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Abstract The polymorphism at residue 129 of the human
PRNP gene modulates disease susceptibility and the clinico-
pathological phenotypes in human transmissible spongiform
encephalopathies. The molecular mechanisms by which the effect
of this polymorphism are mediated remain unclear. It has been
shown that the folding, dynamics and stability of the physiolog-
ical, a-helix-rich form of recombinant PrP are not affected by
codon 129 polymorphism. Consistent with this, we have recently
shown that the kinetics of amyloid formation do not differ be-
tween protein containing methionine at codon 129 and valine at
codon 129 when the reaction is initiated from the a-monomeric
PrPC-like state. In contrast, we have shown that the misfolding
pathway leading to the formation of b-sheet-rich, soluble oligo-
mer was favoured by the presence of methionine, compared with
valine, at position 129. In the present work, we examine the effect
of this polymorphism on the kinetics of an alternative misfolding
pathway, that of amyloid formation using partially folded PrP
allelomorphs. We show that the valine 129 allelomorph forms
amyloids with a considerably shorter lag phase than the methio-
nine 129 allelomorph both under spontaneous conditions and
when seeded with pre-formed amyloid fibres. Taken together,
our studies demonstrate that the effect of the codon 129 polymor-
phism depends on the specific misfolding pathway and on the ini-
tial conformation of the protein. The inverse propensities of the
two allelomorphs to misfold in vitro through the alternative olig-
omeric and amyloidogenic pathways could explain some aspects
of prion diseases linked to this polymorphism such as age at on-
set and disease incubation time.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The human PrP gene (PRNP) has two common allelic forms

that encode either methionine or valine at codon 129. This

polymorphism is a key determinant of susceptibility to spo-

radic [1] and acquired [2,3] prion diseases, and may affect

age at onset [4–6]. An understanding of the role of this poly-
*Corresponding author. Fax: +44 1865 285756.
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morphism as a powerful genetic modifier may provide clues

as to the molecular mechanisms that mediate prion propaga-

tion. One approach is to study the folding of the two allelic

variants of recombinant human PrP in vitro. Four major

routes of folding denatured, disulphide-oxidized PrP in vitro

have been described [7–10] (see Fig. 1). The first, which is ex-

tremely rapid under near-neutral, non-denaturing conditions,

produces an a-helix-rich, soluble, monomeric form that is be-

lieved to resemble the physiological form. It has been shown

that the thermodynamic stability of this form is not affected

by the codon 129 polymorphism [11]. NMR structure analysis

has been used to investigate the structural basis of inherited

human transmissible spongiform encephalopathies and

showed that only part of the disease-related amino acid

replacements lead to reduced stability of the cellular form of

PrP [12]. Recently, the three-dimensional structure of the

monomeric, Val129 form of human PrP was determined [13],

from which it was concluded that the polymorphism at codon

129 has no measurable effect on the folding, dynamics and sta-

bility of normal cellular PrP. The second major route of fold-

ing, favoured at low pH under moderately denaturing

conditions and high PrP concentrations, results in the forma-

tion of a soluble, oligomeric form that shows significant resis-

tance to proteinase K and matures over time to become

dominated by b-sheets [8,9]. We have recently shown that

the kinetics of the b-oligomer formation is affected by the res-

idue encoded at position 129. We showed that Met129 has a

higher propensity to oligomerize than Val129 and that the fur-

ther maturation of the oligomers was more rapid for the

Met129 variant than the Val129 variant [9].

The third major pathway of in vitro folding produces high

molecular weight multimers that aggregate to form amyloid fi-

bres and is favoured under moderately denaturing conditions,

neutral pH and with agitation [8,14]. This form is partially sen-

sitive to proteinase K digestion. Significantly, it has been re-

ported, recently, that the amyloids generated through this

third pathway from recombinant mouse PrP were infectious

and produces transmissible disease when inoculated into trans-

genic mice [15]. This result is a major milestone in that it ap-

pears to confirm the ‘‘protein only’’ hypothesis in

mammalian prion diseases [15,16]. It also suggests that the

amyloids form of recombinant PrP and/or other misfolded

intermediates may represent the infectious entity in TSE dis-

eases. Recently, we have found that the polymorphism at co-

don 129 has no measurable effect on the amyloid
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Model of the multiple folding pathways of recombinant human
PrP in vitro (adapted from Tahiri-Alaoui and James [10]). Various
routes of folding of recombinant, disulphide-oxidized PrP have been
discussed in the literature (Baskakov et al. [7,8]): pathway 1, from the
denatured state to a-helical monomeric state; pathway 2, from the
denatured state to PK-resistant oligomeric form [9]; pathway 3, from
a-helical monomeric state to amyloid form [10]; pathway 4, from
partially unfolded state to multimeric aggregate and hence to amyloid
form. The present work describes the misfolding of recombinant
human PrP90–231 through pathway 4 in the context of the polymor-
phism at codon 129.
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accumulation when the reaction is initiated from the a-helical
monomeric form [10] (see pathway 3 in Fig. 1). This is in con-

trast to the substantial effect that this common polymorphism

can exert on the formation of soluble b-oligomer when the mis-

folding is initiated from denatured state (see pathway 2 in Fig. 1)

[9]. This suggests that the conformational transitions, in which

residues at position 129 contribute to significant free energy

changes, are likely to be confined to more disordered states

than those shared by the a-monomers of the PrP [10]. In order

to test this, we decided to analyse the effect of the polymor-

phism at codon 129 on the pathway four as depicted in Fig.

1, by initiating the amyloid formation from a partially folded

state and that is under both spontaneous and seeded condi-

tions. The rational behind this is to allow the two allelomorphs

to explore freely the misfolding landscape permitted under

amyloid forming conditions.
2. Materials and methods

2.1. Preparation of recombinant human prion protein allelomorphs
The recombinant human PrP90–231 proteins were prepared and puri-

fied as previously described [9]. Briefly, the genomic DNA encoding
methionine/valine at codon 129 of PRNP gene was extracted from
the blood of a heterozygote individual using standard phenol–chloro-
form methods. The fragment of the PRNP gene spanning codon 90
through 231 was amplified and cloned into the pTrcHis2B vector that
incorporated a C-terminal His-tag (Invitrogen life technologies, Pais-
ley, UK) according to the manufacturer�s instructions. The identity
of human PrP clones was confirmed by sequencing with the BigDye
Terminator v3.0 on ABI-Prism 3100 Genetic Analyzer (Applied Bio-
systems). The clones corresponding to PrP90–231 with Met129 or
Val129 were identified by comparison with human PrP clones available
in the databases (Accession Nos.: M13667, P04156). The expression of
both recombinant PrP variants was done in Escherichia coli and the
purification was performed as previously described [9]. Stocks of highly
purified proteins were stored in 6 M guanidine hydrochloride contain-
ing 50 mM Tris–HCl, pH 7.2.

2.2. Amyloid reactions, thioflavin T assay and kinetic analysis
Time course study of amyloid formation of recombinant human

PrP90–231 was carried out as previously described [8] by monitoring thi-
oflavin T (ThT) fluorescence. Briefly, proteins in 6 M guanidine hydro-
chloride were diluted to a final concentration of 35 lM in phosphate
buffered saline, pH 7.2, containing 3 M urea, 0.02% azide and a final
concentration of 1 M guanidine hydrochloride. Samples were incu-
bated at 37 �C under continuous shaking at 600 rpm on a Delfia plate
shaker in 1.5 ml Eppendorf tubes. To mimic the situation in heterozy-
gote individuals, methionine 129 and valine 129 variants were mixed at
1:1 molar ratio. The final protein concentration was kept at 35 lM. In
the homologous and heterologous seeding experiments, an aliquot of
preformed fibrils was taken from the stationary phase and considered
to contain 100% seeds, this was then used to inoculate freshly prepared
amyloid reaction at a final seed concentration of 1%.
The kinetics of amyloid formation were analysed by fitting time-

dependent changes in ThT fluorescence of samples to the following sig-
moidal equation using non-linear, least squares analysis (GraphPad
Prism vs. 4.01).

F ThT ¼ A=ð1þ eð�Bðt�tiÞÞÞ; ð1Þ

where FThT is the fluorescence intensity of ThT, A is the ThT fluores-
cence intensity in the post-transition plateau, ti is the inflection point,
i.e., the midpoint of the transition region, B (h�1) is the amyloid
growth rate constant, and t is the time in hour. The lag time (tlag) of
amyloid formation was calculated by extrapolation of the linear region
of the sigmoidal transition phase of ThT fluorescence to the abscissa
intercept [17].

2.3. Size-exclusion high performance liquid chromatography
Rapid refolding of proteins into a-monomeric form was carried out

by size-exclusion HPLC as previously described [9] with the following
modifications: Proteins, in 100 ll volume at 5 mg/ml from unfolded
state in 6 M guanidine hydrochloride, 50 mM Tris–HCl, pH 7.2, were
injected onto TSK-Gel SWXL G3000 HPLC column, 7.8 · 300 mm
(Phenomenex, Macclesfield, UK), equilibrated in 50 mM sodium ace-
tate, pH 5.5, 150 mM sodium chloride, 1 M urea and 0.02% azide.
The peak corresponding to monomeric proteins was manually col-
lected and the folding of the proteins was assessed by circular dichro-
ism (CD). All HPLC separations were performed at room temperature
with a flow rate of 1 ml/min by means of a Perkin–Elmer HPLC system
composed of a Binary LC pump 250 and a Diode array detector 235C
controlled by Total Chrome software version 6.2 (Perkin–Elmer, Seer
Green, UK), through a PE Nelson 600 series link. The eluent was mon-
itored by UV absorption at 280 nm.

2.4. Circular dichroism and Fourier transform infra-red spectroscopy
CD spectra were recorded using a Jasco-720 spectrometer at 37 �C in

the amyloid buffer (phosphate buffered saline, pH 7.2, containing 3 M
urea, 0.02% azide and a final concentration of 1 M guanidine hydro-
chloride) at around 35 lM protein concentration using the following
parameters: Cell path 0.1 cm, speed 55 nm/s, band width 1.0 nm, reso-
lution 0.5 nm and response 4 s. Four individual scans were averaged
and the buffer spectra were subtracted. Fourier transform infra-red
spectroscopy (FTIR) spectra were collected by means of a Bruker Ten-
sor 27 FTIR instrument (Bruker Optics, Billerica, MA) equipped with
a MCT detector cooled with liquid nitrogen. The amyloids were dia-
lyzed against 10 mM Na-acetate buffer (pH 5.5), 10 ll of each sample
was loaded into BioATRcell II, 128 scans at 2 cm�1 resolution were
collected under constant purging with nitrogen, corrected for water va-
pours and background spectra of buffer were subtracted.
2.5. Negative staining and transmission electron microscopy
Aliquots of 3 ll were taken from samples containing amyloid fibrils as

judged from ThT fluorescence, loaded onto carbon-coated, glow-
discharged 400-mesh copper grids, blotted, negatively stained with 1%
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uranyl acetate, air dried and then viewed in aZeiss (formerly Leo)Omega
912 electron microscope equipped with an in column charge-coupled
device camera (2048 · 2048 pixels) from Proscan, Germany [18].
3. Results

In order to gain insights into the global conformation of the

PrP allelomorphs at time zero of amyloid reaction, i.e., the

time when the proteins were diluted from 6 M guanidine

hydrochloride into the amyloid buffer (phosphate buffered sal-

ine, pH 7.2, containing 1 M guanidine hydrochloride, 3 M urea

and 0.02% azide), we performed simultaneous analyses by size

exclusion high performance liquid chromatography and CD

(Fig. 2 and inset). Aliquots of 100 ll were taken from the amy-

loid reactions and injected onto a SEC-HPLC column previ-

ously equilibrated in the same amyloid buffer. The Met129,

Val129 as well as the mixture (1:1) of both variants eluted with

equal retention times, i.e., 8.35 min (Fig. 2). However, when

the properly folded a-monomeric PrP was diluted into the

same amyloid buffer then subjected to the same SEC-HPLC

analysis, its retention time increased to 9.05 min (Fig. 2). These

differences in the retention times were indicative of conforma-

tional/aggregation differences at time zero between the starting

material used in pathway 4 as compared to that used previ-

ously to investigate pathway 3 (Fig. 1) [10]. The former has

a conformation that was most likely to be characterized by a

large hydrodynamic volume, indicating a more open structure;
Fig. 2. Chromatographic and spectroscopic characterization of recombinant h
with either methionine or valine at position 129 in E. coli. Proteins were fully o
Tris–HCl, pH 7.2. For amyloid reaction through pathway 4 (see Fig. 1), the P
pH 7.2, 0.02% azide and the concentration of guanidine hydrochloride adjust
35 lM. Soon after diluting the proteins in the amyloid buffer (time zero),
equilibrated in the same amyloid buffer. As a control, we have used PrP alle
Alaoui and James [9] before being diluted into the amyloid buffer. Becau
imposable chromatographs only the a-Met129 control is shown in the overla
allelomorphs and the control a-Met129.
though the presence of dimers in this state could not be ruled

out. CD spectra (inset in Fig. 2) of protein samples used to ini-

tiate pathway 4 were also different from those used to initiate

pathway 3. The CD spectrum of the latter was characteristic of

an a-helix-rich conformation as indicated by the two minima

at around 210 and 222 nm. By contrast, the CD spectra of

the PrP allelomorphs used to initiate the pathway 4 in Fig. 1

were not typical of a-helix-rich proteins (inset in Fig. 2) but

were also not indicative of random coil or typical b-sheet-rich
conformation. The presence of 1 M guanidine hydrochloride

and 3 M urea in the amyloid forming buffer made it difficult

to extract spectral information between 190 and 208 nm. How-

ever, one can conclude from the CD and SEC data that all the

PrP variants used to initiate the amyloid formation in pathway

4 of Fig. 1 had comparable levels of disordered conformation.

Therefore, any differences in the kinetics of the misfolding

behaviour would be attributed to the effect of the polymor-

phism at codon 129.

CD analysis (Fig. 3A–C) revealed conformational changes

during amyloid formation through pathway 4 (Fig. 1) that oc-

curred starting from around 3 h after initiating the amyloid

reactions. The CD spectra of the two individual PrP variants

as well as in the 1:1 mixture displayed the same characteristics

up to 12 h during the amyloid reaction. There was a loose isod-

ichroic point at around 214 nm concomitant with a significant

change of the CD signal around 222 nm, which seemed to indi-

cate a loss of a-helical conformation. This conformational

transition appeared to happen similarly between all the PrP
uman PrP90–231 allelomorphs. Recombinant human PrP was expressed
xidized and kept in 6 M guanidine hydrochloride buffered with 50 mM
rP allelomorphs were diluted into the amyloid buffer (3 M urea, in PBS,
ed to 1 M), the final protein concentration in the amyloid reaction was
100 ll was injected onto TSK-Gel SWXL G3000 column previously
lomorphs that were previously folded into a-monomeric from Tahiri-
se both PrP allelomorphs controls and their 1:1 mixture gave super
y. The inset shows CD spectra at time zero of amyloid reaction of PrP



Fig. 3. Circular dichroism spectra of recombinant human PrP90–231 allelomorphs during amyloid formation. (A), (B) and (C) show overlay of CD
spectra of Met129, Val129 and their 1:1 mixture, respectively, during amyloid formation using the conditions described in Fig. 2. For each PrP
allelomorph, the spectra of the corresponding alfa-monomeric isoforms acquired at time zero of amyloid reaction are given for comparison to
ascertain conformational differences. (D) shows an overlay of CD spectra after 24 h of amyloid reaction to illustrate direct comparison between the
PrP allelomorphs and their 1:1 mixture as this is the time point where we see the accelerated acquisition of b-sheet structure that is not seen yet with
either M129 or the 1:1 mixture.
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variants up to 12 h during amyloid reaction (Fig. 3A–C). How-

ever, after 24 h of amyloid reaction, the CD spectrum of the

Val129 variant was characteristic of b-sheet rich conformation

(Fig. 3D), whilst the Met129 variant and the mixture did not

appear to represent a typical b-sheet CD spectra with a single

minima at around 218 nm until 66 and 48 h, respectively (Fig.

3A and C).

In order to correlate the changes in conformation seen by

CD spectroscopy, especially, the rapid acquisition of b-sheet
structure seen in the Val129 variant as compared to the

Met129 and the 1:1 mixture, with the kinetics of fibril forma-

tion we decide to monitor amyloid formation by ThT assay.

A common feature of amyloid structures is their ability to bind

dyes such as ThT. The rapid binding of ThT to amyloids is

accompanied by a dramatic increase of fluorescence at around

482 nm, when excited at 455 nm. We have used this property to

monitor the accumulation of amyloids in vitro at 37 �C (Fig.

4A). The formation of amyloids by both Met129 and Val129

showed a characteristic nucleation-dependent, polymerization

pattern, having an initial lag phase followed by a rapid growth

phase as measured by ThT fluorescence. The length of the lag

phase, however, was significantly different between the two

allelomorphs; Met129 had a lag time of 52 h whilst the

Val129 allelomorph had a lag time of only 20 h. To mimic

the situation of a heterozygote individual carrying both alleles,

we analysed amyloid formation in an equimolar mixture of

Met129 and Val129 (Fig. 4B). The lag time of amyloid forma-

tion in the equimolar mixture was 31.5 h, an intermediate va-

lue compared with the unmixed proteins. Notably, in the

mixture of Met129 and Val 129 the kinetics of amyloid forma-

tion followed a single sigmoidal transition. The amyloid

growth rate constant was 0.07 h�1 for both alleles individually
and also for the mixture. The total fluorescence of the valine

129 and the methionine 129 variant reached a maximum

of around 3000 · 103 and 2500 · 103 counts per second,

respectively.

Given the striking difference in the lag times of spontaneous

amyloid formation between the two allelomorphs, we hypoth-

esized that the rate of nucleation was the key difference be-

tween the two forms. To test this, we examined the effect of

pre-formed amyloid seeds on the kinetics of amyloid formation

in homologous as well as heterologous reactions (Fig. 5). Seed-

ing the Met129 variant with 1% Met129 amyloid decreased the

lag time of fibres accumulation from 52 to 34 h. Similarly,

the homologous seeding of the Val129 variant also decreased

the lag time of fibres formation from �20 to 10 h. Thus,

although the lag periods were reduced by similar proportions

by seeding in both cases, they were not rendered equal. Seeding

with heterologous amyloids had similar effects on lag time as

seeding with homologous seeds (Fig. 5B). When the Met129

was seeded with the Val129 the lag time of amyloid accumula-

tion decreased from 52 to 28 h. Similarly, when the Val129 was

seeded with the Met129 the lag time of amyloid accumulation

decreased from 20 to 14 h.

In contrast to the effect of seeding on lag times, the amyloid

growth rate in both homologous seeded reactions remained

similar to that of the unseeded reactions. However, seeding

with heterologous amyloid revealed that amyloid growth rates

were affected by the mismatch in the polymorphic residue at

129 between the seeds and the substrates. Specifically, amyloid

growth rate of Met129 dropped from 0.07 to 0.04 h�1 when

seeded with homologous versus heterologous amyloid seed,

respectively, and that of Val129 dropped to 0.05 h�1 with het-

erologous seed. The shorter lag time of amyloid formation of



Fig. 4. Effect of the polymorphic residue at position 129 on the
kinetics of spontaneous amyloid formation of recombinant human
PrP90–231 measured by ThT fluorescence. (A) Comparison of the time-
dependent change in ThT fluorescence between Met129 (filled squares)
and Val129 (filled triangles) allelomorphs. The amyloid reaction was
performed at 37 �C under continuous agitation (600 rpm) in 1.5 ml
tubes. The proteins were diluted from 6 M guanidine hydrochloride to
a final concentration of 35 lM in phosphate buffered saline, pH 7.2,
containing 1 M guanidine hydrochloride, 3 M urea and 0.02% azide.
(B) represents a time-dependent change in ThT fluorescence during
amyloid accumulation in a heterozygote-like reaction that contained
1:1 equimolar mixture of both allelomorphs (filled circle). In (A) and
(B), the solid lines represent non-linear, least square fits using the
equation described in Section 2.

Fig. 5. Effect of the polymorphic residue at position 129 on the
kinetics of seeded amyloid formation of recombinant human PrP90–231

measured by ThT fluorescence. (A) Comparison of the time-dependent
change in ThT fluorescence between the two PrP allelomorphs during
homologous seeding; Met129 in presence of 1% Met129 seed (empty
squares) and, Val129 in presence of 1% Val129 seed (empty triangles).
(B) Comparison of the time-dependent change in ThT fluorescence
between the two PrP allelomorphs during heterologous seeding;
Met129 in presence of 1% Val129 seed (empty squares) and, Val129
in presence of 1% Met129 seed (empty triangles). The amyloid reaction
was performed at 37 �C under continuous agitation. The proteins were
diluted from 6 M guanidine hydrochloride to a final concentration of
35 lM in phosphate buffered saline, pH 7.2, containing 1 M guanidine
hydrochloride, 3 M urea, 0.02% azide and 1% of the corresponding
amyloid seed. In (A) and (B), the solid lines represent non-linear, least
square fits to the data using Eq. (1) described in Section 2.
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Val129 versus Met129 was maintained during the homologous

and the heterologous seeding.

Amyloid fibres formed under the various experimental con-

ditions showed typical characteristics of amyloids based on

transmission electron microscopy (Fig. 6A–C) and FTIR spec-

troscopy (Fig. 6D). Amyloids from both allelomorphs consist

of linear, occasionally twisted, unbranched structures (Fig.

6A–C). Based on transmission electron microscopy, the fibres

from both PrP allelomorphs formed under spontaneous or

seeded conditions were morphologically indistinguishable. As

judged from FTIR, the amyloid fibres produced from both

allelomorphs were also conformationally indistinguishable

(Fig. 6D). The FTIR spectra of these fibres showed a major

band at 1622 cm�1 and a minor broad band centred at

1535 cm�1, both are characteristic of b-sheet structures with

intermolecular hydrogen bonds. A smaller band at

1693 cm�1 was indicative of antiparallel b-sheets and a minor

band at 1651 cm�1 was a characteristic of a-helices. Further-
more, we have used limited proteinase K digestion combined

with electrospray ionization mass spectrometry to compare

the amyloid fibres from both allelomorphs (data not shown).

Consistent with our previous findings, we found that the fibres
from both PrP variants displayed short PK-resistant core

[19,20].
4. Discussion

The present results demonstrate the importance of the poly-

morphism at codon 129 in modulating the formation of an

alternative misfolded form of PrP by allowing the partially

folded PrP (pathway 4, Fig. 1) to explore the pathway that

leads to amyloid formation. We have found clear differences

in the kinetics of amyloid formation between the two allelo-

morphs. The Val129 variant had a significantly shorter lag

time prior to amyloid formation than did the Met129 variant

and this correlated well with the rapid acquisition of b-sheet
rich conformation by the Val129 allelomorph as compared

with the Met129 allelomorph and the 1:1 mixture. These data

do not contradict the observation made during the misfolding

of a-monomeric PrP into amyloids (pathway 3, Fig. 1), where

we have found no measurable effects of the polymorphism at



Fig. 6. Transmission electron micrographs and FTIR spectra of amyloids produced from recombinant human PrP90–231 allelomorphs. (A) is
representative micrograph of Met129 variant. (B) is representative micrograph of Val129 variant and (C), is a representative micrograph of the
mixture 1:1 of Met129 and Val129 variants. Aliquots of 3 ll were taken from samples containing amyloids as judged from ThT fluorescence, loaded
onto carbon-coated, glow-discharged 400-mesh copper grids, blotted, negatively stained with 1% uranyl acetate, air dried and then viewed in a Zeiss
(formerly Leo) Omega 912 electron microscope equipped with an in column charge-coupled device camera (2048 · 2048 pixels) from Proscan,
Germany. The negative staining was performed on amyloid fibres derived from spontaneous amyloid reactions. (D, E) FTIR spectra and second
derivatives, respectively, of the amyloid fibres produced from Met129 (solid line) and Val129 (dashed line) variants.
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codon 129 on the kinetics of amyloid accumulation [10]. In-

stead, our findings indicate that the polymorphism at codon

129 of human PrP can exert its effect on the misfolding path-

way that leads to amyloid accumulation only when PrP is in

a partially disordered state. Furthermore, the relative ease with

which the a-monomeric forms of PrP allelomorphs can transi-

tion to the amyloid state indicates that this process is relatively

insensitive to the local, native conformational subtleties that

might be conferred by the codon 129 polymorphism [10]. This

is consistent with the finding that the solution structures and

dynamic stabilities of recombinant human PrP are not affected

by this polymorphism [13]. Since the effect of the polymor-

phism at codon 129 on the kinetics of amyloid formation

seems to be dependent on the initial folding state of PrP, one

could speculate that the residues involved in the initiation of

the process, or even those that are participating structurally,

may differ between pathway 3 and pathway 4 of amyloid for-

mation (Fig. 1). Taken together our data strongly support a

model, which postulates that: (i) the thermodynamic character

of the native and denatured ensembles of PrP is variable and

gradually changes with environment; (ii) the variable character

of the native/denatured ensemble determines the diversity of

misfolding pathways under different initial solvent conditions

[20]. A direct implication of this would be that the amyloid

formed under different pathways might differ slightly in their

three-dimensional structure. Whether they also differ in their

toxicity and infectivity, the question remains to be answered.
Taken together, our studies demonstrate the complexity and

the profound effect that the polymorphic residue at position

129 can have on the misfolding pathways of human PrP. These

data are in contrast with the observations made during the

misfolding into oligomers, where the amount of oligomer seen

with Met129 was much higher than with Val129 [9]. This fur-

ther indicates that amyloid formation occurs through a path-

way different from the one that leads to the oligomer,

strengthening the previous finding that the b-sheet-rich oligo-

mer is not on the kinetic pathway to amyloid formation and

cannot be regarded as a substructure of the fibrillar form [8].

The observed differences in the kinetics of amyloid forma-

tion allow us to define precisely one of the regions involved

in the rate-determining step of the aggregation process; the res-

idue expressed at position 129 in this regard is critical. Our

data show that the presence of a high b-sheet forming amino

acid, such as valine [21,22] at position 129 accelerated the

kinetics of amyloid formation and is consistent with molecular

dynamics simulations [23]; providing a possible molecular

mechanism for the faster nucleation rate of the Val129 variant

relative to that of the Met129 variant. Residue 129 is within the

first b-strand (residues 128–131) in human PrP. Riek et al. [24]

proposed that this short b-sheet might be a �nucleation site� for
a conformational transition from PrPC to PrPSc that could in-

clude the loops connecting the b-sheet to the first helix. Molec-

ular dynamics simulations of Syrian hamster PrP90–231 at

neutral pH showed that when valine was present at position
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129 instead of methionine additional b-strands may form

involving residues 115–116 and 119–122. For the valine allelo-

morph, the percentage of molecules calculated to adopt this

structure was 23% as opposed to 0% for the methionine allelo-

morph [23], but simulations also indicated that this does not

affect thermodynamic stability, as has been found experimen-

tally [11].

Using recombinant prion protein, we clearly demonstrate

that the polymorphism at codon 129 in the PrnP gene impacts

on the complexity of the misfolding pathways that lead to non-

native isoforms of prion protein. We have attempted to model

the heterozygote genotype at this polymorphic site, by analy-

sing abnormal folding pathway 4 (Fig. 1) in a 1:1 mixture of

Met129 and Val129. The results showed intermediate behav-

iour with no obvious predominant effect of one variant over

the other. The fact that we do not observe biphasic behaviour

in the kinetics of amyloid formation seems to indicate that

there is a certain degree of interaction between the two allelo-

morphs. This is supported by the compatibility of seeds in the

cross-seeding experiments. Interestingly, this compatibility

seems to be 100% if one judges only from the length of the

lag phase in cross-seeding experiments. However, in terms of

the rate of growth, the two allelomorphs seem to display par-

tial compatibility, because the rate of growth is slower in cross-

seeded reactions, relative to that in spontaneous self-seeded

experiment. This indicates that the interactions between the

two variants during the higher order folding processes are

more complex than originally anticipated and warrants further

investigation. The seeding experiments also show that the

Val129 seeds are better seeds than the Met 129 seeds. We do

not have a clear explanation for this behaviour. This may be

attributed to the presence of more ends in the Val129 seeds

that are available for polymerization or it could be due to sub-

tle structural differences in the amyloid seeds that are intrinsic

to the two variants.

We have used partially denaturing conditions in these in vi-

tro conversion experiments. Although, these conditions seem

far from physiological, they may approximate an environment

leading to the formation of PrPSc. It is commonly accepted

that conversion of PrPC to PrPSc requires certain degree of

unfolding of PrPC. Several classes of molecules such as lipid

membrane [25], salt [26] and some natural nucleic acids

[27,28] were found to be capable of assisting the conversion

of PrPC into disease-related conformation by reducing thermo-

dynamic stability of PrPC and facilitating its unfolding. Chem-

ical-induced denaturation used in our study, represent more

generic way for shifting dynamic balance between native vs.

unfolded states of PrPC. Therefore, our experiments illustrate

intrinsic propensity of human PrP to convert into amyloid

forms and the dependence of this process on the polymorphism

at codon 129.

The converse propensities of the Met129 and Val129 allelo-

morphs to fold into the b-oligomer and amyloid forms, respec-

tively, is highly suggestive, given the effect of the

polymorphism on disease susceptibility in vivo. We note that

neither the b-oligomers nor the amyloids perfectly reflect the

biophysical properties of PrPSc, the form traditionally associ-

ated with prion infectivity [16,29]. Specifically, the relative

resistance of PrPSc to digestion with proteinase K is shown

by the b-oligomer [9] but only partially by the amyloid [8],

whereas the morphological appearance and dye-binding char-

acteristics of PrPSc are reflected by the in vitro-formed amyloid
but not by the b-oligomer form. Our recent studies, however,

demonstrated that amyloids produced under partially denatur-

ing conditions are biochemically similar to the minor popula-

tion of PrPSc identified in patient with sporadic CJD [20].

The formation of amyloids in vitro also displays a species bar-

rier, one of the key features of prion replication [30]. Further-

more, fibrilar form of PrP has an epitope presentation similar

to that of PrPSc [8].

The differences in the misfolding behaviour between Met129

and Val129 could form the basis to explain certain aspects of

human TSEs, particularly sporadic CJDs, that are associated

with codon 129 variations such as age at onset of the disease

and incubation time [6,31–35]. Reports mainly suggested that

the age at onset is lower and the disease duration longer in

Val129 cases. This effect appears to be replicated in animal

models of human disease: two out of three transgenic mice

expressing human PrP Val129 showed a shorted incubation

period [36] as compared with transgenic mice expressing hu-

man PrP Met129 [37] (and Jean Manson, personal communi-

cation) when challenged with a matching genotype inocula.
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