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Graphical abstract 

 

 

Synopsis 

The luminescent tetranuclear complex {(-CO3) [Zn(-L)Dy(NO3)]2}·4CH3OH does not exhibit SMM at 

zero applied dc field due to a fast quantum tunneling magnetization relaxation process (QTM). However, a 

1:10 Dy:Y dilute sample exhibits SMM behaviour at Hdc = 0 with an important thermal energy barrier Ueff = 

68 K. The paramagnetic to SMM transformation triggered only by dilution demonstrates the decisive role of 

the intermolecular dipolar interactions in favoring QTM relaxation.  

 

Abstract 

The synthesis structure, magnetic and luminescence properties of the Zn2Dy2 tetranuclear complex of formula 

{(-CO3)2[Zn(-L)Dy(NO3)]2}·4CH3OH 1, where H2L is the compartmental ligand N,N’,N”-trimethyl-N,N”-

bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine, are reported. The carbonate anions that bridge 

two Zn(-L)Dy units come from the atmospheric CO2 fixation in basic medium. Fast quantum tunneling 

relaxation of the magnetization (QTM) is very effective in this compound, so that Single-Molecule Magnet 

behavior is only observed in the presence of an applied dc field of 1000 Oe, which is able to partly suppress 

the QTM relaxation process. At variance, a 1:10 Dy:Y magnetic diluted sample, namely 1', exhibits SMM 

behavior at zero applied dc field with about three-times higher thermal energy barrier than in 1 (Ueff = 68 K), 

thus demonstrating the important role of the intermolecular dipolar interactions in favoring the fast QTM 

relaxation process. When a dc field of 1000 Oe is applied to 1', the QTM is almost fully suppressed, the 

reversal of the magnetization slightly slows and Ueff increases to 78 K. The dilution results combined with 



Page 2 of 18 

micro-SQUID magnetization measurements clearly indicate that the SMM behavior comes from the single-ion 

relaxation of the Dy
3+

 ions. The analysis of the relaxation data points out that a Raman relaxation process 

could significantly affect the Orbach relaxation process reducing the thermal energy barrier Ueff for the slow 

relaxation of the magnetization. 

 

Introduction 

The discovery of molecular complexes that can function as single-domain nanoparticles, by exhibiting slow 

relaxation of the magnetization and magnetic hysteresis below the so-called blocking temperature (TB), 

stimulated research activity in the field of the Molecular Magnetism based on coordination compounds. These 

chemically and physically fascinating nanomagnets, called Single-Molecule Magnets (SMMs),
1-2

 straddle the 

quantum/classical interface showing quantum effects such as quantum tunneling of the magnetization (QTM) 

and quantum phase interference, and have been suggested for applications in molecular spintronics, ultra-high 

density magnetic information storage
3
 and quantum computing at molecular level.

4
 The driving force behind 

the enormous increase of activity in the field of SMMs is the prospect of integrating them in nano-sized 

devices.
5
 The origin of the SMM behaviour is the existence of an energy barrier (U) that prevents reversal of 

the molecular magnetization when the field is removed, leading to bistability.
1
 Heightened U values can be 

obtained by increasing the spin multiplicity of the ground state (ST) or the easy-axis (or Ising-type) magnetic 

anisotropy of the entire molecule (D < 0). Nevertheless, it is very complicated to simultaneously increase both 

parameters in transition metal clusters as they are interrelated, so that when ST is very large (observed for high 

nuclearity clusters), D tends to be low. Consequently, the currently observed energy barriers are low and 

therefore SMMs act as magnets only at very low temperature. Recently, researchers focused their attention on 

lanthanide ions (and actinide), as they have large intrinsic magnetic anisotropy and large magnetic moments in 

the ground state, and therefore could lead to metal complexes with higher energy barriers and improved SMM 

properties.
6,7

 Thus mixed 3d/4f metal aggregates
2,8

 and low-nuclearity 4f metal complexes
6,9

 have been 

reported to exhibit slow relaxation of the magnetization with U and TB values as high as 790 cm
-1

 and 14 K, 

respectively.
10,11

 It should be noted that fast QTM relaxation processes mediated by dipolar interactions, 

transverse anisotropy or hyperfine interactions can reduce the energy barrier to an effective value (Ueff), thus 

attenuating the SMM properties of the lanthanide-containing species.
1,6

 However, in some cases, the exchange 

coupling between the lanthanide ions, the dilution of the complex within a diamagnetic matrix to eliminate 

dipolar interactions
12

 and the application of a small static magnetic field,
13

 to remove the mixing of the ground 

± Ms levels, can partly or fully suppress the QTM relaxation processes enabling the observation of the slow 

relaxation process through the real thermally activated energy barrier (U).  

We,
14

 and others,
15

 have experimentally shown that the very weak JM-Ln observed for 3d/4f dinuclear 

complexes (M
II
 = Cu, Ni and Co) leads to small separations of the low lying split sublevels and consequently 

to a smaller energy barrier for the magnetization reversal. In view of this, a good strategy to enhance the SMM 
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properties of the 3d/4f aggregates would be that of eliminating the weak M
2+

-Ln
3+

 interactions that split the 

ground sublevels of the Ln
III

 ion by replacing the paramagnetic M
2+

 ions by a diamagnetic ion.
15,16

 According 

to this strategy, we are now pursuing the synthesis of 3d/4f systems in which the paramagnetic M
2+

 ions have 

been changed by diamagnetic Zn
2+

.  

Herein, we report the synthesis, X-ray structure and detailed dc/ac magnetic susceptibility studies, including 

dilution and magnetic field dependence, of a Zn
II

2Dy
III

2 tetranuclear complex of {(-CO3)2[Zn(-

L)Dy(NO3)]2}·4CH3OH 1, where H2L is the compartmental ligand N,N’,N”-trimethyl-N,N”-bis(2-hydroxy-3-

methoxy-5-methylbenzyl)diethylene triamine (see Figure 1). Compound 1 represents a rare example of 

lanthanide-containing complex that undergoes a transformation from paramagnetic to high energy barrier 

SMM under zero-field triggered only by diamagnetic dilution. 

 

Experimental section 

Synthetic procedures. The ligand was prepared as previously reported.
14a

 

{(-CO3)2[Zn(-L)Dy(NO3)]2}·4CH3OH (1). To a solution of H2L (56 mg, 0.125 mmol) in 5 mL MeOH were 

subsequently added with continuous stirring 37.2 mg (0.125 mmol) of Zn(NO3)2·4H2O and 54.8 mg (0.125 

mmol) of Dy(NO3)3·5H2O and 12.6 mg of triethylamine (0.125 mmol). The resulting colorless solution was 

filtered and allowed to stand at room temperature. After two days, well-formed prismatic crystals of 

compound 1 were obtained with a yield of 45 % based on Zn. Anal. Calc. for C56H90N8O24Zn2Dy2: C, 39.22; 

H, 5.29; N, 6.54. Found: C, 39.17; H, 5.56; N, 6.74 %. IR(KBr): 3430 (w), 2919 (w), 2863(w), 1538 (s), 

1491(s), 1460 (m), 1384 (s), 1352 (m), 1321 (m), 1255 (m), 1070 (w), 848 (w), 812 (w),797 (w). 

{(-CO3)2[Zn(-L)Dy0.126Y0.874(NO3)]2}·4CH3OH (1’). This diluted complex was prepared by following 

the same method as for 1 but using 0.0125 mmol of Dy(NO3)3·5H2O and 0.1125 mmol of Y(NO3)3·6H2O 

instead of 0.125 mmol of Dy(NO3)3·5H2O. The colorless crystal of 1’ were obtained with a yield of 30% 

based on Zn. Anal. Calc. for C56H90N8O24Zn2Y1.75Dy0.25: C, 42.40; H, 5.72; N, 7.06. Found: C, 42.41; H, 

5.61; N, 7.44 %. The IR spectrum is virtually identical to that of 1. 

Physical measurements: Elemental analyses were carried out at the “Centro de Instrumentación Científica” 

(University of Granada) on a Fisons-Carlo Erba analyser model EA 1108. IR spectra on powdered samples were 

recorded with a Thermo Nicolet IR200FTIR using KBr pellets. 

 

Single-Crystal Structure Determination. Suitable crystals of 1 and 1’ were mounted on a glass fibre and used for 

data collection on a Bruker AXS APEX CCD area detector equipped with graphite monochromated Mo K radiation 

( =0.71073 Å) by applying the -scan method. Lorentz-polarization and empirical absorption corrections were 
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applied. The structure was solved by direct methods using the program SIR-97
17

 and SHELXS97
18

 and refined with 

full-matrix least-squares calculations on F
2
 using SHELXS97.

18 
These programs were used with the package 

WINGX
19

. The heavy atoms were refined anisotropically. All hydrogen atoms were included at the calculated 

distances with fixed displacement parameters from their host atoms. The crystallographic data of 1’ refers to one 

crystal that contains Dy and Y ions in a ratio 0.095/0.905, which are statistically distributed, so that the probabilities 

of observing ZnDyDyZn, ZnDyYZn and ZnYYZn species are 0.009, 0.172 and 0.82, respectively. We have measured 

three crystals of the diluted complex 1’ and in all cases the refinements led to Dy/Y ratios of ~ 1/10. Final R(F), 

wR(F
2
) and goodness of fit agreement factors, details on the data collection and analysis can be found in Table S1. 

Selected bond lengths and angles are given in Table S2. 

 

X-Ray powder diffraction analysis. Crystals of 1 were gently ground in an agate mortar and then deposited 

with care in the hollow of an aluminum holder equipped with a zero back ground plate. Diffraction data (Cu 

K,  = 1.5418 Å) were collected on a : Bruker AXS D8 vertical scan diffractometer equipped with 

primary and secondary Soller slits, a secondary beam curved graphite monochromator, a Na(Tl)I scintillation 

detector, and pulse height amplifier discrimination. The generator was operated at 40 kV and 40 mA. A scan 

was performed with 5 < 2 < 30° with t = 5 seg and 2 = 0.02°. LeBail refinement was obtained with the aid 

of TOPAS-R
20

 [triclinic, P-1 as space group, a = 11.66 Å, b = 12.68 Å, c = 14.16 Å,  = 111.19, β = 104.19, 

γ = 99.19], verifying the purity of the sample. 

 

Magnetic properties. The variable temperature (2-300 K) magnetic susceptibility measurements on 

polycrystalline samples of 1 and 1’ under an applied field of 1000 Oe were carried out with a Quantum Design 

SQUID MPMS XL-5 device. Ac susceptibility measurements under different applied static fields were 

performed using an oscillating ac field of 3.5 Oe and ac frequencies ranging from 1 to 1500 Hz. Ac magnetic 

susceptibility measurements in the range 1-10000 Hz were carried out with a Quantum Design Physical 

Property Measurement System (PPMS) using an oscillating ac field of 5 Oe. The experimental susceptibilities 

were corrected for the sample holder and diamagnetism of the constituent atoms by using Pascal’s tables. A 

pellet of the sample cut into very small pieces was placed in the sample holder to prevent any torquing of the 

microcrystals. 

 

Results and discussion 

Complex 1 was prepared from the reaction of H2L with Zn(NO3)2·6H2O and subsequently with 

Dy(NO3)3·5H2O and triethylamine in MeOH by using a 1:1:1:1 molar ratio. Colorless prismatic-shaped 

crystals of 1 suitable for X-ray analysis, were slowly grown from the solution. 
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The centrosymmetric tetranuclear structure of 1 (see Figure 1 and Tables S1 and S2 for crystallographic 

details) consists of two [Zn(-L)Dy(NO3)] dinuclear units connected by two tetradentate carbonate bridging 

ligands acting with a 

O,O’OO” coordination mode. The chelating part of the carbonato ligand 

is coordinated to the Dy
3+

 ion of a dinuclear entity, whereas the remaining oxygen atom is coordinated to the 

Zn
2+

 ion of the centrosymmetrically related dinuclear unit. Notice that one of the oxygen atoms of the 

chelating part of each carbonato ligand bridges the two Dy
3+

 ions in a non-symmetric form, giving rise to a 

rhomboidal Dy(O)2Dy bridging unit with a Dy-O-Dy bridging angle of 115.72° and two different Dy-O 

distances of 2.360 and 2.419 Å. The carbonato ligand is presumably generated from the fixation of 

atmospheric CO2 in basic medium through the nucleophilic attack of hydroxo species bound to the Ln ions 

(derived from the deprotonation of coordinated water molecules) to the electrophilic C atom of the CO2. 

Similar processes occurring in basic medium have been observed for other carbonate-bridged Dy
3+

 

polynuclear complexes.
21,22

 The presence of CO3
2-

 instead of NO3
-
 in 1 was proved, apart from charge balance, 

by IR spectroscopy, as this compound exhibits, compared to the dinuclear one [Zn(H2O)(-L)Dy(NO3)3]·H2O 

(prepared in the same conditions as for 1 but without using triethylamine), a new band at 1538 cm
-1

 assignable 

to a C-O stretching vibration of the CO3
2-

 anion (see ESI, figure S1). The same IR band has been observed for 

other carbonato-bridged Zn-Ln complexes.
23

 Powder X-ray measurements were carried out on a 

polycrystalline sample obtained by grinding a crop of crystals of 1. The experimental X-ray diffractogram 

match very well with the theoretical one obtained from the X-ray single crystal structure data (see ESI, Figure 

S2), thus proving the purity of 1. 

 

Figure 1. The structure of the ligand H2L (inset) and a perspective view of the structure of 1. Colour code: N 

= blue, O = red, Zn = light blue, Dy = green, C = grey. Hydrogen atoms have been omitted for clarity. 
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Within each of the [Zn(-L)Dy(NO3)] dinuclear units, Zn
2+

 and Dy
3+

 ions are bridged by two phenoxo groups 

of the L
2-

 ligand, which wrap around the Zn
2+

 ion in such a way that the three nitrogen atoms from the amine 

groups, and consequently the three oxygen atoms belonging to the carbonato and phenoxo bridging groups, 

occupy fac positions on the slightly trigonally distorted ZnN3O3 coordination polyhedron. The Dy
3+

 ion 

exhibits a rather non-symmetrical DyO9 coordination which is made by the two phenoxo bridging oxygen 

atoms, the two methoxy oxygen atoms, three oxygen atoms from the carbonato bridging groups and two 

oxygen atoms belonging to a bidentate nitrate anion. This latter and the chelating part of the carbonato ligand 

occupy cis-positions on the Dy
3+

 coordination sphere. The Dy-O distances are in the range 2.280Å-2.559 Å. In 

the bridging fragment, the Dy(O)2Dy and carbonato planes are not coplanar having a dihedral angle of 28.6°. 

The tetranuclear molecules {(-CO3)2[Zn(-LDy(NO3)]2} are well separated in the structure by methanol 

molecules, the shortest Dy···Dy distance being of 12.33 Å. One of the methanol molecules forms bifurcated 

hydrogen bonds with one of the oxygen atoms of the chelating part of the carbonato ligand and the oxygen 

atom of the other methanol molecule, with donor-acceptor distances of 2.672 and 2.601 Å, respectively. It 

should be noted that very recently Tang et al. reported a similar Zn2Dy2 tetranuclear complex.
22

 The most 

significant differences between this complex and 1 are: (i) in the former complex, the carbonate bridging 

fragment is planar, whereas in 1 is not (ii) Dy-O bond distances and the Dy-O-Dy angles in the former 

complex are, respectively, shorter and larger than those found in 1. (iii) the Tang’s complex has five almost 

coplanar oxygen atoms around the Dy
3+

 ions, whereas in 1 these five oxygen atoms significantly deviate from 

the mean plane (iv) complex 1 has a bidentate nitrate ligand coordinated to each Dy
3+

 ion whereas the Tang’s 

complex contains bidentate acetate ligands. The two former points favor a stronger Dy···Dy magnetic 

exchange interaction through the carbonate bridging groups in the Tang’s complex than in 1, whereas point 

(iii) favours a larger axial anisotropy in the former. 

The direct-current (dc) magnetic susceptibility of 1 has been measured in the 2-300 K temperature range 

under an applied magnetic field of 0.1 T (Figure S3). The MT value of 30.15 cm
3
 K mol

-1
 at 300 K is 

compatible with the calculated value of 28.34 cm
3
 K mol

-1
 for two non-coupled Dy

3+
 ions (4f

9
, J =15/2, S = 

5/2, L = 5, g = 4/3, 
6
H15/2) in the free-ion approximation. On cooling, the MT product steadily decreases to 

reach a value of 22.13 cm
3
 K mol

-1
 at 2 K. This behavior is due to the depopulation of the Stark sublevels of 

the dysprosium ion, which arise from the splitting of the 
6
H15/2 ground term by the ligand field rather than 

from very weak intramolecular interactions between the Dy
III

 ions, as the isostructural Zn2Gd2 complex 

exhibits weak intramolecular ferromagnetic magnetic exchange interaction between the Gd
3+

 ions.
24

 For the 

similar Zn2Dy2 complex reported by Tang et al. an increase in MT is observed below 50 K, thus indicating 

that the Dy···Dy ferromagnetic interaction in this complex is stronger than that found for 1. The M versus H 

plot at 2K (right inset Figure S3 inset) shows a relatively rapid increase in the magnetization at low field and 

then a very slow linear increase to reach a value of 11.54 NB at the maximum applied field of 5 T. This 

behavior suggests the presence of a significant magnetic anisotropy and/or more likely the presence of low-

lying excited states that are partially [thermally and field-induced] populated. These low-lying excited states 
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are in agreement with weak magnetic interactions expected for 4f-4f systems. The magnetization value per 

Dy
3+ 

ion at 5 T is considerably smaller than the expected saturation value for one free Dy
3+

 ion of 10 NB 

(Ms/NB = gjJ = 10 NB) and is similar to those estimated and observed for other Dy
III

 mononuclear 

complexes with approximate axial symmetry. This behavior is likely due to crystal-field effects leading to 

significant magnetic anisotropy, which eliminates the 16-fold degeneracy of the 
6
H15/2 ground state. Notice 

that the field dependence of the magnetization shows no significant hysteresis above 2 K with the sweep rates 

used in the SQUID magnetometer. 

Dynamic ac magnetic susceptibility measurements as a function of the temperature and frequency for 1 are 

given in Figure 2 and Figure S4, respectively. 

 

 

Figure 2. Temperature dependence of the in-phase M’ (top) and out-of-pahse M” (bottom) ac signals under 

an applied dc field of 1000 Oe for 1. Solid lines are guides for the eye. 
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In spite of the expected large anisotropy of the Dy
3+

 ion, this complex did not show any out-of-phase (”M) 

signal under zero external field, which can be attributed to the presence of fast relaxation of the magnetization 

via a QTM mechanism through the thermal energy barrier between degenerate energy levels. As for non-

integer spin systems, like Dy
3+

, transverse anisotropy would not facilitate QTM, this would be mainly 

mediated by dipole-dipole interactions and/or hyperfine interactions. The similar Zn2Dy2 tetranuclear complex 

reported by Tang et al. shows out-of-phase signals with maxima below 8 K at zero-field and therefore SMM 

behavior with a Ueff = 34 K.
22

 The suspected larger anisotropy of the Dy
3+

 as well as the stronger Dy···Dy 

magnetic exchange interaction for this compound compared to 1 may be the reason why slow relaxation of the 

magnetization is observed at zero-field. In fact, exchange coupling has been found to reduce quantum 

tunneling of the magnetization at zero applied field.
11

 

However, when a small static field of 1000 Oe is applied to fully or partly suppress the quantum tunneling 

relaxation of the magnetization (this field was chosen because under its application the relaxation process was 

shown to be the slowest), compound 1 shows slow relaxation of the magnetization as is demonstrated by the 

appearance below 10 K of out-of-phase peaks in the 3.5(100)-6K (1400 Hz) range. Both ’M and ”M 

components (Figure 2) do not go to zero below the maxima at low temperature, which can be taken as a clear 

indication that the quantum tunneling of magnetization has not been efficiently suppressed. 

The Cole-Cole diagram for 1 in the temperature range 4-6 K (Figure S5) exhibits semicircular shapes and can 

be fitted using the generalized Debye model, affording  values (this parameter determines the width of the 

distribution of relaxation times, so that  = 1 corresponds to an infinitely wide distribution of relaxation times, 

whereas  = 0 represents a relaxation with a single time constant) in the range 0.23-0.06, which suggest the 

existence of more than one relaxation process operating at low temperatures. The larger  values are 

associated to the tunneling regime as the QTM relaxation is more susceptible to local strain and/or disorder 

than the Orbach thermally activated relaxation. The set 0 (isothermal susceptibility), S (adiabatic 

susceptibility) and obtained in the above fits were further used to fit the frequency dependence of M" at 

each temperature to the generalized Debye model, which permits the relaxation timeto be extracted. The 

results were then used in constructing the Arrhenius plot shown in the inset of Figure S2. The fit of the data 

afforded an effective energy barrier for the reversal of the magnetization of 24(1) K with o = 2.3 x 10
-6

 s. The 

Arrhenius plot, constructed from the temperatures and frequencies of the maxima observed for the ”M signals 

in Figure 2, leads virtually to the same result, as expected. In order to know how the intermolecular magnetic 

dipolar interactions influence the relaxation in compound 1, we performed ac susceptibility measurements on 

a magnetic diluted sample 1’ (Figures 3 and 4), which was prepared through crystallization with the 

diamagnetic and isostructural Yttrium complex (see ESI for the crystallographic data) using a Dy/Y molar 

ratio of 1:10 (the amount of Dy present in the dilute sample was determined to be the 12.6% from the low 

temperature portions of the dc susceptibility for the dilute and the neat compound and is not far from that 

extracted from X-ray results of 9.5 %). Interestingly, compound 1' shows slow relaxation of the magnetization 
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even under zero-field (Figures 3 and 4) with out-of-phase peaks in the 5(100)-13K (10000 Hz) range. The 

relaxation times were extracted from the fitting of the frequency-dependent ac data between 4.5 K and 12.7 K 

and they follow Arrhenius behavior in the 12.7-8.7 K range with Ueff = 68(4) K and o = 9.8 x 10
-8

 s. The 

Cole-Cole plot (Figure S6) shows in the latter temperature region semicircular shapes with  values in the 

range 0.04-0.07, thus indicating the presence of a very narrow distribution of slow relaxation in that region. 

The dramatic increase of the thermal energy barrier in 1' with regard to 1, with the concurrent decrease in 0, 

indicates that suppression of intermolecular interactions leads to slower relaxation of the magnetization and 

SMM behavior at zero-field. The significant Ueff thermal energy barrier observed for 1’ is found in high end of 

the Ueff values observed for mono and polynuclear Dy-SMMs.
9 

Even after dilution, a non-negligible fast tunneling relaxation is observed at low temperatures and frequencies 

at zero-field, as indicated by the divergence in "M below the maxima in the "M vs T plot at different 

frequencies (Figure 4). After applying a small static field of 1000 Oe, which induces the slowest relaxation 

process, the QTM is almost suppressed (Figure S7 and S8) and the fit of the relaxation times vs 1/T data in the 

12.7-9.2 K temperature range to the Arrhenius law leads (see Figure 3, top), as expected, to a slight increase 

of the thermal energy barrier and a decrease of o (Ueff = 78(2) and o = 4.7 x 10
-8

 s. In the above temperature 

region, the  values extracted from the Cole-Cole plot (Figure S9) are in the 0.03-0.08 range, which also 

supports the presence of a very narrow distribution of slow relaxation in the high temperature region. 

Nevertheless, the fact that under an applied magnetic field of 1kOe, when the QTM is almost suppressed, the 

experimental relaxation times deviate from the Orbach linear law in the 4.5-12.7 K temperature region could 

indicate the presence of multiple relaxation processes. In view of this, we have fitted the experimental data to 

the following equation that considers that the spin-lattice relaxation takes place through Raman and Orbach 

processes:
25 

 

          
     (

     
  
⁄ )

 

The first and second term correspond to the Raman and Orbach processes, respectively. In general n = 9 for 

Kramers ions,
25

 but depending on the structure of the levels, n values between 1 and 6 can be considered as 

reasonable.
26

 The best fit of the experimental data in the above temperature range afford n = 5.2(3), B = 

0.04(2), 0 = 2.5x10
-8

 and Ueff = 121(4) K (Figure 3 top, red line). These results seem to indicate that the 

Raman relaxation process significantly affects the Orbach relaxation process reducing the thermal energy 

barrier Ueff for the slow relaxation of the magnetization. 
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Figure 3. Top: Arrhenius plots of relaxation times of 1 under 1 kOe and 1’ under 0 and 1 kOe. Black solid 

lines represent the best fitting of the experimental data to the Arrhenius equation. Red line represents the best 

fit to a Orbach plus Raman relaxation processes. Bottom: Temperature dependence of the molar out-of-phase 

ac susceptibility (M”) for 1’ under 0 Oe dc applied field. Solid lines represent the best fitting of the 

experimental data to the Debye model. 
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Figure 4. Temperature dependence of the in-phase M’ (bottom) and out-of-phase M” (medium) ac signals at zero 

applied dc field for 1’ at different frequencies. Arrhenius plot for 1’ constructed from the temperatures of the maxima 

and the corresponding frequencies. 

 

We have performed magnetization hysteresis loop measurements in the 0.03-4 K temperature range using a -SQUID 

instrument
27

 with the aim of studying the magnetization dynamics and to confirm the SMM properties of 1 and 1’. 

Magnetization vs applied dc field hysteresis loops at different temperatures and sweeping rates are given in Figure 5. 

Hysteresis loops were measured on single-crystals, which were aligned with the easy axis of magnetization using the 

transverse field method.
28

 For 1, a large step is observed at zero field without hysteresis (Figure 5a), which is 

consistent with the QTM generally found for 4f containing complexes and with the tail that exhibits this compound at 
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low temperature in the M” vs T plot. When the field is increased, below 1 K, hysteresis loops are observed with a 

small opening, their coercitivities being temperature and field sweep rates dependent. The maximum opening occurs 

below 1500 Oe, which agrees well with the ac optimum field of 1000 Oe. As expected for SMM, the coercitivity 

increases with decreasing temperature and increasing field sweep rates. Surprisingly, below 0.5 K, the coercive field 

decreases with decreasing temperature. This behavior has been observed for other Dy-containing SMMs and ascribed 

to a reduction of the tunneling due to thermal activations around the tunnel splitting.
29

 

 

 

Figure 5. Top: Normalized magnetizations (M/Ms) vs applied dc field sweeps at the indicated sweep rate and 

temperatures for 1. Inset: Using sweep rates between 0.004T/s and 0.280 T/s at 0.03 K. Bottom: The same 

plots for 1’. 
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For the 1:10 diluted complex 1’, two-step butterfly shaped hysteresis loops were observed below 4 K (Figure 

5b), whose coercitivity, as expected, increases with decreasing temperature and increasing field sweep rates. 

The fact that there exists significant coercive field at zero field for 1’ demonstrates: (i) the magnetic site 

doping can significantly suppress the QTM and (ii) the hysteresis is essentially a single-ion feature rather than 

due to a long-range ordering or magnetic interactions. In fact for a 1:10 Dy:Y diluted system the probability 

for observing the dinuclear species ZnDyYZn is 0.18 whereas that of the ZnDyDyZn species is only 0.01.  

Finally, it should be noted that upon excitation at the ligand (270 nm), the solid state photoluminescence 

spectra of 1 (Figure 6) exhibits two emission bands at 484 nm and 575 nm, respectively, which correspond 

with the characteristic emission 
4
F9/2 →

6
HJ (J = 15/2, 13/2) transitions of Dy

3+
 ion. The yellow emission 

intensity of 
4
F9/2 →

6
H13/2 transition is much stronger than that of the blue one of 

4
F9/2 →

6
H15/2, suggesting that 

the ligand is suitable for the sensitization of yellow luminescence of Dy
3+

. The emission spectrum of 1 is 

identical but much more intense than that observed for the monuclear complex [Dy(H2L)(NO3)3],
13

 which 

could be due to the deprotonation of the ligand and the coordination of the Zn
2+

 ion altering the electronic 

energy levels of the ligand and improving the energy transfer to the excited level of the Dy
3+

 ion. 

 

 

 

Figure 6. Solid state photoluminescence spectrum of 1. 
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Conclusion 

We have been able to prepare a tetranuclear Zn2Dy2 complex, {(-CO3)2[Zn(-L)Dy(NO3)]2}·4CH3OH from 

the reaction of the compartmental ligand H2L (N, N’,N”-trimethyl-N,N”-bis(2-hydroxy-3-methoxy-5-

methylbenzyl)diethylene triamine) with Zn
2+

 and further with Dy
3+

 in 1: 1 molar ratio and triethylamine. The 

Zn
2+

 occupies the internal N2O3 site whereas the oxophilic Dy
3+

 ion shows preference for the O4 external site 

giving rise to the commonly found diphenoxo-bridged ZnDy dinuclear species. In basic medium, carbonate 

ions are formed form the atmospheric CO2 and bridge two of these dinuclear units affording the final Zn2Dy2 

tetranuclear complex. This complex does not show slow relaxation of the magnetization at zero-field due to 

fast QTM relaxation processes. However, in the presence of a small external dc field, the QTM is partly 

inhibited and the compound exhibits SMM behavior with an effective thermal barrier Ueff = 24 K. 

Interestingly, the diluted complex crystallized using a 1:10 Dy/Y ratio was shown to almost eliminate the 

QTM indicating that it occurs by intermolecular dipolar interactions. In this case, SMM behavior is observed 

at zero field with almost three times higher thermal energy barrier (Ueff = 68 K). This is one of the few 

examples of Dy
3+

 complexes where the SMM behavior is triggered by dilution. The magnetization study of 

the diluted complex at low temperatures clearly shows that the slow-relaxation of the magnetization is due to 

the single-ion relaxation of the Dy
3+

. Even after dilution and in the presence of an applied magnetic field, 

when the QTM is suppressed (Ueff = 78 K), the experimental relaxation times deviate from the Orbach linear 

law indicating the presence of multiple relaxation processes. It seems that Raman relaxation process 

significantly affects the Orbach relaxation process reducing the thermal energy barrier Ueff for the slow 

relaxation of the magnetization. Finally, the luminescence spectrum of 1 suggests that the ligand is suitable for 

the sensitization of yellow luminescence of Dy
3+

. Therefore, complex 1 can be considered as a bifunctional 

material exhibiting both SMM behavior and luminescence properties. 

We are now pursuing the preparation of new examples of Zn
2+

-Ln
3+

 complexes with reduced intermolecular 

interactions that could eventually exhibit suppressed QTM, higher thermal energy barriers at zero-field and 

therefore improved SMM behavior. Work along this line is currently going on in our labs. 
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