) neighbourhood and (∆x,∆y,∆s) be the
Newton direction which solves equation system (11). Set θ = β = 0.1 and define the new iterate
(14) after a step α in this direction and the new average complementarity gap (15). For any
α ∈ (0, 1]

‖X(α)S(α)e − µ(α)e‖ ≤ θµ(α). (17)

Proof: Expanding the square and using eT e = n and (∆X∆Se)T e = ∆xT ∆s we get

‖∆X∆Se−(∆xT∆s/n)e‖2 = ‖∆X∆Se‖2− 1

n
(∆xT∆s)2 ≤ ‖∆X∆Se‖2. (18)

Next, using (16), the definition of N2(θ), and inequalities (18) and (13) we write

‖X(α)S(α)e−µ(α)e‖ ≤ (1−α)θµ + α2‖∆X∆Se‖ ≤ (1−α)θµ +
1

2
α2σθµ.
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Since α ∈ (0, 1] implies 1
2α2 ≤ α and Lemma 3.2 guarantees that ∆xT ∆s ≥ 0 we further write

‖X(α)S(α)e − µ(α)e‖ ≤ (1 − α)θµ +
1

2
α2σθµ

≤ θ(1 − α(1 − σ))µ

≤ θ[(1 − α(1 − σ))µ + α2∆xT ∆s/n]

= θµ(α),

which completes the proof. �

It is easy to prove that the Newton step in a feasible algorithm preserves the feasibility of primal
and dual equality constraints; hence Lemma 3.7 guarantees that for any α ∈ (0, 1] the new iterate
(14) belongs to the N2(θ) neighbourhood of the central path as well. We will assume that the
maximum stepsize α = 1 is chosen and full Newton step is made. Therefore the new iterate is
defined as (x̄, ȳ, s̄) = (x, y, s) + (∆x,∆y,∆s). Setting α = 1 in (15) gives

µ̄ = σµ + ∆xT ∆s/n.

Using Cauchy-Schwartz inequality and inequality (13) we derive the following bound

∆xT ∆s = (∆X∆Se)T e ≤ ‖∆X∆Se‖‖e‖ ≤ 1

2
θσµ

√
n

hence

µ̄ = σµ + ∆xT ∆s/n ≤ σµ +
1

2
√

n
θσµ ≤ (1 +

θ

2
√

n
)σµ.

With our choice of σ = 1 − β/
√

n and θ = β = 0.1 we deduce that (1 + θ
2
√

n
)σ ≤ σ̄ = 1 − β

2
√

n

and

µ̄ ≤ (1 − β

2
√

n
)µ = σ̄µ. (19)

We are now ready to prove the complexity result.

Theorem 3.1 Given ǫ > 0, suppose that a feasible starting point (x0, y0, s0) ∈ N2(0.1) satisfies
(x0)T s0 = nµ0, where µ0 ≤ 1/ǫκ, for some positive constant κ. Then there exists an index L
with L = O(

√
n ln(1/ǫ)) such that µl ≤ ǫ, ∀l ≥ L.

Proof: Let l be the iteration index. We have shown that µl+1 ≤ σ̄µl. Taking logarithms of both
sides of this inequality we obtain ln µl+1 ≤ ln σ̄ + ln µl. By repeatedly applying this formula for
l = 0, 1, 2, ... and using µ0 ≤ 1/ǫκ, we get

ln µl ≤ l ln σ̄ + ln µ0 ≤ l ln(1 − β/(2
√

n)) + κ ln(1/ǫ).

From a property of logarithmic function we have ln(1 − β/(2
√

n)) ≤ −β/(2
√

n). Thus

ln µl ≤ l(−β/(2
√

n)) + κ ln(1/ǫ).

To satisfy µl ≤ ǫ, we need:
l(−β/(2

√
n)) + κ ln(1/ǫ) ≤ ln ǫ.
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This inequality holds for any l ≥ L, where

L = 2
κ + 1

β
· √n · ln(1/ǫ). (20)

�

This excellent worst-case complexity result of IPM for linear and quadratic programming is
unequalled in the field of optimization. Two aspects of it are worth giving particular attention.
Firstly, the number of iterations is bounded by the square root of the problem dimension n
and this needs to be compared with a number of iterations that the simplex method might
have to perform that is possibly exponential in n. The computational experience of [22] shows
the much better practical iteration complexity achieved by interior point methods: it displays a
logarithmic dependence on the problem dimension. Secondly, the complexity result (20) displays
merely a logarithmic dependence O(ln(1/ǫ)) on the required termination accuracy ǫ. There
has been recently growing interest in gradient methods [84] which can only ensure O(1/ǫ) or
O(1/ǫ2) terms in their worst-case complexity results. Although they display fast initial progress
to optimality they become slow if a high accuracy of solution (small ǫ) is requested. Indeed, the
terms O(1/ǫ) or O(1/ǫ2) in the complexity result seem acceptable when a rough approximation
of solution is sought with ǫ = 10−1 or ǫ = 10−2 but they become a liability when more accurate
solutions are needed. The superiority of IPMs becomes obvious when more accurate solutions
are requested.

4 From Theory to Implementation of IPMs

In order to keep the complexity proof easy (and accessible to undergraduate students of opti-
mization) we have made several simplifying assumptions. Many of them may be dropped without
noticeably penalising the worst-case complexity result, however, unfortunately they make the
proofs more tedious. Modern implementations of IPMs further relax quite a few of these un-
necessary restrictions in the quest to make the algorithms as efficient as possible when used in
practice.

Feasible vs Infeasible Methods. In practice there is no need to impose feasibility of all iterates
and force the algorithm to stay in the primal-dual feasible set F0. For infeasible points all
three terms in the right-hand side of the equation defining Newton step (7) are nonzero. This
does not add any extra cost when solving the equation. By exploiting the decomposition of the
right-hand side

(ξp, ξd, ξµ) = (ξp, 0, 0) + (0, ξd, 0) + (0, 0, ξµ)

the direction ∆ = (∆x,∆y,∆s) may be decomposed accordingly into ∆ = ∆p +∆d +∆µ, where
∆p and ∆d are terms responsible for restoring primal and dual feasibility, respectively and ∆µ

is the “optimizing” term. In the feasible algorithm ∆p = ∆d = 0 and ∆ = ∆µ is determined by
equation (11).

It is easy to show that if a step α is made in the Newton direction in the infeasible algorithm then
primal and dual infeasibilities are reduced 1 − α times. Indeed, the first and second equations
in (6) are linear hence fast progress in reducing the residuals in these equations is expected. In
particular, if the full step is feasible and α = 1 then all infeasibilities are absorbed in one step.



IPMs 25 years later 15

In practice it is common [22] that primal and dual feasibility is reached before the optimality
criteria is met. However, working with an infeasible IPM usually requires damping the Newton
step and accepting stepsizes α which are significantly smaller than 1 (cf. Wright [105, Ch. 6]).

Aggressive Optimization. The theory of the short-step feasible algorithm allows only a small
reduction in the complementarity gap at each iteration with a factor σ = 1 − β/

√
n which is

very close to 1. Practical algorithms allow σ to be any number from the interval (0, 1] and
indeed, the author’s experience [22] shows that the average reduction of the complementarity
gap achieved in each IPM iteration σaverage is usually in the interval (0.1, 0.5). Using small
values of σ such as σ ∈ (0.01, 0.1) sets up aggressive targets on reducing the complementarity
gap (and optimality gap) and usually causes the Newton direction to point towards infeasible
solutions. To preserve the nonnegativity of the new iterates x and s the Newton step needs to
be damped in such case. A fraction-to-the-boundary rule is used to preserve the strict positivity
of x and s. This is achieved by using a factor α0 close to but strictly smaller than 1 to reduce
the stepsizes in the primal and dual spaces.

Centrality. The theory requires the algorithm to keep all iterates in the (very small) N2(θ) neigh-
bourhood of the central path. Practical algorithms use a symmetric neighbourhood NS(γ) =
{(x, y, s) ∈ F0 | γµ ≤ xjsj ≤ 1/γµ, ∀j}, where γ ∈ (0, 1) or a so-called infinity neighbourhood
N−∞(γ) = {(x, y, s) ∈ F0 | γµ ≤ xjsj, ∀j} in which only too small complementarity products
are forbidden. These wider neighbourhoods leave the algorithm with more room to manoeuver.
However, it is no longer possible to prove that full Newton step keeps the iterates in such neigh-
bourhoods and therefore Newton step needs to be damped (cf. Wright [105, Ch. 5]). Still the
price of having to accept the reduced stepsizes is worth paying because the algorithms which
use NS(γ) or N−∞(γ) neighbourhoods perform very well in practice.

Predictor-Corrector and Centrality Corrector Techniques. “Centrality” is understood as keeping
well-balanced the complementarity products of all primal-dual iterates, and it plays an essential
role in both the theory and implementation of IPMs. The theoretical developments in the previ-
ous section focused on ensuring that xjsj ≈ µ, ∀j ∈ {1, 2, . . . , n}. The target-following approach
developed by Jansen et al. [57] provides theoretical background to a more relaxed treatment of
centrality. In the analysis presented in Section 3 the uniform distribution of products xjsj was
achieved by containing (x, y, s) within the N2(θ) neighbourhood which required special care in
the proof to be devoted to the second-order term ∆X∆Se (Lemma 3.6 and inequality (13)).
The implementation of IPM very cleverly exploits this error term.

Mehrotra’s predictor-corrector technique [78, 73] splits the computation of the Newton direction
when solving system (7) into two steps. In the first one, the right-hand side ignores centrality
and sets σ = 0 which corresponds to attempting to reach complementarity and optimality in just
one shot. The corresponding term of direction ∆pred = (∆x,∆y,∆s) focuses on optimization but
neglects centrality and it is used to predict how much progress in reducing the complementarity
gap and infeasibilities may be achieved. This term of direction corresponds to the right-hand
side (ξp, ξd,−XSe) in (7) and is called the predictor. If a full step in this direction was made
then the new complementarity product would be

(X + ∆X)(S + ∆S)e = XSe + (S∆X + X∆S)e + ∆X∆Se = ∆X∆Se

and obviously could be very different from the required value σµe. Therefore, the corrector
term ∆corr is computed by solving an equation similar to (11), but with the new right-hand side
(0, 0, σµe−∆Xpred∆Sprede) and eventually the predictor and corrector terms are combined into
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a Newton direction

∆ = ∆pred + ∆corr.

Centrality correctors [42, 22] use targets which are less aggressive (but hopefully easier to
reach). Rather than attempting to take all complementarity products towards the same value
µnew = σµold, centrality correctors aim at bringing them all to the interval [γµnew, 1/γµnew]
corresponding to the symmetric neighbourhood NS(γ) of the central path. Technically this is
done by computing a corrector term which solves an equation like (11), but for the right-hand
side equal to (0, 0, t − ∆Xpred∆Sprede), where t is the projection of the hypothetical comple-
mentarity product (X + ∆Xpred)(S + ∆Spred)e onto the hypercube [γµnewe, 1/γµnewe]. Unlike
Mehrotra’s predictor-corrector technique which allows only one corrector term to be computed,
centrality correctors technique can be applied recursively, that is, a direction ∆ = ∆pred +∆corr

may become a new predictor term and the process of computing the corrector may be repeated.
Extensive numerical tests [42, 22] provided evidence that the use of multiple centrality correctors
leads to significant reduction of the number of IPM iterations to reach optimality. Indeed, the
method is widely used by academic IPM solvers such as BPMPD, HOPDM, OOPS, OOQP,
PCx, as well as commercial IPM solvers such as Cplex, Mosek and Xpress. (It has also been
used with success in the context of semidefinite programming with IPMs [52].)

IPMs are sensitive to the choice of an initial point. A general advice is to use a point which is
sufficiently far away from the boundary of the positive orthant, that is, for which x and s are
“not too small” [4, 38, 78]. For more recent attempts to design a good starting point and the
review of existing alternative approaches, the reader should consult D’Apuzzo et al. [25] and
the references therein.

Finally, the practical efficiency of IPMs strongly depends on the linear algebra techniques which
are employed to solve the Newton equation system: either (11) if we use a feasible algorithm
of theoretical interest or (7) if we use a practical infeasible algorithm. Multiple linear systems
with different right-hand sides may have to be solved when predictor-corrector technique [78,
73] or centrality correctors technique [42, 22] are used. The linear algebra aspects of IPM
implementation are addressed in the next section.

5 Linear Algebra of IPMs

The Newton equation system—whether (11) if we use a feasible algorithm or (7) if we use an
infeasible algorithm—involves matrices A and Q and two diagonal matrices X and S which
change at every iteration. The whole system has dimension (2n + m) × (2n + m) and because
of the presence of several zero blocks and diagonal matrices, it displays an interesting and
exploitable sparsity pattern. Additionally, if an optimization problem is large then the matrices
A and Q themselves are expected to be sparse. The system (7) needs to be solved for at least
one but usually (when correctors are used) for several different values of right-hand side vectors.
It is a common approach to eliminate ∆s = X−1(ξµ − S∆x) from (7) and get the following
symmetric but indefinite augmented system

[
−Q − Θ−1 AT

A 0

] [
∆x
∆y

]

=

[
f
d

]

=

[
ξd − X−1ξµ

ξp

]

, (21)
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where Θ = XS−1. If the elimination process is continued and ∆x = (Q + Θ−1)−1(AT ∆y − f) is
substituted into the second equation in (21) then the following symmetric and positive definite
normal equations system is obtained

(A(Q + Θ−1)−1AT )∆y = g = A(Q + Θ−1)−1f + d. (22)

The inversion of (Q + Θ−1) in this formulation is a highly questionable operation because it
is well-known [29] that an inverse of a sparse matrix may be dense. When linear optimization
problems (Q = 0) or separable quadratic optimization problems in which Q is a diagonal matrix
are solved the operation (Q + Θ−1)−1 produces a diagonal matrix and the normal equations
system (22) is usually the preferable (and default) option. Whenever matrix Q has a more
complicated structure, the augmented system (21) is the best option. It is worth mentioning
that even in the case of Q = 0 certain sparsity patterns of the LP constraint matrix such as
the presence of dense columns may adversely affect the normal equations approach and make it
inefficient [5, 29]. After all, even in the case when the (1,1) block of the augmented system is
diagonal, (22) is obtained from (21) by employing a particular pivot order, namely by pivoting
on the (1,1) block first. In general, using the augmented system formulation (21) allows for more
freedom in the choice of pivot order and it is a safer option.

Using interior point methods to solve nonlinear optimization problems requires dealing with
systems similar to (21) except that matrices A and Q depend on the current primal-dual point
(x, y, s) and therefore change at every iteration. This again strongly advocates for the use of
formulation (21) which offers more flexibility in choosing the pivot order and accommodating
varying sparsity patterns of A and Q. For linear and quadratic problems, Mészáros [80] per-
formed an interesting analysis and developed a heuristic to identify which of the two alternative
approaches (21) or (22) is likely to produce a more sparse symmetric decomposition [81].

Normal equations formulation (22) has an important advantage: its matrix is symmetric and
positive definite hence eligible for Cholesky decomposition [29]. The matrix in the augmented
system formulation (21) is indefinite hence its symmetric decomposition LDLT may require 2×2
pivots in D, see [15]. More importantly, when indefinite matrices are factored it is in general
impossible to separate the sparsity analysis from the numerical phase and this substantially
increases the cost of decomposition [29]. Vanderbei [102] observed that by adding a diagonal
term to the (2,2) block, the matrix appearing in (21) can be transformed to a quasidefinite one.
Quasidefinite matrices are strongly factorisable, that is, a decomposition LDLT with diagonal
D exists for any symmetric row and column permutation applied to the matrix. Consequently,
there is no need to use 2×2 pivots and the sparsity analysis can be separated from the numerical
decomposition.

To produce a diagonal term in the (2,2) block Vanderbei added artificial variables to all con-
straints [102]. Saunders and Tomlin [93, 94] achieved a similar result by adding Tikhonov-type
regularization terms to the original quadratic problem

min cT x +
1

2
xT Qx +

ρ2

2
xT x +

1

2
pT p

s.t. Ax + δp = b, (23)

x ≥ 0, p free;

where ρ and δ are (small) positive terms and p ∈ Rm is a free variable. The corresponding
augmented system for (23) has the following form

[
−(Q + Θ−1 + ρ2I) AT

A δ2I

] [
∆x
∆y

]

=

[
f

′

d
′

]

, (24)
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where f
′ ∈ Rn, d

′ ∈ Rm are appropriately computed right-hand-side vectors. The presence of
diagonal terms in (1,1) and (2,2) blocks guarantees the boundedness of condition number of the
matrix involved.

The primal-dual regularization approach proposed in [3] replaces the primal-dual pair (1) by
two problems: an approximate primal and an approximate dual:

min cT x+ 1
2xT Qx+ 1

2(x−x0)
T Rp(x−x0) max bT y− 1

2xT Qx− 1
2(y−y0)

T Rd(y−y0)
s.t. Ax = b, s.t. AT y + s − Qx = c,

x ≥ 0; y free, s ≥ 0,
(25)

where primal and dual positive definite diagonal regularization matrices Rp ∈ Rn×n and Rd ∈
Rm×m and primal and dual reference points in proximal terms x0 ∈ Rn and y0 ∈ Rm, respec-
tively can be chosen dynamically. The resulting regularized augmented system has the following
form [

−(Q + Θ−1 + Rp) AT

A Rd

] [
∆x
∆y

]

=

[
f

′′

d
′′

]

, (26)

where f
′′ ∈ Rn, d

′′ ∈ Rm are appropriately computed right-hand-side vectors. The terms Rp and
Rd are chosen dynamically during the factorization and can be kept small except for pivots which
are dangerously close to zero and potentially unstable. Therefore, the perturbation introduced
using primal-dual regularization [3] is usually much smaller than the uniform diagonal matrices
ρ2I and δ2I added in Saunders’ approach [93]. Computational evidence was provided in [3] that
primal-dual regularization cures instability without adversely affecting the fast convergence of
the primal-dual method. A further insight into the primal-dual regularization method is provided
in a recent paper of Friedlander and Orban [36].

Under the condition that 2 × 2 pivots are never required, the computation of a symmetric
factorization of the augmented system matrix (21) can benefit from all advantageous techniques
known for the computation of a sparse Cholesky factorization of the positive definite matrix
[29]. All state of the art implementations of interior point methods developed in the 90’s used
direct methods [4, 74]. To achieve maximum efficiency the implementations of sparsity exploiting
symmetric factorization of matrix (21) or (22) make use of numerous advanced features of modern
computers. For example, they exploit loop unrolling, adjust the sizes of supernodes to maximize
the usage of available cache memory and, most recently, exploit new features offered by multi-
core processors. All these improvements play very important roles in the efficiency of codes.
They do not rely on algorithmic features of interior point methods but exploit implementation
tricks and are therefore beyond the scope of this paper. We refer the reader to Mészáros [79] for
an example of such a study. In the coming years we may expect further specializations which
will employ graphical processor units to perform very fast numerical computations in the linear
algebra kernel.

Cholesky decomposition and the symmetric decomposition LDLT which involves only 1 × 1
pivots (but does not require to use 2× 2 pivots) can be relatively easily parallelised because the
sparsity structure analysis is performed only once to determine pivot order and the numerical
phase of the decomposition uses static data structures. To better exploit modern computer
architecture the numerical operations are performed on small blocks which fit into cache memory.
Viewed from this perspective, the symmetric factorization becomes a sequence of block-matrix
operations. It is therefore natural to expect that if matrices A and Q are block-structured then
their block-sparsity pattern may be exploited to determine a block-pivot order in which the
eliminations should be performed. Several specialized implementations of IPMs for particular
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block-structured matrices have been developed in the 90’s, for example [12, 21, 49, 56, 58, 96, 100]
to mention a few. All these papers describe specialized algorithms, each exploiting one particular
structure of the constraint matrix. Some of these developments [49, 58, 96] also present dedicated
parallel implementations.

In a series of papers Gondzio, Grothey and Sarkissian [44, 45, 46] have demonstrated that using
modern object-oriented programming techniques it is possible to exploit any block matrix struc-
ture in the implementation of interior point method. The resulting software, Object-Oriented
Parallel Solver, OOPS1 has been applied to solve various optimization problems arising in fi-
nance, telecommunications, data mining, electricity transmission and utility distribution appli-
cations. Very large problems with sizes reaching 109 variables [44] can be handled by IPMs if
structure is exploited in the linear algebra kernel.

A closer look at the matrix Θ = XS−1 which appears in the augmented system (21) and normal
equation system (22) reveals that the elements of this matrix display an unwelcome feature.
Indeed, when IPM approaches the optimal solution, the primal variables and dual slacks converge
to their optimal values and (for a linear program) converge to a strongly complementary pair
[105, p. 27]:

xj → x∗
j > 0 and sj → s∗j = 0, for j ∈ B,

xj → x∗
j = 0 and sj → s∗j > 0, for j ∈ N .

(27)

Consequently, the elements θj, j ∈ B are very large and display O(µ−1) dependence, while the el-
ements θj, j ∈ N are very small and display O(µ) dependence. This has disastrous consequences
for the conditioning of matrices in (21) and (22) and makes the solution of these systems chal-
lenging. This feature of linear systems arising in IPMs is very clearly seen in the case of linear
programming, when Q = 0. The situation gets more complicated for quadratic problems be-
cause there may exist pairs which are not strictly complementary. This further complicates the
partitioning (27) and adds a third cluster of elements in Θ which are O(1).

Interestingly, the ill-conditioning of matrices turns out to be rather benign as long as feasible
problems are solved. This is a consequence of a particular structure of the right-hand side vector
in (21). This surprising result goes back to Dikin [27] (see also Stewart [97]) and guarantees that
for feasible LPs the solution of (22) is bounded irrespective of the spread of Θ. Computational
experience in the 90’s [4] confirmed that direct methods provide sufficiently accurate solutions
for IPMs to converge quickly regardless the ill-conditioning of (21).

The situation is completely different when iterative approaches such as Krylov-subspace methods
[65] are applied to (21) or (22). The ill-conditioning of Θ and the resulting ill-conditioning of
matrices involved makes these systems intractable. Iterative methods are powerful when applied
to well-conditioned systems or when suitable preconditioners are available for ill-conditioned
systems. For a long time there was a consensus among the interior point community that there
were no obvious preconditioners for linear systems arising in IPM algorithms and therefore the
application of iterative methods was not really seriously considered. For at least two reasons this
view started to change in late 90’s. Firstly, the problems got larger and direct methods (however
successful) started to show their limitations. Occasionally, even for very sparse problems with
matrices A and Q having merely a few nonzero elements per column the factorizations of (21)
and (22) display very significant fill-in and become prohibitively expensive. Secondly, a better
understanding of the conditioning of matrices arising in IPMs encouraged researchers to look
into a design of special preconditioners.

1http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
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The first successful preconditioners were developed for specially structured problems arising
in network optimization [91] (see also [59, 35] for more recent developments). They exploited
the particularities of node-arc incidence matrices and an ability to represent simplex bases by
means of spanning trees. A class of preconditioners applicable in a general LP context was
analysed by Gill et al. [39], Oliveira [87] and Oliveira and Sorensen [88]. Their preconditioners
use the partitioning (27) to determine a splitting of elements of Θ into two sets of “small” and
“large” ones and employ it to guess a basis matrix B which then becomes the key object in the
definition of the preconditioner P = EET for the augmented system matrix H in (21). Suppose
a basic-nonbasic partition of A = [B|N ] deduced from a (B,N ) partition of the set {1, 2, ..., n}
is available, and B is a nonsingular matrix. The symmetric application of the preconditioner
[88] to the augmented system matrix from the left and from the right gives:
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where W = Θ
1/2
N NT B−TΘ

−1/2
B . Sufficiently close to an optimal solution (when µ → 0) we

have Θ−1
B = O(µ) → 0 and ΘN = O(µ) → 0 giving W = Θ

1/2
N NT B−T Θ

−1/2
B ≈ 0 hence the

preconditioned matrix is strongly dominated by its diagonal. The preconditioner requires B to
be nonsingular and relies on the assumption that such B can be found by considering a subset
of columns of A which correspond to the largest elements of Θ. This task is actually much more
difficult than it seems because the partitioning (27) does not imply that the subset of columns of
A which correspond to B defines a full row rank matrix. Therefore an identification of a suitable
basis matrix B is a nontrivial problem. Several techniques have been developed to deal with
it [2, 14, 88]. The preconditioners which try to guess an optimal basis work well only in later
iterations of the interior point method, that is, when the iterates approach the optimal partition
(27). Different preconditioners are needed in earlier IPM iterations [14].

Oliveira and Sorensen [88] have shown that for every preconditioner of the normal equations, an
equivalent preconditioner can be derived for the augmented system. However, the converse state-
ment is not true. This is a strong argument for developing preconditioners for the augmented
system. However, the matrix in (21) is indefinite and therefore the conjugate gradient algorithm
[55] cannot be applied to this equation system. The developments of Lukšan and Vlček [72]
and Rozlozńık and Simoncini [92] have provided conditions under which the conjugate gradient
algorithm may be employed to solve symmetric indefinite systems such as (21).

Symmetric indefinite systems similar to (21) appear commonly in the context of partial differ-
ential equations as the saddle point problem. A vast literature exists which addresses iterative
solution methods for such systems and the design of specialized preconditioners for them. The
reader interested in such approaches should consult an excellent survey of Benzi, Golub and
Liesen [8]. A plethora of preconditioners for symmetric indefinite systems arising in optimiza-
tion have been proposed in the last decade [9, 10, 20, 28, 30, 64, 95]. Many of them belong to a
broad class of constraint preconditioners [28].

Independently of these efforts to develop preconditioners for a general augmented system (21),
several other clever preconditioners have been proposed recently for different specially structured
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problems. Castro [18] designed a power-series preconditioner for the Schur complement matrix
arising in the solution of multicommodity network flow problems and recently Castro and Cuesta
[19] extended this approach to any linear or quadratic problem in which the constraint matrix
has primal block-angular structure.

The use of iterative methods to solve systems such as (21) or (22) opens new questions regarding
the theory of interior point methods. The key feature of iterative methods is a gradual (some-
times slow) reduction of the error in the equation system and this is very different from the case
when direct methods are used and very accurate solutions are available. It is advantageous to
interrupt iterative process early, obtain only a rough approximation of the solution, and cut off
the tailing effect whenever possible. This opens a question how inexact solutions of Newton sys-
tem may influence the convergence and the complexity estimates of the interior point method.
The problem can be viewed and analysed in the general context of the inexact Newton method
[26]. The inexact solution of (7) satisfies


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A 0 0
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and admits errors rp, rd and rµ in all three equations. Such analyses were performed for example
by Bellavia [7], Mizuno and Jarre [82] and Cafieri et al. [17].

There are advantages in studying the behaviour of inexact Newton method together with the
design of a particular preconditioner for (21) because this allows us to achieve a better under-
standing of the influence of errors on the performance of interior point methods and ultimately a
tighter control of these errors. Recall that (7) is a linearization of (6) and the first two equations
of (6) are linear. The matrix in the Newton equation system (28) contains several zero blocks
and three diagonal matrices In,X and S, which allows for different manipulations of the error
and absorbing some components of it at the expense of increasing the others. For example, it is
easy to absorb any error rd in (28) into ∆s by setting ∆s̄ = ∆s+rd causing possibly an increase
of the error in the third equation: S∆x + X∆s̄ = ξµ + rµ + Xrd. Such tricks have been used in
the analysis of two particular preconditioners [1, 71].

Although so much effort has gone recently into the design of preconditioners for IPMs, in the
author’s opinion, we still lack an ultimate preconditioner. Indeed, the efficiency of iterative
methods depends on the quality of the preconditioner and it is difficult to design a general-
purpose preconditioner. In consequence, iterative methods used in IPMs are capricious and
depend on fine-tuning. There is increased research activity in this area and it is natural to
expect that it will produce new interesting developments. It is encouraging that recently there
has been a noticeable shift of interest from direct to iterative methods, see the survey of D’Apuzzo
et al. [24].

The current state of the art is to employ direct methods to solve (21) (or (22) for LPs and
separable QPs) as long as problems are not too large and there is enough memory to store
sparse symmetric factorization. The increasing size of problems to be solved will move the
balance towards iterative methods. The only way to solve truly large problems with IPMs is to
use an appropriately preconditioned iterative method. We will discuss one such attempt in the
next section.
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6 Matrix-Free Interior Point Method

Huge optimization problems may defy any algorithm simply because of the memory require-
ments. On the other hand, such problems do not always have to be solved to a high degree
of accuracy. Therefore, fast algorithms are needed which could provide at least a rough ap-
proximation to the solution of the problem. This justifies the increased interest in gradient
methods. Their worst-case complexity bounds display O(1/ǫ) or O(1/ǫ2) dependence on the
required accuracy ǫ [84] which is significantly worse than the O(ln(1/ǫ)) dependence of interior
point methods. However, gradient methods enjoy a low per-iteration cost and can solve some
very large problems to one- or two-digit accuracy.

Below we briefly review a recent development of Gondzio [43] to redesign interior point methods
to allow the solution of very large LPs and QPs with IPMs. In this new approach an inexpensive
iterative method is used to solve the Newton equations (21) or (22) only approximately. Neither
the Newton equation system nor the preconditioner for it is formulated explicitly. Matrices A
and Q are used as operators only to deliver the results of matrix-vector multiplications Ax, AT y
and Qx. This matrix-free feature of the approach is essential when one considers problems which
may be too large to store, or when the problem data is not explicitly available.

Pivoting on the (1,1) block in the regularized augmented system (26) produces the following
regularized normal equation matrix

GR = A(Q + Θ−1 + Rp)
−1AT + Rd, (29)

in which the presence of the nonzero primal regularization Rp guarantees an upper bound on
the largest eigenvalue of GR and the presence of the nonzero dual regularization Rd guarantees
that the spectrum of GR is bounded away from zero. Consequently, for appropriately chosen
regularizations Rp and Rd the condition number of GR is bounded, regardless of the conditioning
of Θ. The proposed preconditioner P ∈ Rm×m attempts to identify the largest eigenvalues
of GR and guarantee that κ(P−1GR) ≪ κ(GR). A partial Cholesky decomposition of this
regularized normal equation matrix is computed using complete pivoting, that is, choosing the
largest (diagonal) pivots from GR:

GR =

[
L11

L21 I

] [
DL

S

] [
LT

11 LT
21

I

]

, (30)

where L =

[
L11

L21

]

is a trapezoidal matrix which contains the first k columns of Cholesky

factor of GR, DL ∈ Rk×k is a diagonal matrix formed by the k largest pivots of GR and
S ∈ R(m−k)×(m−k) is the Schur complement obtained after eliminating k pivots. The trapezoidal
matrix L is split into triangular matrix L11 ∈ Rk×k and rectangular matrix L21 ∈ R(m−k)×k

which contains the remaining part of columns of the partial Cholesky factor. With k equal to
m we would obtain a complete Cholesky decomposition of GR = LDLLT . However, we use a
small number k (k ≪ m) and interrupt the decomposition to determine only a partial Cholesky
factorization.

The preconditioner for (29) is obtained by replacing the Schur complement matrix S in (30)
with its diagonal DS :

P =

[
L11

L21 I

] [
DL

DS

] [
LT

11 LT
21

I

]

. (31)
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The preconditioner is determined without calculating off-diagonal entries of S. Only the diagonal
and selected columns of the Schur complements are computed and this can be done using an
implicit process in which neither GR nor its Schur complements need to be fully formulated.
The complete pivoting guarantees that the entries of diagonal matrices DL and DS = diag(S)
satisfy the following inequalities

d1 ≥ d2 ≥ · · · ≥ dk
︸ ︷︷ ︸

DL

≥ dk+1 ≥ dk+2 ≥ · · · ≥ dm
︸ ︷︷ ︸

DS

. (32)

The greedy heuristic which places the largest pivots of GR in DL reduces the trace of the Schur
complement at the fastest possible rate and it is expected to capture the cluster of the largest
eigenvalues of GR.

If nonseparable quadratic problems are solved and Q is a non-diagonal matrix then the reduction
from the augmented system to normal equations should not be made. Instead, a preconditioner
for the augmented system is constructed. First, all off-diagonal elements of Q are dropped
and the matrix Q̄ = diag{Q} + Θ−1 + Rp is computed and used to determine (implicitly)
ḠR = AQ̄−1AT + Rd. Next, its partial Cholesky decomposition is computed

ḠR =

[
L̄11

L̄21 I

] [
D̄L

S̄

] [
L̄T

11 L̄T
21

I

]

(33)

and again the matrix S̄ is replaced with its diagonal to define an approximation of ḠR

P̄ =

[
L̄11

L̄21 I

] [
D̄L

D̄S

] [
L̄T

11 L̄T
21

I

]

= L̄D̄L̄T (34)

and, finally, the preconditioner for the augmented system (26) is determined

Paug =

[
I

−AQ̄−1 L̄

] [
−Q̄

D̄

] [
I −Q̄−1AT

L̄T

]

. (35)

In the construction and in the application of both preconditioners (31) and (35), matrices A and
Q are used implicitly to fit into the matrix-free regime.

Spectral analysis of the preconditioner (31) was performed in [43] and the preliminary compu-
tational results confirmed that the matrix-free approach is promising when applied to certain
classes of difficult problems. Below we will demonstrate how the method performs when applied
to two classes of problems which defy any existing optimization software: LP relaxations of quad-
ratic assignment problems and a special class of linear programs arising in quantum mechanics.
All problems used in our experiments are available on request from the author. Computational
experiments were performed on Dell Precision M60 laptop computer with a 2GHz (single core)
processor and 2GB of RAM running Linux. The matrix-free version of HOPDM [43] was com-
piled with the GNU Fortran compiler g77 with optimization option -O2. The solver terminates
when the infeasibilities in the primal and dual spaces drop below εp = εd = 10−3 and the relative
duality gap drops below ε0 = 10−4. All CPU times reported in tables below are in seconds unless
specifically stated otherwise.

It is worth adding that it is possible to run the matrix-free method with a more demanding
stopping criteria that is with the smaller feasibility and optimality tolerances. However, this
would require allowing it to use an increased rank of the partial Cholesky factorization to produce
a better preconditioner and allowing it to perform more conjugate gradient iterations to reduce
the error in the inexact Newton directions.
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6.1 LP relaxations of quadratic assignment problems

The quadratic assignment problem (QAP) belongs to a class of facility location problems. A
set of n facilities and n locations is considered. For each pair of locations, two parameters
are determined: a flow, the amount of goods to be shipped between these two facilities, and a
distance between them. The quadratic assignment problem is to assign all facilities to different
locations so that the sum of distances multiplied by the corresponding flows is minimized.

Problem Dimensions Cholesky nonzeros
rows columns nonzeros Normal Eqns Aug System

qap12 3192 8856 38304 2135388 1969957
qap15 6330 22275 94950 8191638 7374972
nug12 3192 8856 38304 2789960 1969957
nug15 6330 22275 94950 11047639 7374972

Table 1: Symmetric LDLT factors in small QAP problems.

Problem Cplex 11.0.1 Mtx-Free HOPDM

Simplex Barrier rank=200 rank=500
iters time iters time iters time iters time

qap12 83236 174.61 16 10.51 8 2.37 8 15.59
qap15 348190 2369.98 15 65.75 8 6.13 8 25.58
nug12 96148 187.02 13 9.86 7 2.06 7 14.53
nug15 387873 2451.40 16 71.33 7 9.78 7 33.73

Table 2: Solution statistics for small QAP problems.

QAP is one of the great challenges of combinatorial optimization. It is known to be NP-
complete and therefore considered to be very difficult. A plethora of approaches (heuristics)
have been developed to tackle this problem [89]. QAP can be formulated as a quadratic integer
optimization problem which allows us to study its different polyhedral approximations. The
examples considered in this section are LP relaxations of problems described by Nugent et al.
[86]. These instances can be found at the QAPLIB website [16].

The difficulty of LP relaxations of QAPs originates from a high connectivity (and regularity) of
the sparsity pattern in the constraint matrix A. The statistics of symmetric LDLT decomposi-
tions of the normal equations (22) and augmented system (21) reported in Table 1 display an
unusually high density of factors for these small linear optimization problems.

Matrix-free method in which the normal equations are solved by the conjugate gradient method
preconditioned with the partial Cholesky matrix of rank 200 or 500 was applied to solve these
problems. The results collected in Table 2 show that using the preconditioner with rank k = 200,
the matrix-free method was significantly faster than the Cplex Simplex and Cplex Barrier solvers
and could solve these problems in a few seconds of CPU time. We have used a default setting
of Cplex parameters hence it solved the problems to a higher accuracy than the matrix-free
HOPDM. Using less demanding accuracy requirements would not change much in the simplex
runs but it could possibly save two or three last IPM iterations of the Cplex Barrier and therefore
improve slightly Cplex Barrier CPU times.
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Problem Dimensions Cholesky nonzeros
rows columns nonzeros (Cplex 11.0.1)

nug20 15240 72600 304800 38 × 106

nug30 52260 379350 1567800 459 × 106

Table 3: Symmetric LDLT factors in larger QAP problems.

Problem Cplex 11.0.1 Mtx-Free HOPDM

Simplex Barrier rank=200 rank=500
iters time iters time iters time iters time

nug20 2855100 79451.00 18 1034.26 6 35.19 5 122.08
nug30 ? >28 days - OoM 5 1271.97 5 4465.60

Table 4: Solution statistics for larger QAP problems.

In our second experiment, larger instances of QAP problems were considered. The statistics
of these problems and of their solution are reported in Tables 3 and 4, respectively. Although
for today’s standards these problems are small to medium scale, they challenge standard LP
approaches. Nug20 could still be solved by the Cplex Simplex in about 22 hours of computations
and in about 18 minutes by the Cplex Barrier solver. However, the larger nug30 defied both
Cplex solvers. The Simplex run was interrupted after 28 days of computations still far away
from optimality and making very slow progress towards it. Cplex Barrier was unable to fit the
Cholesky matrix into memory (Out of Memory, OoM). The matrix-free approach with a partial
Cholesky preconditioner of rank 200 was able to solve these two problems in 35 seconds and 21
minutes, respectively.

6.2 LP problems arising in quantum mechanics

The paper of Einstein, Podolsky and Rosen [31] stated an open question which is known as
the EPR paradox (Einstein-Podolsky-Rosen paradox). Following Wikipedia: “[EPR paradox]
refutes the dichotomy that either the measurement of a physical quantity in one system must
affect the measurement of a physical quantity in another, spatially separate, system or the
description of reality given by a wave function must be incomplete.”

Quantum mechanics predicts that the measurements performed on spatially separated parts of
quantum systems may instantaneously influence each other. The phenomenon is known as quan-
tum entanglement. A possible way to resolve the EPR paradox is to introduce hidden variables
and allow the Heisenberg uncertainty principle to act on these variables. Bell [6] showed that the
EPR thought experiment of quantum mechanics predicts much stronger statistical correlations
between the measurement results performed on different axes than the theory of hidden vari-
ables. He expressed the differences in a form of inequalities (known as Bell inequalities) which
can be experimentally detected/verified. Numerous experiments have been constructed to test
Bell’s inequalities on different quantum systems and they essentially confirmed the predictions
of quantum mechanics [48].

The assumption of a local hidden variable model leads to a number of equations constraining
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the relationship between quantum-mechanically-predicted probabilities of experiment results and
the model’s local probability distribution. However, for certain quantum entangled states these
constraints cannot be satisfied. Żukowski and Kaszlikowski [106] introduced a visibility of the
state and used it to measure the resistance of a state to satisfy the local hidden variable model’s
constraints. A non-visible state always satisfies all local hidden variable model’s constraints,
while a fully visible state might violate them. A boundary visibility, below which the constraints
are satisfied and above which they are violated, is called the critical visibility. Finding this critical
visibility can be cast as an LP problem where the above constraints form the polytope and the
visibility is the cost function to be maximized.

Such an approach was used for example to show that non-classicality of two-quNit correlations is
higher than for two qubits, and that it increases with N , the dimension of the Hilbert space [62,
63]. Gruca et al. [51] have applied this LP-based approach to analyse several known experimental
results and demonstrated that it is possible to skip direct analysis of Bell inequalities altogether
in the process. The examples considered in [51] require optimization of critical visibility which
is a continuous but non-differentiable function of the observables measured in the Bell test
experiment [50]. Since each computation of this function’s value requires a solution of a non-
trivial linear optimization problem the overall computations may sometimes require weeks of
CPU time. Clearly, the ability to solve LP subproblems efficiently becomes crucial.

Similar to QAP examples, the LP problems modelling quantum physics are very sparse but
they are difficult for IPMs because they produce almost completely dense Cholesky factors as
a consequence of very high connectivity in the sparsity pattern of the constraint matrix. The
statistics of symmetric LDLT decompositions of normal equations (22) are reported in Table 5
and flag the expected difficulty of IPM. Factorizations of the augmented system (21) do not
offer any computational advantage.

Problem Dimensions Cholesky
rows columns nonzeros nonzeros

1kx1k0 1025 1025 34817 0.5 × 106

4kx4k0 4097 4097 270337 8 × 106

16kx16k0 16385 16385 2129921 128 × 106

64kx64k0 65537 65537 16908289 2048 × 106

Table 5: Symmetric LDLT factors of quantum physics problems.

Problem Cplex 11.0.1 Mtx-Free HOPDM

Simplex Barrier rank=100 rank=200
iters time iters time iters time iters time

1kx1k0 929 0.38 7 0.82 6 0.55 6 1.09
4kx4k0 5418 11.17 20 89.19 6 8.47 6 14.45
16kx16k0 62772 924.94 10 2350.93 7 63.99 5 59.94

64kx64k0 2578265 111.5 h - OoM 8 520.33 9 917.87

Table 6: Solution statistics for quantum physics problems.

The problems are also difficult for the simplex method as can be seen in the results reported in
Table 6. Their difficulty grows rapidly with increasing dimensions. The smaller examples are
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solved efficiently by the Cplex Simplex but the CPU time to solve the largest one exceeds 111
hours. Cplex Barrier delivers the solution of three smaller examples but due to dense factors
it is less efficient than the simplex method. Cplex Barrier runs out of memory (OoM) for the
largest example. The matrix-free approach is run with partial preconditioners of rank 100 and
200 and solves all instances in competitive time.

We wrap up this section with a few general comments regarding the efficiency of interior point
methods and their matrix-free variant. For the two particular classes of problems discussed
in this section standard IPMs struggle. However, under the condition that there is enough
memory to store Cholesky factors they can deliver solutions and, except for the very small
problems, usually do it faster than the simplex method. The reader should not generalise these
observations to any class of LPs. The simplex method and the interior point method are two
powerful algorithms which compete with each other. However, there exist classes of problems
which can be dealt with easily as well as classes of problem which challenge (and possibly defy)
any of these methods.

The matrix-free variant of the interior point method [43] with a partial Cholesky preconditioner
was successful when applied to solve the two classes of problems presented in this section.
However, the reader should be cautious of raising their expectations that the approach will be
equally effective when applied to any very large LP or QP. Being an iterative approach, the
matrix-free variant of IPM relies on the quality of the preconditioner and therefore it is exposed
to the usual difficulties of finding a well-suited preconditioner for a given class of problems.
There is certainly a need for other preconditioners able to work in matrix-free regime and the
author expects increased research activity in this area in the near future.

7 Conclusions

We have addressed in this paper several of the most important issues of interior point methods.
Since their developments started by the seminal paper of Karmarkar [61] IPMs have changed
the landscape of optimization. They have become a very competitive alternative to the simplex
method when linear programming problems are solved. Unlike the simplex method, IPMs pro-
vide a guarantee to solve optimization problems in O(

√
n ln(1/ε)) iterations and, in practice,

display an unequalled convergence in merely a few iterations almost independent of the problem
size.

We have presented an easy to follow proof of polynomial complexity of IPM applied to con-
vex quadratic optimization problems and have discussed several issues of their implementation.
Interior point methods owe their reliability to the use of direct methods of linear algebra. How-
ever, direct factorization techniques also impose a limitation on the methods’ ability to solve
very large optimization problems. Iterative methods of linear algebra should offer the way for-
ward. Indeed, there has been increased research activity in the last decade to develop specialized
preconditioners able to improve the conditioning of linear systems arising in IPMs. Several in-
teresting preconditioners have already been proposed and we expect many inspiring approaches
are still to be developed.

Acknowledgement

The author is grateful to Jacek Gruca for providing challenging linear optimization problems
arising in quantum physics and to Julian Hall, Kristian Woodsend and Pavel Zhlobich for read-



IPMs 25 years later 28

ing earlier versions of this paper and useful suggestions which led to an improvement of the
presentation. The author is also grateful to the anonymous referees whose comments helped to
improve the paper.

References

[1] G. Al-Jeiroudi and J. Gondzio, Convergence analysis of inexact infeasible interior
point method for linear optimization, Journal of Optimization Theory and Applications,
141 (2009), pp. 231–247.

[2] G. Al-Jeiroudi, J. Gondzio, and J. Hall, Preconditioning indefinite systems in inte-
rior point methods for large scale linear optimization, Optimization Methods and Software,
23 (2008), pp. 345–363.

[3] A. Altman and J. Gondzio, Regularized symmetric indefinite systems in interior point
methods for linear and quadratic optimization, Optimization Methods and Software, 11-12
(1999), pp. 275–302.
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[106] M. Żukowski and D. Kaszlikowski, Critical visibility for N-particle Greenberger-
Horne-Zeilinger correlations to violate local realism, Physical Review A, 56 (1997),
p. R1685.




