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Initial seeding of the embryonic thymus by immunerestricted lympho-myeloid progenitors  

 

Tiago C Luis1,15, Sidinh Luc1–3,15,16, Takuo Mizukami1, Hanane Boukarabila1, Supat 

Thongjuea1,3, Petter S Woll1, Emanuele Azzoni3, Alice Giustacchini1, Michael 

Lutteropp1,3, Tiphaine Bouriez-Jones1, Harsh Vaidya4, Adam J Mead1, Deborah Atkinson1, 

Charlotta Böiers5, Joana Carrelha1, Iain C Macaulay1, Roger Patient3, Frederic 

Geissmann6,7, Claus Nerlov3, Rickard Sandberg8, Marella F T R de Bruijn3, C Clare 

Blackburn4, Isabelle Godin9–11 & Sten Eirik W Jacobsen1,3,12–14 The final stages of 

restriction to the T cell lineage occur in the thymus after the entry of thymus-seeding 

progenitors (TSPs). The identity and lineage potential of TSPs remains unclear. Because the 

first embryonic TSPs enter a non-vascularized thymic rudiment, we were able to directly 

image and establish the functional and molecular properties of embryonic 

thymopoiesisinitiating progenitors (T-IPs) before their entry into the thymus and activation of 

Notch signaling. T-IPs did not include multipotent stem cells or molecular evidence of T 

cell–restricted progenitors. Instead, single-cell molecular and functional analysis 

demonstrated that most fetal T-IPs expressed genes of and had the potential to develop into 

lymphoid as well as myeloid components of the immune system. Moreover, studies of 

embryos deficient in the transcriptional regulator RBPJ demonstrated that canonical Notch 

signaling was not involved in pre-thymic restriction to the T cell lineage or the migration of 

T-IPs. 

 
Multiple T lymphocyte subsets that function as critical mediators of the adaptive immune 

system are derived from multipotent hematopoietic stem cells (HSCs). While commitment to 

other blood cell lineages occurs in the adult bone marrow (BM), the final steps toward 

restriction to the T lymphocyte lineage take place in the thymus1. Postnatal thymopoiesis is 

maintained through replenishment by thymus-seeding progenitors (TSPs) migrating from the 

BM to the thymus1. Establishing the identity and functional and molecular properties of 

TSPs is critical for understanding which steps in restriction to the T lymphocyte lineage 

occur in the BM and subsequently in the thymus and for elucidating the molecular cues that 

guide this critical lineage-restriction process and the pathways that promote the transition of 

TSPs from the BM to the thymus. Despite extensive investigation, the identity and lineage 

potential of postnatal BM-derived TSPs has remained an area of dispute. Because they 

migrate through the circulation to the vascularized thymus, it has not been possible to directly 

study or image mammalian BMderived TSPs before entry into the thymus. Instead, efforts 

aimed at identifying postnatal TSPs have focused on the characterization of early thymic 

progenitors (ETPs) already residing within the thymus1–4 and therefore have allowed only 

inferences to be made about TSPs1,5. However, the thymic epithelium expresses Dll4, which 

encodes the Notch ligand (‘Delta-like 4’) that activates canonical Notch signaling required 

for restriction to and development of the T cell lineage6–11, and therefore can rapidly induce 

restriction of multipotent TSPs to the T cell lineage10. In mice, the thymic rudiment develops 

around embryonic day 9 (E9)12 and is first seeded by hematopoietic cells around E11.5 (ref. 

13). In contrast to later fetal and postnatal development, during which TSPs reach the thymus 

through the circulation5, at E11.5 the BM is still not established and the thymic rudiment not 

yet vascularized. Therefore, the first embryonic TSPs are recruited to the thymic rudiment by 

migration through the surrounding mesenchyme5, guided by chemokines produced in the 

thymic anlage14. While Notch signaling has also been suggested to promote the migration of 

TSPs from adult BM to the thymus15, its role in the initial seeding of the embryonic thymic 

rudiment has not been investigated. However, embryonic TSPs have been suggested to be 

activated by Notch and potentially become restricted to the T cell lineage in the fetal liver 

(FL)16 before migrating to the embryonic thymus, although such a possibility has not been 



confirmed in Notch-deficient embryos. The thymus harbors multiple non–T cell lineages 

proposed to have a role in supporting T cell development17, such as the removal of apoptotic 

thymocytes by macrophages18. Fate-mapping studies suggest that in the adult thymus, 

macrophages develop mostly independently of ETPs2,19,20, whereas their origin in the 

embryonic thymus21 remains to be investigated. While early studies suggested that 

multipotent HSCs might be responsible for the initial seeding of the embryonic thymus22, 

subsequent studies failed to support this proposal23. Other studies have suggested that 

embryonic TSPs might lack the potential to develop into myeloid cells and B 

lymphocytes16,23,24 and that embryonic TSPs, unlike adult TSPs1,3, might be largely T cell 

restricted before seeding the thymus. However, most of those studies investigated the thymus 

at E12 or later, when Notch ligands are expressed and thus might already have restricted the 

lineage potential of the TSPs16. However, no studies thus far have characterized the first 

mammalian T-IPs molecularly and functionally at the single-cell level, before they seed the 

thymic rudiment and before Notch activation. Here we found that the first T-IP population 

that migrated through the surrounding mesenchyme to seed the embryonic thymus anlage did 

not include HSCs. While expressing the green fluorescent protein (GFP) driven by the 

promoter of the gene encoding the recombinase component RAG1 (the Rag1-GFP 

reporter)3,25, most T-IPs were not yet restricted to the lymphoid lineage, as they also 

expressed myeloid transcriptional programs and had myeloid-lineage potential. These results 

established that embryonic thymopoiesis is initiated by progenitor cells restricted to the 

lympho-myeloid lineage. 

 

RESULTS  

Initial seeding of the embryonic thymic rudiment at E11.25 Colonization of the mouse 

thymic rudiment has been reported to occur around E11–E11.5 (refs. 13,24). However, 

developmental staging based on timed mating can vary substantially between and within 

different litters and between strains26. Moreover, the somite pairs are not clearly visible 

starting at E11. To accurately define the timing of the initial thymic seeding, we established 

detailed staging of embryos at E11.0–E11.75, in 0.25-day increments, on the basis of the 

number of tail somites, using the cloaca as a landmark (Fig. 1a and Supplementary Fig. 1a,b). 

In the mouse embryo at E11.5, the common thymus and parathyroid rudiments were located 

bilaterally in the third pharyngeal arches, attached to the endoderm and surface ectoderm27, 

and adjacent to aortic arches marked by the endothelial marker VE-cadherin and enhanced 

GFP expressed under control of the promoter for the endothelial gene encoding von 

Willebrand factor (Vwf-eGFP) (Supplementary Fig. 1c-e). Following that staging by tail 

somites, we dissected thymic lobes cleanly from surrounding blood vessels to avoid 

contamination by blood (Fig. 1b and Supplementary Figs. 1e and 2a). VE-Cad+ endothelial 

cells were completely removed by dissection in most explants (Fig. 1b, top) but not all (Fig. 

1b, bottom). We dissociated thymic lobes and cultured them on OP9 mouse stromal cells 

expressing the Notch ligand DL1 (OP9-DL1 cells) to determine the initial colonization of the 

thymic rudiment by the first hematopoietic cells with the potential to develop into T 

lymphocytes. This was consistently observed at the stage at which the embryos had 10–12 

tail somites (TS10–TS12), corresponding to E11.25–E11.5 (Fig. 1a), when approximately 

50% of thymic rudiments contained progenitors with the potential to develop into T cells 

(Fig. 1c,d). Because activation of Notch might restrict the lineage potentials of T-IPs, we 

assessed the expression of Dll4 mRNA in PLET1+ thymic epithelial cells at E11.5–E12.5 

(ref. 12). Consistent with published studies16, we found that Dll4 was expressed in thymic 

epithelial cells at E12.5 but had much lower expression at E11.5 (TS11–TS14) (Fig. 1e). 

Thus, the embryonic thymus was initially seeded at E11.25, before thymic upregulation of 

Dll4 mRNA. Multipotent HSCs do not initiate embryonic thymopoiesis At E11.5, T-IPs 



migrate through the surrounding mesenchyme5 to colonize the thymic rudiment, which 

allows imaging of candidate T-IPs before they enter the thymus and before activation of 

Notch. Because all definitive HSCs in the FL express Vwf28, while fetal lympho-myeloid-

restricted progenitors do not29, we used mice with transgenic expression of the Vwf-eGFP 

reporter, which express eGFP in HSCs28, to investigate by immunofluorescence whether 

fetal HSCs seeded the thymic rudiment at TS10–TS12. Although VwfeGFP+ cells were 

detected in TS11 FL, they were not detected in the thymus primordium at the time of seeding 

(TS10–TS12) and were also not detected before (≤TS9) or after (≥TS13) the time of seeding 

(Fig. 2a,b and Supplementary Fig. 2b), which indicated that Vwf-eGFP+ HSCs did not 

migrate to the thymus primordium. In agreement with that conclusion, thymocytes from 

embryos at E11.5 and E12.5 did not achieve long-term reconstitution of any blood cell 

lineages in irradiated mice after competitive or non-competitive transplantation, unlike E12.5 

FL cells known to contain HSCs (Fig. 2c–e and Supplementary Fig. 2c–f). These results 

demonstrated that HSCs did not colonize the thymus primordium at TS10–TS12. Initial 

seeding of the thymic rudiment by Rag1-GFP+ progenitors Next we used Rag1-GFP knock-

in mice, in which GFP expression functions as a reporter for transcriptional expression of 

Rag1 (ref. 25), which marks lymphoid progenitors but not HSCs, to investigate whether 

lymphoid-restricted progenitors seeded the thymic rudiment. Immunofluorescence analysis 

demonstrated that low numbers of Rag1-GFP+ cells appeared at TS10–TS12, first in the 

mesenchyme lining the epithelial thymic rudiment and thereafter inside the thymic 

primordium (Fig. 3a,b and Supplementary Fig. 2g–i). Embryos with Rag1-GFP+ cells inside 

the thymic rudiment consistently also had Rag1-GFP+ cells outside or lining the thymus (Fig. 

3a,b and Supplementary Fig. 2g–i). Analysis of Rag1-GFP+ cells at E11.5 (TS10–TS14) by 

flow cytometry revealed uniform expression of the pan-leukocyte marker CD45 and the cell-

surface cytokine receptors c-Kit (CD117), Flt3 (CD135), IL-7Rα and an absence of the 

cytokine receptor CD25 (IL-2Rα) (Fig. 3c,d), similar to results reported for multipotent ETPs 

in the postnatal thymus3 and for lymphomyeloid-restricted progenitors in the FL at E10.5-

11.5 (ref. 29), which lack megakaryocytic-erythroid (MkE) potential. Rag1-GFP+ cells also 

expressed the chemokine receptor CCR9 (Fig. 3c) that is important for embryonic thymus 

colonization14. Almost all c-Kit+ cells in the thymic rudiment at E11.5 (TS10–TS14) were 

Rag1-GFP+ (data not shown), which suggested that initial seeding of the thymic rudiment 

was restricted mainly to CD45+Lin−c-Kit+CD25−Flt3+CCR9+ Rag1-GFP+progenitor cells. 

To investigate whether the Rag1-GFP+ progenitor can progress through the thymocyte-

progenitor stages from CD4−CD8− double-negative stage 1 (DN1) through DN4, we cultured 

dissociated thymic lobes from Rag1-GFP+ embryos at E11.5 on OP9-DL1 stroma; this 

resulted in the generation of DN1–DN4 and CD4+CD8+ double-positive T cell progenitors 

(Fig. 3e). Therefore, Rag1-GFP+ progenitors seeded the embryonic thymus and were capable 

of initiating embryonic thymopoiesis. Combined lympho-myeloid potential of Rag1-GFP+ T-

IPs To investigate whether the Rag1-GFP+ cells that seeded the thymic rudiment at E11.5 

were multipotent or T cell restricted, we first performed single-cell RT-PCR analysis. We 

assessed the expression of genes characteristically expressed by T cells and myeloid cells, 

comparing their expression in CD45+Rag1-GFP+ T-IPs at E11.5 with that in lymphoid-

primed multipotent progenitors (LMPPs) from FL at E11.5 (ref. 29), as well as with that in 

DN2 and DN3 thymocytes at E14.5, which are partially T cell restricted and fully T cell 

restricted, respectively. The expression profiles of T-IPs and LMPPs at E11.5 were very 

similar, with almost no detectable expression of T cell– restricted genes but with co-

expression of genes characteristically expressed by early lymphoid cells (Flt3 and Il7r) and 

myeloid cells (Fcgr3, Mpo, Csf1r and Csf3r). In contrast, DN3 thymocytes at E14.5 had high 

expression of genes characteristically expressed by T cells but not those characteristically 

expressed by myeloid cells1 (Fig. 4a and Supplementary Fig. 2j,k). These results were 



compatible with the idea that the thymus anlage was seeded mainly by Rag1-GFP+ T-IPs 

with sustained myeloid potential. In agreement, CD45+Lin−cKit+CD25−Flt3+ ETPs at 

E12.5, which were more frequent at that time point than in the thymus at E11.5, revealed 

considerable potential to develop into the T cell and myeloid lineages in in vitro cell-culture 

experiments (Supplementary Fig. 3a–c). Single-cell cultures of CD45+Lin−c-

Kit+CD25−Flt3+ T-IPs at E11.5 on OP9-DL1 stroma showed that they had combined 

potential to develop into the T cell and myeloid cell lineages (Fig. 4b–e and Supplementary 

Fig. 3d–f). Progenitors with the same Rag1-GFP+CD45+Lin−cKit+CD25−Flt3+ phenotype 

were also identified in the blood of embryos at E11.5 and had combined potential to develop 

into the T cell and myeloid cell lineages similar to that of T-IPs (Fig. 4f–i and Supplementary 

Fig. 3g,h). To investigate whether Rag1-GFP+ T-IPs contributed physiologically to myeloid 

cells in the embryonic thymus, we performed fate mapping of cells in Rag1-CreTg/+R26-

stop-eYFPFl/+ mice, in which the progeny of Rag1-expressing cells are labeled with 

enhanced yellow fluorescent protein (eYFP)30,31. Analysis of the thymus rudiments by flow 

cytometry at TS4–TS8, before the initiation of thymopoiesis, showed that the CD11b+F4/80+ 

monocytes-macrophages detected were not eYFP+ (Fig. 4j). In contrast, as much as 50% of 

CD11b+F4/80+ monocytes-macrophages in the thymus at E14.5 were eYFP+ and thus 

derived from Rag1-expressing progenitors (Fig. 4k–m and Supplementary Fig. 3i). To 

ascertain that phagocytosis of eYFP+ cells did not account for the eYFP signal in Rag1- 

CreTg/+R26-stop-eYFPFl/+ monocytic cells, we also analyzed by flow cytometry Rag1-GFP 

reporter mice at E14.5. In these mice, while ETPs and DN2 and DN3 thymocytes were 

GFP+, CD11b+F4/80+ monocytic cells were GFP− (Supplementary Fig. 3j). Results 

obtained by single-cell immunofluorescence analysis of the intracellular localization of eYFP 

in Rag1-CreTg/+R26-stop-eYFPFl/+ E14.5 thymic monocytic cells further indicated the 

absence of phagocytosis (Supplementary Fig. 3k,l). In addition, following transplantation of a 

mixture of Rag1-CreTg/+ and R26-stop-eYFPFl/+ (CD45.2+) BM cells into wild-type 

(CD45.1+) recipient mice, no eYFP+ monocytemacrophages were detected by flow 

cytometry in the recipients (Supplementary Fig. 3m,n), which suggested that phagocytosed 

Rag1-Cre expressing thymocytes were not responsible for mediating the recombination and 

eYFP expression observed in thymic monocytic cells in Rag1-CreTg/+R26-stop-eYFPFl/+ 

embryos. These results demonstrated that Rag1-expressing progenitors generated thymic 

monocytes-macrophages. We assessed the potential to develop into megakaryocytes and 

erythroid cells in vitro in collagen-based and methylcellulose-based assays of dissociated 

thymic rudiments from embryos at E11.25–E11.75. Despite the abundant MkE potential in 

the FL, only 2 of 18 thymuses produced megakaryocyte colonies, and 0 of 17 thymuses 

generated erythroid colonies (Fig. 5a and Supplementary Fig. 4a–c). To assess the potential 

of dissected individual thymic lobes to develop into T cells and B cells before the time of 

seeding (TS8–TS9) and at the time of seeding (TS10–TS11), we plated the dissociated cells 

on OP9- DL1 and OP9 stroma. No potential to develop into B cells was identified in TS8–

TS9 thymic rudiments (Fig. 5b), whereas at TS10–TS11, the frequency of thymuses with the 

potential to develop into T cells (70%) or B cells (64%) was similar (Fig. 5b,c and 

Supplementary Fig. 4d,e), which indicated that at least a fraction of the T-IPs that seeded the 

thymic rudiment had the potential to develop into the T cell as well as B cell lineages. To 

assess whether the observed potential to develop into B cells might have been derived from 

progenitors already restricted to the B cell fate, we performed fate-mapping analysis by flow 

cytometry of cells from Mb1-CreTg/+R26-stop-eYFPFl/+ mice, in which the earliest stage of 

B cell–committed progenitors and all cells derived from them are marked with eYFP32. No 

eYFP expression was present in thymocytes from Mb1-CreTg/+R26-stop-eYFPFl/+ embryos 

at E11.5 (Fig. 5d) and, similar to wild-type FL LMPPs at E11.5, wild-type CD45+Lin−c-

Kit+CD25−Flt3+ T-IPs at E11.5 lacked expression of mRNA encoding the immunoglobulin 



α-chain MB-1 (CD79A), the B cell–specification factor EBF1 and the transcription factor 

PAX5 (Fig. 5e), which indicated that the observed potential to develop into B cells was 

derived from multipotent T-IPs at E11.5 and not from B cell–restricted progenitor cells. 

However, we did not detect consistent potential to develop into B cells in co-cultures of OP9 

cells and wildtype CD45+Lin−c-Kit+CD25−Flt3+ ETPs at E12.5 that had been purified by 

flow cytometry (data not shown). However, a small fraction of CD45+Lin−c-

Kit+CD25−Flt3+ ETPs at E12.5, from mice with transgenic expression of the antiapoptotic 

protein MCL-1, which promotes cell survival3, produced B cells (Fig. 5f); this indicated that 

a fraction of the T-IPs might also have had potential to develop into B cells. Collectively, 

these results suggested that the T-IPs responsible for initial seeding of the embryonic thymic 

rudiment were lympho-myeloid progenitors that lacked MkE potential but had the potential 

to develop into myeloid cells and T cells and, to some degree, B cells as well. Molecular 

profiling of E11.5 thymopoiesis-initiating progenitors Gene-set–enrichment analysis (GSEA) 

with published gene sets3,33 of RNA-sequencing data29 of CD45+Lin−c-Kit+CD25−Flt3+ 

T-IPs at E11.5 and Lin−CD45loVE-Cad+c-Kit+ hematopoietic stem and progenitor cells 

(HSPCs)34 from the aorta-gonad-mesonephros (AGM) region at E11.5 (Supplementary Fig. 

4f) indicated highly significant upregulation of genes characteristically expressed by early 

lymphoid cells and downregulation of genes characteristically expressed by MkE cells and 

HSCs in T-IPs at E11.5, relative to their expression in HSPCs (Fig. 6a–d). Many genes 

characteristically expressed by myeloid cells were also upregulated in T-IPs at E11.5, relative 

to their expression in HSPCs (Fig. 6e). The set of genes significantly upregulated in T-IPs at 

E11.5 relative to their expression in HSPCs at E11.5 showed notable over-representation of 

those encoding products involved in immune-system-related processes (Supplementary 

Tables 1 and 2), such as chemotaxis. To further assess the potential of T-IPs to develop into 

the myeloid and lymphoid lineages, we performed single-cell RT-PCR analysis of 

CD45+Lin−c-Kit+CD25−Flt3+ T-IPs at E11.5. All cells analyzed expressed many genes 

characteristically expressed by lymphoid cells, and 70% of single T-IPs at E11.5 co-

expressed genes characteristically expressed by lymphoid cells and myeloid cells but not 

genes characteristically expressed by MkE cells (Fig. 6f,g). Moreover, genes whose 

expression defines the earliest T cell–restricted progenitor cells3,35, including Ptcra, Cd3e 

and Bcl11b, were not expressed by CD45+Lin− c-Kit+CD25−Flt3+ T-IPs at E11.5 (Figs. 4a 

and 6f). These molecular findings supported the proposal that T-IPs at E11.5 had combined 

lympho-myeloid potential but lacked MkE potential. Ontogeny-related changes in thymus-

seeding progenitor pathways Principal-component analysis and hierarchical clustering 

analysis of RNA-sequencing data demonstrated that thymic T-IPs at E11.5 clustered closer to 

(and between) FL LMPPs at E11.5 (ref. 29) and thymic ETPs at E12.5 (Supplementary Fig. 

4g) than to neonatal ETPs (1 week) or adult ETPs (8 weeks) and were more distant from the 

more multipotent HSPCs from the AGM at E11.5 as well as DN2 cells at E13.5 (Fig. 7a and 

Supplementary Fig. 5a,b); this indicated that the T-IPs that seeded the thymic anlage might 

have been derived from FL progenitor cells restricted to the lympho-myeloid lineage and 

gave rise to the first intra-thymic ETPs. When comparing T-IPs at E11.5 with neonatal and 

adult ETPs, and the corresponding AGM at E11.5 and neonatal and adult HSC populations, 

we found that 97 genes were substantially upregulated in the T-IP–ETP populations relative 

to their expression in the other populations, regardless of age (Fig. 7b). These included Ccr7 

and Ccr9, which encode chemokine receptors involved in the migration of fetal and adult 

TSPs to the thymus14,36 (Fig. 7b,c and Supplementary Table 3). 214 genes were uniquely 

upregulated in E11.5 T-IPs relative to their expression in all HSCs and neonatal and adult 

ETPs (Fig. 7b and Supplementary Tables 4–6). Among these, expression of Ccr2, Ccr5 and 

Ccr6 was notably higher, whereas Cxcr4 expression was lower, in T-IPs at E11.5 and in 

ETPs at E12.5 than in neonatal and adult ETPs (Fig. 7c), which indicated the use of distinct 



chemokine receptors by embryonic T-IPs. Flow cytometry confirmed the expression of 

CCR6, CCR7 and CCR9 in CD45+Lin−c-Kit+CD25−Flt3+ T-IPs at E11.5 (Supplementary 

Fig. 6a). Furthermore, single-cell RT-PCR analysis showed a high degree of co-expression of 

many genes encoding chemokine receptors (Supplementary Fig. 6b) and high expression of 

many genes encoding paired immunoglobulin-like receptors (PIRs) in 

CD45+Lin−cKit+CD25−Flt3+ T-IPs at E11.5 (Supplementary Fig. 6c,d). Expression of PIR-

encoding genes was almost undetectable in neonatal and adult ETPs, but they were expressed 

in ETPs at E12.5 (Supplementary Fig. 6c)37. PIR-encoding genes were not expressed in 

HSCs at E11.5, but were upregulated in FL LMPPs at E11.5, although at lower levels than in 

E11.5 T-IPs (Supplementary Fig. 6c). Flow cytometry confirmed a greater abundance of 

PIRA/B in Lin−c-Kit+CD25−Flt3+ Rag1-GFP+ blood progenitor cells at E11.5 than in FL 

LMPPs and an even greater abundance of PIRA/B in thymic Lin−c-Kit+CD25−Flt3+ Rag1-

GFP+ T-IPs at E11.5 and ETPs at E12.5 (Supplementary Figs. 4g and 6e); this indicated that 

many PIR-encoding genes were co-expressed in lympho-myeloid T-IPs at E11.5. The 

combined potential to develop into the T cell and myeloid cell lineages noted in OP9-DL1 

co-cultures was similar for PIR− and PIR+ E11.5 CD45+Lin−c-Kit+CD25−Flt3+ blood 

progenitors (Supplementary Fig. 6f). Thus, T-IPs at E11.5 were closely related to FL LMPPs 

at E11.5 at the molecular level and expressed multiple distinct chemokine receptors and PIR-

encoding genes. 

Notch is not required for colonization of the thymus at E11.5 GSEA of RNA-sequencing data 

from T-IPs at E11.5, ETPs at E12.5, and neonatal and adult ETPs with a published gene set38 

showed marked enrichment for the expression of genes encoding products related to the 

Notch pathway in ETPs at E12.5 relative to their expression in T-IPs at E11.5 and a less-

distinct additional upregulation of these genes in ETPs from E12.5 to the neonatal period 

(Fig. 8a). Several genes that are established targets of Notch, including Hes1, Dtx1 and 

Nrarp, were expressed in ETPs at E12.5 but had low expression in T-IPs at E11.5. The 

expression of these genes in T-IPs at E11.5 was also notably lower than that in FL LMPPs 

and HSPCs at E11.5 (Fig. 8b). Whole-mount imaging analysis of RbpjFl/FlVav-

CreTg/+Rag1-GFPTg/+ embryos at TS10–TS12 (in which the gene encoding RBPJ, a 

transcriptional regulator essential for canonical signaling through all Notch receptors9, is 

deleted from hematopoietic cells7) showed that the number of Rag1-GFP+ progenitor cells 

outside, lining and inside the thymus of these mice was similar to that of RbpjFl/FlVav-Cre+/ 

+Rag1-GFPTg/+ (control) embryos at TS10–TS12 (Fig. 8c,d and Supplementary Fig. 7a–g); 

this demonstrated that the migration of T-IPs and their initial seeding of the thymus at E11.5 

occurred independently of canonical Notch signaling. Single-cell RT-PCR analysis 

confirmed efficient deletion of Rbpj in T-IPs (Fig. 8e and Supplementary Fig. 8a). Because 

most genes that are targets of Notch might also be regulated through Notchindependent 

mechanisms, we investigated whether the low expression of such genes in T-IPs at E11.5 was 

independent of canonical activation of Notch. RT-PCR analysis indicated that expression of 

these genes in single T-IPs from RBPJ-deficient embryos at E11.5 was similar to that in their 

wild-type counterparts (Fig. 8e and Supplementary Fig. 8b). Moreover, the transcription of 

genes encoding products associated with lympho-myeloid–lineage priming and T cell–

lineage restriction was similar in T-IPs from RBPJ-deficient embryos and wild-type embryos 

(Fig. 8e and Supplementary Fig. 8c,d), which suggested no involvement of canonical Notch 

signaling in the pre-thymic lineage restriction of T-IPs. However, subsequent T cell 

development was blocked at the CD4−CD8−cKit+CD25− ETP stage or 

CD4−CD8−CD44+CD25− DN1 stage in RBPJ-deficient embryos, in contrast to the normal T 

cell development in wild-type embryos at E13.5 and E14.5 (Fig. 8f and Supplementary Fig. 

8e,f). Furthermore, RBPJ-deficient thymocytes at E11.5 did not progress beyond the 

CD4−CD8−CD44+CD25− DN1 stage on OP9- DL1 stroma (Supplementary Fig. 8g). 



Together these data indicated that unlike its essential role in intra-thymic T lineage 

restriction, canonical Notch signaling was not required for the initial migration and seeding 

of the embryonic thymus at E11.25 by Rag1-GFP+ T-IPs or in the pre-thymic lineage-

restriction of T-IPs. 

 

DISCUSSION  

 

Here we investigated the identity and lineage potential of TSPs that first seeded the thymus 

rudiment during embryonic development (‘T-IPs’). Imaging and purification of T-IPs at 

E11.5, before their seeding of the thymic rudiment and before thymic upregulation of Dll4, 

provided a unique opportunity to visualize and characterize T-IPs, rather than ETPs at E12.5 

or later16,23,39,40, when there is high expression of Dll4 in the thymus and ETPs are 

activated via Notch and therefore possibly already restricted in their lineage potential. 

Through imaging and functional validation, we established that HSCs were not responsible 

for seeding of the embryonic thymus rudiment at TS8–TS14, a finding further supported by 

molecular analysis showing that HSCs lack expression of chemokine receptors required for 

migration to the embryonic thymus14,36. Instead, we found that the first T-IPs (at TS10–

TS12 or E11.25–E11.5) expressed Rag1-GFP and genes characteristically expressed by 

lymphoid cells, before seeding the embryonic thymus rudiment, and progenitors with the 

same cell-surface phenotype (and lineage potential) could be identified in the circulation at 

E11.5. Although our findings established a close phenotypic, molecular and functional 

relationship between T-IPs at E11.5 and PIRA/B+ LMPPs at E11.5 in the FL, we cannot rule 

out the possibility that T-IPs might also migrate from the yolk sac, in which the first LMPPs 

appear to originate as early as at E9.5 (ref. 29). Whereas published studies have suggested 

that embryonic TSPs represent largely T cell–restricted progenitors that lack myeloid 

potential16,23,24,40,41, our molecular and functional single-cell studies demonstrated that a 

large fraction of Rag1-GFP+ T-IPs at E11.5 expressed combined myeloid cell and T cell 

lineage programs and potential. While the finding that a fraction of T-IPs had only the 

potential to develop into T cells in OP9-DL1 in vitro culture could be compatible with the 

idea that a fraction of T-IPs are already T cell restricted before entry into the thymus, this 

might equally reflect the inability of available assays to ‘read out’ the short-lived myeloid 

potential of T-IPs with 100% efficiency. Moreover, high-resolution single-cell molecular 

analysis showed no expression of early T cell– restricted genes, such as Ptcra, Cd3e and 

Bcl11b, by T-IPs in the embryonic thymus and thus failed to support the idea that T-IPs 

include T cell–restricted progenitors. In addition, while expression of genes such as Gata3 

(which encodes the transcription factor GATA-3) and Tcf7 (which encodes the transcription 

factor TCF-1) has been used to support the proposal that FL and blood might contain T cell–

restricted progenitors41, their expression is not limited to T cell–restricted progenitors. 

Therefore, proof that T-IPs include T cell–restricted progenitors will require their further 

purification and characterization. While expression of PIRs has been suggested to mark a 

subset of T cell–restricted progenitor cells in FL37, PIR+Lin− c-Kit+CD25−Flt3+ Rag1-

GFP+ circulating progenitors at E11.5 had combined potential to develop into T cells and 

myeloid cells similar to that of Lin−c-Kit+CD25−Flt3+Rag1-GFP+ T-IPs at E11.5, and 

single Pir+ T-IPs co-expressed lymphoid and myeloid transcriptional programs. T-IPs at 

E11.5 expressed distinct chemokine-receptor-encoding genes. The higher expression of Ccr2, 

Ccr5, Ccr6 and Ccr7 in T-IPs at E11.5 than in neonatal and adult ETPs is in agreement with 

published reports on the expression of these genes in CD45+ cells isolated from the 

perithymic mesenchyme at E12.5 (ref. 42) and indicates different use of chemokine receptors 

at this developmental stage. Together with the expression of known ligands for CCR7, CCR2 

and CCR5 in thymic stromal cells at E14.5 (ref. 43), this differential chemokinereceptor-



expression pattern probably reflects the need for distinct migration properties in the 

colonization of the non-vascularized embryonic thymus rudiment. For example, in agreement 

with the greater requirement for CCR7 at pre-thymus rudiment vascularization stages, Ccr7 

deficiency results in greater impairment of colonization of the embryonic thymus at early 

stages of embryonic development44, whereas the involvement of CCR2 and CCR6 in 

embryonic thymus colonization is yet to be functionally explored. The broad expression of 

PIR-encoding genes and PIR proteins might explain why most T-IPs at E11.5, like the PIR+ 

fraction of FL LMPPs at E11.5 (ref. 29), lack the potential to develop into the B cell lineage, 

in contrast to postnatal ETPs3, which, as shown here, lacked Pir expression. Nevertheless, we 

detected potential to develop into the B cell lineage in whole thymic rudiments at TS10–

TS12 (E11.25–E11.5), the same time point at which we detected potential to develop into the 

T cell lineage. Because there are no B cell– restricted progenitors at this stage of 

development45, as confirmed here by fate-mapping and molecular analysis, this finding 

supports the proposal that T-IP populations seeding the embryonic thymus at TS10–TS12 

include some progenitors with combined potential to develop into T cells, B cells and 

myeloid cells but no potential to develop into the MkE lineages. The physiological relevance 

of the myeloid potential of adult ETPs remains in dispute19,20. Given the rarity of T-IPs and 

what appears to be a rather restricted myeloid potential, this probably does not represent an 

important pathway for extra-thymic myelopoiesis. However, because the Rag1-Cre fate 

mapping suggested that a large fraction of monocytes-macrophages in the embryonic thymus 

were derived from TSPs, similar to granulocytes in the adult thymus19, TSPs might 

contribute to the generation of intra-thymic monocytes-macrophages, which are suggested to 

have important roles in thymic development and homeostasis17,18. It is also possible that the 

sustained myeloid program in TSPs indicates mainly that the final T cell lineage–restriction 

step takes place in the thymus through loss of myeloid potential. Published studies based on 

restricted lineage potential and expression of canonical Notch target genes in candidate TSPs 

in FL and blood16,40 have proposed that activation of Notch might restrict the lineage 

potential of TSPs before colonization of the thymus. However, our molecular and imaging 

analysis did not provide support for the proposal of a role for canonical Notch signaling in 

pre-thymic restriction of T-IPs to the T cell lineage or in their migration to the embryonic 

thymus. In fact, we found no evidence for canonical activation of Notch when we compared 

the expression of Notch target genes in RBPJ-deficient T-IPs at E11.5 with that in their wild-

type counterparts. In conclusion, through careful staging, imaging and single-cell molecular 

analysis of the first embryonic progenitors migrating to and seeding the thymic rudiment, we 

have demonstrated that the initial embryonic thymic seeding is mediated by lympho-myeloid-

restricted T-IPs. Moreover, we have provided evidence that canonical Notch signaling is not 

required for the initiation or maintenance of the prethymic restriction of multipotent 

progenitors to the T cell lineage. 
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