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ABSTRACT

Historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIPS) archive are
used to calculate the zonal-mean change in seasonal land precipitation for the second half of the twentieth
century in response to a range of external forcings, including anthropogenic and natural forcings combined
(ALL), greenhouse gas forcing, anthropogenic aerosol forcing, anthropogenic forcings combined, and natural
forcing. These simulated patterns of change are used as fingerprints in a detection and attribution study
applied to four different gridded observational datasets of global land precipitation from 1951 to 2005. There
are large differences in the spatial and temporal coverage in the observational datasets. Yet despite these
differences, the zonal-mean patterns of change are mostly consistent except at latitudes where spatial cov-
erage is limited. The results show some differences between datasets, but the influence of external forcings is
robustly detected in March-May, December—February, and for annual changes for the three datasets more
suitable for studying changes. For June—August and September-November, external forcing is only detected
for the dataset that includes only long-term stations. Fingerprints for combinations of forcings that include the
effect of greenhouse gases are similarly detectable to those for ALL forcings, suggesting that greenhouse gas
influence drives the detectable features of the ALL forcing fingerprint. Fingerprints of only natural or only
anthropogenic aerosol forcing are not detected. This, together with two-fingerprint results, suggests that at
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least some of the detected change in zonal land precipitation can be attributed to human influences.

1. Introduction

Increased temperatures over the twentieth century
have led to an increase in the moisture content of the
atmosphere (Santer et al. 2007; Willett et al. 2007), and
changes to global (Zhang et al. 2007; Huffman et al.
2009; Smith et al. 2010) and regional precipitation
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patterns have been observed (e.g., Hoerling et al. 2006;
Min et al. 2008; Kang et al. 2011) that follow expecta-
tions based on physics and modeling (Held and Soden
2006). Global and regional precipitation changes may be
influenced by a complex range of factors including the
direct response to greenhouse gas forcing and to the
warming of the atmosphere (Allen and Ingram 2002;
Lambert and Allen 2009), changes in atmospheric cir-
culation (e.g., Ineson and Scaife 2009; Kenyon and
Hegerl 2010), sea surface temperature changes (e.g.,
Hoerling et al. 2012; Yoshioka et al. 2007; Lyon and
DeWitt 2012; Hoerling et al. 2012), and regional changes
in vegetation (e.g., Wang et al. 2004) and stratospheric
aerosols (e.g., Gillett et al. 2004).

One of the predicted responses of the hydrological
cycle to increasing greenhouse gas concentrations is
the intensification of the water cycle (Allen and Ingram
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2002; Held and Soden 2006; Wentz et al. 2007; Chou
et al. 2009; Seager et al. 2010). As the atmosphere
warms, water vapor increases in line with the Clausius—
Clapeyron relation and as the horizontal transport of
water vapor increases, the existing pattern of precipi-
tation minus evaporation (P — E) is enhanced. Thus,
areas that export moisture get drier and areas that
import water get wetter (Held and Soden 2006). How-
ever, the increase in global precipitation is constrained by
tropospheric radiative cooling with precipitation in-
creasing at a slower rate than column water vapor (Allen
and Ingram 2002; Lambert and Allen 2009). There must
therefore be a corresponding decrease in the convective
mass flux, implying weakening atmospheric circulation in
the tropics, where most moist convection occurs (Vecchi
et al. 2006; Lu et al. 2007). Changes in the mean circula-
tion in response to warming will also affect precipitation.
In particular, warming is expected to lead to a poleward
expansion of the Hadley cells with an associated pole-
ward expansion of the subtropical dry regions and pole-
ward shift of the midlatitude storm tracks (Yin 2005;
Lorenz and DeWeaver 2007; Seidel et al. 2008; Lu
et al. 2007; Seager et al. 2010; Scheff and Frierson 2012),
though the exact mechanisms are still to be understood.

Held and Soden (2006) show that the zonal-mean
changes in P — E are robust in response to warming
associated with greenhouse gas forcing and that the
structure of these changes is dominated by changes in
precipitation. Consequently, Zhang et al. (2007) and
Noake et al. (2012) used zonal means to show the global
patterns of land precipitation change, for which long-
term records of precipitation are available, and to derive
fingerprints of forcing that can be used for detection and
attribution. This enhancement of the P — E pattern is less
clear over land than oceans, where evaporation can be
limited in arid regions. Model-simulated future pre-
cipitation change broadly follows a similar zonal pattern of
moistening and drying over ocean as over land (Meehl et al.
2007), and significant changes in precipitation over land
due to human influence are expected to have already
occurred (Balan Sarojini et al. 2012).

The observed changes in precipitation are a combi-
nation of external forcing and internal variability (to-
gether with errors and biases arising from limitations of
the observational system). Internal variations can cause
regional changes in precipitation on multidecadal time
scales (Dai 2013), making it difficult to distinguish the
influence of external forcing. The spatial scale of these
decadal features tends to be regional (Cayan et al. 1998),
so by averaging over large areas, such as zonal means,
the influence of internal variability on the observed pre-
cipitation changes can be reduced. The internal variations
in the model simulations will be unique to each simulation.
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By averaging over many simulations, the influence of
internal variability is reduced in the patterns of precip-
itation change (Zhang et al. 2007; Knutti et al. 2010).

Fingerprint detection and attribution methods (Allen
and Stott 2003) have been used to attribute observed
changes in precipitation over the latter twentieth cen-
tury to anthropogenic forcing for annual global zonal
land precipitation (Zhang et al. 2007) and for the Arctic
(Min et al. 2008) and to attribute changes in seasonal
global zonal land precipitation to external forcing
(Noake et al. 2012) using phase 3 of the Coupled Model
Intercomparison Project (CMIP3) archive. Estimates of
the mean zonal changes in annual precipitation found
the multimodel mean and individual model simulations
from the CMIP3 archive tended to underestimate the
magnitude of the observed precipitation change (Zhang
et al. 2007). However, using seasonal zonal-mean land
changes expressed as percentages from three different
datasets of near-global coverage, Noake et al. (2012)
found that observed precipitation changes were signifi-
cantly underestimated by the models for all the datasets
only during March-May (MAM). For other seasons,
models and observations were consistent given data
uncertainty and internal variability, though the dataset
used in Zhang et al. (2007) also showed the models un-
derestimating the changes in December-February
(DJF) and annual precipitation. The precipitation changes
for three observational datasets and models were found
to be quite similar to each other where the observations
and models were masked to include only grid boxes
where gauge data were available. External forcing was
detectable in DJF, MAM, and September-November
(SON) for all observational datasets and in June—August
(JJA) for one dataset at the 5% level of significance;
however, the authors did not separate the response of
anthropogenic forcing from natural forcing and could not
therefore demonstrate that anthropogenic forcing had
contributed significantly to seasonal patterns of change
as it had been shown to for annual changes (Zhang et al.
2007).

Here, we apply the methodology of Noake et al. (2012)
to the models from the new phase 5 of the Coupled Model
Intercomparison Project (CMIPS5) archive (Taylor et al.
2012) and four observational datasets to compare the
performance of the latest generation of models to that of
the previous generation. In addition to applying total
least squares detection to a fingerprint of all external
forcings (ALL)" forcings, the analysis is extended to

"Here, “ALL” external forcings refers to the full set of forcings
prescribed in the CMIPS protocol as implemented by each par-
ticipating modeling center.
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include fingerprints of greenhouse gas—only (GHG)
forcing, anthropogenic-only (ANT) forcing, natural-only
(NAT) forcing, and anthropogenic aerosol-only (AA)
forcing in order to separate the contribution of different
forcings to the observed pattern of change.

The paper is organized as follows: section 2 briefly
introduces the detection and attribution method and
section 3 introduces the data. In section 4, robust and
less robust changes in zonal precipitation are discussed
across observational data and model simulations. Sec-
tion 5 gives detection and attribution results that are
discussed in section 6.

2. Total least squares detection

The goal of detection and attribution is to determine if
observations show evidence of forced changes expected
from physical reasoning (e.g., as captured in climate
models). In climate change detection and attribution, F
is an / X p matrix of fingerprints that define response
patterns (rank-/ vectors, such as zonal-mean precipitation
changes) to p external climate forcings. It is scaled to the
rank-/ vector of observations y to estimate the magnitude
of each pattern in the observed climate, using total least
squares (tls) regression (Allen and Stott 2003):

y= (F + sfinger) B+ hoise > (1)

where 8 is a vector of scaling factors with p entries for
each forcing fingerprint, &,0ise 1S the residual associated
with internal climate variability, and &gpger is the vari-
ability superimposed on the fingerprint. As signal-to-
noise ratio is low for precipitation, ggnger Will be non-
negligible even for a multimodel mean. If the scaling
factor exceeds zero at a particular significance level,
then the fingerprint response pattern is detected in the
observations (see Hegerl et al. 2007).

Detailed theoretical discussion of the tls method can
be found in Allen and Stott (2003); here, we describe the
practical implementation. We define the / X p’ matrix
Z = [F,y], where p’ = p + 1, and take the singular value
decomposition Z = UAVT. After sorting eigenvalues
into descending order, the p’th element of the p’th col-
umn of V, the p’-rank vector v corresponds to the best-
fit scaling parameter. The scaling factor for fingerprint
iis then B; = — V;/v,y (Allen and Stott 2003).

Internal climate variability leads to uncertainty in the
fingerprint and observed response patterns and hence to
uncertainty in the scaling factor. This uncertainty must
be taken into account when applying detection and at-
tribution. Only when the probability that 3 is consistent
with zero is small (e.g., 5%) can it be stated with con-
fidence that the fingerprint response pattern has been
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detected in the observations. The uncertainty in the
scaling factor can be calculated by superimposing mul-
tiple samples of noise onto both the fingerprint and
observations and recalculating the scaling factor. Each
noise sample is a rank-/ vector, meaning that the vari-
ance does not have to be the same for all the elements
(so the strength of internal variability can vary with
latitude; see the supplemental material available at the
Journals Online website: http://dx.doi.org/10.1175/ JCLI-D-
12-00474.s1) and that the covariance pattern of pre-
cipitation variability is preserved. Where 95% of the 8
values exceed zero, it is concluded that there is a sig-
nificant (p < 5%) relationship between the observed
and multimodel changes that cannot be explained by
internal climate variability.

For the tls method, noise-reduced observation and
model fingerprints are calculated using

Z2=2-Zw"' )

to produce a “‘best fit”” of both. It is onto these that the
sample of noise is added for evaluating 8. The regres-
sion residual g,4;se 1S compared to samples of model
variability using the F test of Allen and Tett (1999).

We experimented with using optimal fingerprints but
found that the benefit was small (i.e., the results were
similar) compared to the level of complexity introduced
by having to truncate to a low-dimensional space, so the
results shown here are for nonoptimized fingerprints
(e.g., Zhang et al. 2007).

3. Data: Observations and models

Four gridded observational datasets for monthly pre-
cipitation were used in this analysis. The datasets are an
updated version of data from Zhang et al. (2007): the
Climate Research Unit (CRU) monthly precipitation
dataset [updated from CRU TS3.1 of Harris et al.
(2013)] and two datasets from the Global Precipitation
Climatology Centre (GPCC), the Variability Analysis of
Surface Climate Observations (VASClimO) dataset
(Beck et al. 2005) and Full Reanalysis dataset
(Schneider et al. 2013). While each gridded dataset is
constructed independently, they use overlapping sets of
the same raw station data. Although the stations do not
provide complete spatial and temporal coverage, Wan
et al. (2013) showed that they are likely to be sufficient
for estimating the magnitude of changes and variability
in regional land area mean precipitation.

The GPCC dataset is spatially interpolated covering
the period 1901-2010. It is used with caution as inho-
mogeneities such as the variable number of stations per
grid square over time can cause artifacts when calculating
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changes (Beck et al. 2005) but is included as it uses the
largest number of stations of the four datasets consid-
ered here. The VASCIimO dataset is a homogenized
GPCC product adjusted to support climate variability
and change analyses; however, data are only available
until 2000 with an update in preparation (A. Becker
2012, personal communication). For completeness, both
the datasets are included in the analysis; however, the
results for the VASClimO may be more reliable because
of the homogenization work. The VASClimO dataset
consists of 2.5° X 2.5° data from 1951 to 2000 and is based
on quality-controlled and homogenized time series from
9343 stations. The data in Zhang et al. (2007) are on a
5° X 5° grid based on long-term stations in the Global
Historical Climatology Network (GHCN) monthly
precipitation dataset (Vose et al. 1992). The authors
selected stations with at least 25 yr of data during 1961-
90 and at least 5 yr of data in every decade during 1950-
99. The updated version covers the period 1900-2009
and replaces Canadian stations in the GHCN with
homogeneity-adjusted Canadian data (Mekis and Vincent
2011). The CRU dataset, updated from CRU TS3.1,
covers the period from 1901 to 2010 and uses station data
collated from various sources (see Harris et al. 2013)
similar to those used by GHCN. No homogenization or
bias corrections are applied by CRU beyond those al-
ready implemented by the data sources. The station data
are interpolated to provide precipitation estimates at
each 0.5° X 0.5° grid box. Here, grid box values that lie
within 450 km of an observed monthly value are aggre-
gated to a 5° X 5° grid and only grid boxes containing
stations in at least two of the aggregated 0.5° X 0.5° grid
boxes (or one if at least 50% of the 5° X 5° grid box is
ocean) are included in this analysis.

Together the four datasets cover a range of methods
used to construct gridded observations. The Zhang
dataset provides robust long-term homogenized records,
but poor spatial coverage in some regions. While the
GPCC includes both long- and short-term station data
and extensive interpolation and provides complete
spatial coverage over land, it introduces significant un-
certainty in changes of precipitation over time that will
be more affected by changing station coverage than the
Zhang dataset. The VASClimO dataset addresses some
of the homogeneity issues of the GPCC but still includes
significant interpolation and infilling of grid boxes. The
CRU dataset has been restricted, in this analysis, to only
grid boxes where some station data exist and provide
more spatial coverage than the Zhang dataset but without
the same consistency in the station records over time.

All datasets are gridded to the same 5° X 5° grid but
are not masked to be spatially consistent with each other
and therefore spatial coverage varies between datasets,
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asseen in Fig. 1. This illustrates the value of using multiple
datasets—for example, the CRU dataset has poorer cov-
erage than the Zhang dataset in Canada but better cov-
erage across much of northern Asia. Temporal coverage
also varies between datasets with data only available
from 1951 to 2000 for the VASClimO data; therefore,
the calculation of changes is limited to 1952-2000 for
this dataset. For the CRU, Zhang, and GPCC datasets,
changes were calculated for 1951-2005. Grid boxes were
excluded where data were available in less than 95% of
the years to minimize the impact of changes in the spa-
tial coverage of the data over time.

The CMIPS archive, accessed in December 2012, in-
cluded 98 simulations from 33 models forced with anthro-
pogenic and natural external forcing to derive a fingerprint
of ALL-forced change, 45 simulations from 15 mod-
els for GHG-forced change, 38 simulations from 15
models for NAT-forced change, 18 simulations from
6 models for ANT-forced change, and 16 simulations
from 7 models for AA-forced change. For each obser-
vation dataset, the simulations are transferred to the ob-
servational grid and masked to match the spatial and
temporal data availability of that dataset on a grid-
box basis. The models used in this analysis are listed
in Table 1.

4. Zonal patterns of precipitation change

Zonal-mean change in precipitation is calculated by
applying a linear least squares regression to precipita-
tion averaged across each zonal band and is expressed as
the percentage change in precipitation relative to the
climatologically averaged precipitation of each 5° zonal
band between 45°S and 75°N giving spatial dimension
| = 24. Expressing changes as percentages rather than
anomalies has been shown to improve agreement be-
tween models and between models and observations
(Noake et al. 2012) and better represents the changes
that may be small but important in relatively dry regions
(e.g., Jones and Hulme 1996). For each 3-month season,
the absolute precipitation in each 5° latitude band is
averaged and a linear least squares fit is applied over all
the years to calculate the change in precipitation. This
absolute change is then divided by the mean precipita-
tion over the same period, spatial coverage, and latitude
band, and is then converted to a percentage. This zonal
percentage change is more robust than percentage change
for individual grid boxes, as otherwise very high values can
result for climatologically extremely dry grid boxes.

The simulated zonal-precipitation change pattern is
used to derive the fingerprints of forcing where F is the
multimodel-mean fingerprint from the ensembles of
ALL-forced simulations, GHG-forced simulations,
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FIG. 1. Percentage change in precipitation per decade for the CRU (1951-2005), Zhang (1951-2005), VASClimO (1952-2000), and GPCC
(1951-2005) datasets for MAM.

NAT-forced simulations, ANT-forced simulations,
and AA-forced simulations. One-signal detection (i.e.,
p = 1)is applied to the seasonal and annual ALL, GHG,
NAT, ANT, and AA fingerprints to fit each fingerprint
individually to the observed zonal-mean patterns of
change y calculated from each observation dataset. A
two-signal detection (p = 2) was also applied to annual-
change pattern fingerprints (considering two combina-
tions: first GHG and AA forcing and second ANT and
NAT forcing) to determine if the observed change can be
attributed to a combination of external forcings by dis-
tinguishing the role of individual forcings in observed
precipitation patterns.

Samples of seasonal and annual zonal-mean precip-
itation changes associated with internal climate variability

were derived by subtracting the multimodel mean from
each individual simulation’s zonal-mean pattern of
change from the ALL forcing simulations and multi-
plying by vn/n — 1, where n is the number of simula-
tions in the ensemble to avoid bias in the variance
(Von Storch and Zwiers 2001). Similarly, the samples
of noise on the fingerprint for each of the individual
forcings were calculated by subtracting the multi-
model mean from each individual simulation. To
account for possible underestimation of the precipi-
tation variability in some latitude bands by models
[see Zhang et al. (2007) and Fig. S1 in the supple-
mental material], the scaling factors were also calcu-
lated using double the model variance for the samples
of noise.
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FIG. 2. Observed and multimodel-simulated seasonal zonal-mean land precipitation changes (% decade ') for the four observational
datasets: CRU for 1951-2005 [Obs(C)] and 1951-99 [Obs(C99)], Zhang for 1951-2005 [Obs(Z)] and 1951-99 [Obs(Z99)], VASClimO
[(Obs(V)] for 1952-2000, and GPCC for 1951-2005 [Obs(G)] and 1951-99 [Obs(G99)]. Multimodel means of the ALL-forced simulations
are shown in black, the gray area is model 90% confidence interval, and blue (orange) areas show where observed changes are all positive

(negative).

5. Results
a. Role of external forcing

Figure 2 shows the changes in precipitation in the four
observed datasets, using each dataset’s full coverage
except for the removal of grid boxes with coverage in
fewer than 95% of the years. Blue shading shows where
zonal changes for all observed changes are positive
(13%,29%, 33%, and 42% of zonal bands for JJA, DJF,
MAM, and SON, respectively) and the orange shading
shows where they are all negative (25%, 25%,29%, and
17% of zonal bands for JJA, DJF, MAM, and SON,
respectively), yielding the most consistent changes in
MAM (62%) and the least in JJA (38%). Despite some
differences in the spatial and temporal coverage of the
four observational datasets, the observational zonal-
change patterns are similar with correlation coefficients
between 0.4 and 0.9 for most datasets and seasons (i.e.,
correlation is significant with p value < 0.05), though
they are not statistically significant for the Zhang and
CRU and Zhang and GPCC datasets in some seasons.

All observational datasets show increased precipitation
in the Northern Hemisphere mid- to high latitudes in all
seasons, drying of the Northern Hemisphere subtropics
in DJF and tropics in all seasons, and drying in the
Southern Hemisphere subtropics in DJF, JJA, and MAM.
Where the different observational datasets disagree on
the sign of the change is typically in latitude bands where
the change is small. The largest disagreement between
observations occurs in the Southern Hemisphere tropics,
where data are spatially limited and hence changes are
sensitive to even minor variations in the spatial coverage of
the datasets. The magnitude of the observed changes tends
to be larger in MAM and DJF, particularly in the Northern
Hemisphere. To determine the influence of recent years
on change patterns, changes were calculated for 1951-99
for the CRU, Zhang, and GPCC datasets and were found
to be very similar with changes for 1951-2005, with cor-
relation coefficients between 0.83 and 0.97 (see Fig. 2).
Figure 3 shows the ALL-forced multimodel mean where
the models have been masked to each observational
dataset for space and time. Blue shading shows where
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FIG. 3. Multimodel-mean zonal-mean land precipitation changes for ALL forcing (% decade '), where model data have been masked
to match the different spatial and temporal coverage of the four observational datasets: CRU (1951-2005), Zhang (1951-2005),
VASClmO (1952-2000), and GPCC (1951-2005) for DJF, MAM, JJA, and SON. Blue areas show where all changes are positive
irrespective of masking and orange areas show where all changes are negative.

changes for all multimodel means are positive irre-
spective of coverage (21%, 58%, 46%, and 29% of zonal
bands for JJA, DJF, MAM, and SON, respectively) and
the orange shading shows where they are all negative
(38%,29%,33%, and 25% of zonal bands for JJA, DJF,
MAM, and SON, respectively), yielding the most con-
sistency in MAM (87%) and the least in SON (54%).
The zonal bands where the sign of the changes for the
four observational datasets is different and not close
to zero largely coincide with areas where the different
masking of the same multimodel fingerprint notably
modifies the outcome, suggesting that the sign differ-
ences, as well as some variations in the magnitude of the
changes between observational datasets (e.g., the negative
tropical change in DJF), appear to be at least partly related
to data coverage. Also changes in the Southern Hemi-
sphere tropics tend not to be the same sign for all datasets,
reflecting the poorer data availability in this region.

Figure 4 shows the ALL-forced simulated changes
for the individual models where the models have been
masked to match the spatial and temporal coverage of
the GPCC dataset, which has the largest spatial and
temporal coverage. The observational changes tend to
be largely within the range of simulated changes from
the individual model simulations. Blue shading shows
where changes for 75% of the models are positive and
the orange shading shows where 75% of the models are
negative. The models tend to show larger consistent
changes in DJF than in other seasons and more so in the
Northern Hemisphere. The most consistent response
across models is an increase in precipitation in the North-
ern Hemisphere mid- to high latitudes in all seasons,
which is also seen in the observations, particularly in
DJF and MAM. The models also tend to produce a
consistent pattern of decreasing precipitation at around
30°N in DJF and around 20°N in MAM, while the
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FIG. 4. Individual-model-mean and multimodel-mean (black) zonal-mean land precipitation changes for ALL forcing (% decade™!),
where model data have been masked to match the spatial and temporal coverage of the GPCC dataset (1951-2005) for DJF, MAM, JJA,
and SON (in blue). Gray areas reflect the individual simulations’ 90% confidence interval, blue areas show where 75% of models give
positive changes, and orange areas show where 75% of models give negative changes.

observations consistently show moistening in these
latitude bands across all datasets.

Figure 1 shows the spatial precipitation change pat-
tern for all four observational datasets for MAM, high-
lighting the different spatial coverage. Figure 5 shows
the spatial change patterns for the GPCC dataset for all
four seasons, where the hatched areas show where all
available observational datasets agree on the sign of the
change. The sign of the observed changes agrees over
large areas, though not all four datasets have data in
these regions, but disagree in all the seasons in parts of
South America and eastern and northern Asia. Figure 6
shows where all observations agree with the sign of
the multimodel-mean change. The multimodel-mean
change tends to be the same sign as the observations in all
seasons over Europe, northern parts of North America,
parts of southern Africa and South America, and
Western Australia but is not the same in large parts of
Asia, South America, Africa, and the United States
where the observed changes are consistent across all
four datasets. In most cases, for example the western

United States, parts of central Africa, and eastern Brazil
in DJF, the model changes are not consistently positive—
negative (i.e., <75% of models give changes of the same
sign) in these regions indicating that climate variability
may be responsible for the discrepancies between the
multimodel mean and the observations.

b. Role of individual external forcings

Figure 7 shows the ALL, GHG, ANT, NAT, and AA
multimodel simulated changes masked to the GPCC
dataset. The magnitude of the changes for the NAT-
forced multimodel mean tends to be smaller than that
for the other forcings, and the ensemble encompasses
zero for all latitude bands. The blue areas show where
ALL-, GHG-, and ANT-forced changes are all positive,
orange shows where they are all negative, and the X
symbols show where over 75% of the simulations give
a change of the same sign. The changes are the same sign
for the different forcings in the mid- and high latitudes,
particularly in the Northern Hemisphere where all show
increased precipitation. It is also at these latitudes that
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FIG. 5. Percentage change in precipitation per decade for the GPCC dataset for 1951-2005 for DJF, MAM, JJA, and SON. Hatched grid
boxes show where the sign of the change is consistent across all observation datasets with data available for that grid box.

the changes of the individual simulations tend to be most
consistent (>75% give changes of the same sign). These
three different forcings tend to produce changes with
different signs in the tropics and subtropics. Across
much of this region the precipitation change from the
ALL-forced multimodel mean is negative while the
change from the GHG- and ANT-forced simulations is
more structured. The changes for the NAT-forced sim-
ulations tend to be less consistent overall than for the
other forcings, with only a few zonal bands with over
75% of simulations giving a change of the same sign and
none at all in MAM or SON. Natural forcing over that
period is limited to very small changes in solar forcing
and a few volcanic eruptions whose effect, particularly
on land precipitation, should not lead to long-term trends.

Figures S2-S6 in the supplemental material show the
zonal-mean changes from observations plotted against
the multimodel-mean changes for each latitude for
ALL, GHG, NAT, ANT, and AA forcings, respectively.
The observations show the least agreement with only
NAT or only AA forcings and show the most agreement
for the ALL-forced multimodel mean.

Figure 8 shows the spatial precipitation patterns of
change of the multimodel means for MAM for each of
the different forcings, ALL, GHG, NAT, ANT, and AA.
The patterns of change are largely consistent for the
multimodel means of ALL-, GHG-, and ANT-forced
simulations. This is consistent with GHG being the larg-
est forcing over the past 50 yr. In contrast, the NAT- and
AA-forced simulations have distinctly different patterns
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FIG. 6. Percentage change in precipitation per decade for the ALL-forced multimodel mean for 1951-2005 for DJF, MAM, JJA, and
SON. Hatched grid boxes show where the sign of the change is consistent across all four observation datasets and the multimodel mean.
Note the smaller scale of change patterns as multimodel-mean changes show a much reduced influence of internal climate variability.

of moistening and drying; for example, the NAT and
AA changes show moistening over southern Europe,
while the ALL, GHG, and ANT changes all show dry-
ing. Conversely, in large parts of Asia the NAT and AA
forcing, according to the models, should have caused
drying while the ALL, GHG, and ANT changes show an
increase in precipitation. Figure 8 also shows the mul-
timodel mean of the ALL-forced simulations from
CMIP3. The sign of the changes is largely the same for
large parts of the globe for CMIP3 and CMIPS multi-
model means; however, there are some differences over
parts of Africa, South America, and Asia with the CMIP5
changes tending to show an increase in precipitation
compared to a decrease from CMIP3. However, these
differences tend to be small and in regions where there

is no consistency between the sign of the changes in the
CMIPS5 models (i.e., sign of change is the same in <75%
of models); therefore, the differences are likely to be
explained, at least in part, by the different composition
of models in the CMIP3 and CMIP5 ensembles.

¢. Results of detection and attribution

We will now discuss the results of a detection and at-
tribution method aiming to attribute causes to the ob-
served changes. Figure 9 shows the scaling factors and
90% confidence intervals for all four datasets for the
ALL-forced simulations, GHG-forced simulations, NAT-
forced simulations, and ANT- and AA-forced simula-
tions, and Table 2 shows the scaling factors and 90%
confidence interval for the ALL-forced simulations. For
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FIG. 7. Multimodel-mean zonal-mean land precipitation changes for ALL, GHG, ANT, NAT, and AA forcings (% decade '), where
model data have been masked to matched the spatial and temporal coverage of the GPCC dataset (1951-2005) for DJF, MAM, JJA, and
SON. The blue areas show where the changes of the multimodel mean of the ALL, GHG, and ANT forcings are all positive and the orange
areas show where they are all negative. The X symbols show where over 75% of the simulations give changes of the same sign.

the ALL and ANT fingerprints, a detectable result at the
5% significant level for double the variance is found for
three datasets in MAM, DJF, and annual (ANN). (By
doubling the variance of the model-based estimates of
internal variability, we allow for the possible underes-
timation of precipitation variability by the models and
obtain a more conservative—i.e., wider—confidence in-
terval.) Only GPCC (shown in gray), which has not been
homogenized for trend analysis, does not show a de-
tectable signal of external forcing; however, changes
are detectable for the VASClimO dataset, a homoge-
nized subset of the GPCC dataset. In that case, the 90%
confidence interval is very close to 0 for DJF for double
the variance, so the forcing signal may only just be
emerging from the climate noise for VASClimO in this

season. Only the Zhang dataset shows detectable
changes for all four seasons, even if the variance of noise
is doubled. GHG forcing is detected for the same data-
sets and seasons as ALL forcings, except for VASClimO
in DJF and ANN and CRU in ANN. Neither NAT nor
AA forcing are detected consistently across any dataset
or season; however, the 90% confidence intervals are
negative for three datasets in MAM (i.e., the pattern of
change for AA forcing is opposite that observed). This
is consistent with GHG forcing being primarily re-
sponsible for the forced changes in the ALL and ANT
fingerprints detected in the observations.

For ALL forcing, the scaling factor is not consistently
greater than 1 for any season or for annual changes,
and the best-guess scaling factors are largely in the range
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(18), NAT (38), and AA-forced (16) simulations, and the multimodel mean of the ALL-forced (54) simulations from CMIP3.

0-2. Thus, the magnitude of the precipitation changes is
largely captured by the models when expressed as per-
centage change relative to the internal climatology of
the model or observational dataset. The results for the
ANT-forced fingerprint are mostly similar to those of
the ALL forcing, as are those for GHG-only forcing.
Scaling factors for the two-signal analysis are shown in
Fig. 10, which determines if the response to individual
forcing can be distinguished from each other. For the
two-signal analysis, no forcing is detected consistently
across all datasets at the 5% level of significance for
double the variance. However, GHG forcing is detectable
for the Zhang dataset at the 5% level of significance when
AA forcing is included separately into the analysis and for
ANT forcing when including NAT forcing separately.
The residuals after tls fitting are compared to the
variance in the simulations using an F test to ensure that

the residuals are not significantly different from those
expected from control simulations (Allen and Stott
2003). Where the F test fails either the regression does
not contain all relevant and realistic response finger-
prints to external forcings or the model variability is
erroneous. The residual consistency test is passed for
all forcings and seasons when the model variance is
doubled.

6. Discussion and conclusions

In Noake et al. (2012), the datasets and models were
masked to have the same spatial and temporal coverage
as each other. Here, the observational datasets have not
been masked except to remove grid boxes with poor
temporal coverage, and the simulations have been
masked to each dataset individually to derive fingerprints.
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FI1G. 9. Detection results for individual fingerprints. Scaling factors [see Eq. (1)] are given for (a)—(¢) seasonal and (f) annual changes for

CRU (Oc) for 1951-2005, Zhang (Oz) for 1951-2005, VASCIimO (Ov) for 1952-2000, and GPCC (Og) for 1951-2005 observations.
(a) ALL-, (b) GHG-, (c) ANT-, (d) NAT-, and (e¢) AA-forced simulation-based fingerprints. (f) Scaling factors for annual changes for all
five fingerprints. The X symbols show the ‘‘best-guess” scaling factor for the multimodel mean, thick lines are the 90% confidence interval

for the raw variance added as noise, and thin lines are the 90% confidence interval for double the variance.

Nevertheless, the resulting change patterns are similar
for all observational datasets, despite differences in data
coverage. The Southern Hemisphere tropics are an ex-
ception, as spatial coverage is particularly poor because
of the limited availability of land station data (see, e.g.,
Becker et al. 2013). In these regions, ocean data are
required to improve the calculation of zonal-mean pre-
cipitation changes, but the relatively short satellite data
coverage means that the signal-to-noise ratio of these
data may be too low to allow for the detection of forcing

using this approach. However, there is evidence from
satellite and model data that land and ocean precipita-
tion in the tropics and globally are negatively correlated
(Gueet al. 2007; Liu et al. 2012), while analysis of salinity
data suggests that an enhanced P — E signal may also be
emerging there (Durack et al. 2012). We find that dif-
ferences in spatial coverage play an important role in
differences in zonal-mean changes between datasets.
The zonal patterns of change are similar for the ALL,
ANT, and GHG forcing at latitude bands where over

TABLE 2. Scaling factors for tls detection and attribution for ALL forcing. Table shows best-fit scaling factor and 90% confidence interval
in square brackets for double the variance. Values in bold show where forcing is detected.

Obs dataset DIJF MAM JJIA SON Annual
CRU 1.40 [0.39-2.83] 1.88 [0.50-3.66] 1.00 [—0.58-2.76] 0.16 [-1.95-2.04] 1.32 [0.41-2.60]
Zhang 1.75 [0.75-3.31] 2.94 [1.72-5.16] 1.80 [0.18-3.79] 1.86 [0.84-3.32] 2.46 [1.56-3.66]
VASCIimO 1.22 [0.007-2.79] 1.74 [0.08-3.76] 1.42 [-0.62-4.26] 0.57 [—1.35-2.57] 1.37 [0.16-2.59]
GPCC 0.38 [—0.78-1.51] 0.76 [—0.78-2.26] 1.04 [—-0.77-3.323] 0.57 [-0.87-1.96] 0.40 [—0.49-1.30]
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1951-2005 observations for annual changes. The X symbols show the best-guess scaling factor
for the multimodel mean, thick lines are the 90% confidence interval for the raw variance
added as noise, and thin lines are the 90% confidence interval for double the variance.

75% of the simulations give changes of the same sign. In
particular in the Northern Hemisphere mid- and high
latitudes, where land coverage and hence spatial cov-
erage is greatest, the changes for ALL, GHG, and ANT
are all positive while the changes for AA are negative.
The smaller positive changes for ALL and ANT forc-
ing compared to the GHG forcing are consistent with
the negative influence of AA forcing on the changes in
precipitation at these latitude bands. Aerosols affect the
climate by direct absorption of radiation and indirectly
by changing cloud properties. Emissions of aerosols are
greater in the Northern Hemisphere. Hence, because of
their relatively short lifetimes in the atmosphere, aero-
sols have a stronger cooling effect on in the Northern
Hemisphere. The spatial pattern of AA-induced changes
shows a decrease in precipitation over much of the
United States, Europe, and Asia. Anthropogenic aero-
sol emissions have been shown to suppress monsoon
circulation and cause a reduction in precipitation over
South and East Asia (Randles and Ramaswamy 2008;
Bollasina et al. 2011; Guo et al. 2012) and to change ex-
tratropical circulation with associated changes in pat-
terns of precipitation (Ming et al. 2011).
Understanding the physical mechanisms responsible
for the patterns of change in the zonal-mean precip-
itation is difficult because of a number of complicating
factors such as poor spatial coverage in some zonal
bands, the influence of natural variability (which will
have a greater impact where spatial coverage is limited),
and the fact that we are average over different circulation

regimes. As a first step we consider the P — E patterns of
change from Held and Soden (2006). These are domi-
nated by changes in precipitation so we might expect
that the zonal patterns of precipitation change would
match those of P — E at least qualitatively in terms of
the sign of the change; however, enhanced P — E will not
apply as well for the land-only zonal means used here,
so some disagreement is expected. The ALL-forced
multimodel-mean changes in precipitation are the same
sign as the P — E patterns in the Northern Hemisphere
subtropics and mid- and high latitudes but not the
tropics or Southern Hemisphere. The GHG- and ANT-
forced multimodel mean are similar, except that small
(<1% decade™ ') positive changes occur in Northern
Hemisphere subtropical precipitation in JJA and SON.
The increase in observed precipitation in the Northern
Hemisphere high latitudes is consistent with increasing
moisture transport into these regions (Seager et al. 2010;
Bengtsson et al. 2011), while the decrease in precip-
itation in the Northern Hemisphere subtropics is con-
sistent with the expected expansion of the subtropical
dry regions as a result of the expansion of the Hadley cell
(Lu et al. 2007; Seager et al. 2010; Scheff and Frierson
2012) and poleward shift of the midlatitude storm tracks,
which transport moisture poleward from the subtropics
(Yin 2005; Lorenz and DeWeaver 2007; Seidel et al.
2008).

The zonal-mean patterns do not show the enhance-
ment of precipitation predicted in the zonal tropics by
Held and Soden (2006). In the tropics, precipitation is
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enhanced over convergence regions and decreases in
subsidence regions (due to increased moisture trans-
port), though dynamical feedbacks can produce changes
of the opposite sign within these regions (Chou and
Neelin 2004; Neelin et al. 2006; Chou et al. 2009). Seager
et al. (2010) show from modeling studies of the twenty-
first century that while changes in P — E are positive in
the tropics overall, changes over land are mostly nega-
tive in April-September and a mixture of positive and
negative in October—March. These patterns are largely
due to the increase of the advection of water vapor by
the mean flow, but changes to the mean circulation dy-
namics are also important. Neelin et al. (2006) also show
drying over tropical land in JJA in the twenty-first cen-
tury and Liu et al. (2012) show that precipitation de-
creases with temperature over tropical land in CMIPS5
models and satellite data. In the Southern Hemisphere,
the lack of ocean data is particularly problematic when
calculating the zonal-mean changes due to poor data
coverage compared to the Northern Hemisphere, par-
ticularly in the tropics. In the subtropics, the expected
drying is only seen in JJA, with increasing precipitation
in DJF and SON mostly due to changes over Australia,
which matches the increase in P — E seen in October—
March in Seager et al. (2010).

The spatial change patterns are similar for the differ-
ent observational datasets in terms of the sign of change.
In many regions, and in many areas where the sign of
change of the multimodel mean is not the same as ob-
servations, the individual model simulations do not pro-
duce consistent moistening or drying either, emphasizing
large variability in precipitation. However, in some re-
gions observed changes are the same sign across all
datasets but are different for modeled changes that are
consistent across the simulations; for example, northeast
Asia in DJF. Internal climate variability may explain
some of the discrepancies. Dai (2013) showed how in-
ternal variability could produce apparent trends in re-
gional precipitation on multidecadal time scales in the
southwest United States while Kelley et al. (2012) show
that the winter drying seen in the Mediterranean ob-
servations may be due to multidecadal variability with
the radiatively forced signal only beginning to emerge
from the natural variability. Regional precipitation
changes will also be affected by even subtle shifts in
atmospheric circulation. For example, Noake et al. (2012)
investigated whether the North Atlantic Oscillation
(NAO) could explain aspects of the observed changes
but reveal only a small effect on the observed zonal-
mean changes. In contrast, the NAO affects changes in
Europe at decadal time scales (Sutton and Dong 2012).

Noake et al. (2012) showed that using percentage change
rather than absolute changes the model simulations tended
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to capture the magnitude of change for ALL-forced
simulations with only MAM being consistently under-
estimated by the models and that the external forcing
was detectable for DJF, MAM, and SON using the
CMIP3 models. Here, we find a similar result using the
CMIP5 models and extending the time period to 2005
for the CRU, Zhang, and the GPCC (not used in Noake
et al. 2012) datasets, with the only major change being
that the ALL forcing is no longer detected for the CRU
and VASCIlimO datasets for SON and that the magni-
tude of change is no longer consistently underestimated
in MAM for all observational datasets. In Noake et al.
(2012), all datasets were masked to limit coverage to grid
boxes where station data were available. However, here
we include grid boxes where data have been inter-
polated, introducing more uncertainty but allowing for
greater spatial and more consistent temporal coverage.
Applying tls detection to a number of datasets and for
different seasons increases the likelihood that we will
obtain false positive detection results simply by chance.
Only when forcing is detected for multiple datasets in
the same seasons or across seasons do we have confi-
dence that detection of forcing is robust. Robust de-
tection results were found for MAM, DJF, and annual,
where ALL forcing is detected for all datasets except the
GPCC dataset, which has not been homogenized for use
in change analysis. It is also worth noting that for the
Zhang dataset, which is restricted to only grid boxes that
contain long-term station data, we detect ALL forcing
across all seasons and for annual changes as was the case
in Zhang et al. (2007) for annual data.

The present study further extends the work of Noake
et al. (2012) by obtaining results for individual forcings.
We find that fingerprints that include the effects of
greenhouse gas increases (ALL, ANT, and GHG) are
similarly detectable, with changes in DJF and MAM
detectable in at least two datasets even when the model-
based estimate of internal-variability variance is doubled.
Neither NAT forcing nor AA forcing are detectable. AA
shows negative detectable signals in MAM in three data-
sets, which are possibly due to aerosol forcing partly
counteracting greenhouse gas forcing, possibly by pre-
cipitation response to aerosol-induced cooling (see Allen
and Ingram 2002).

The two-signal detection fails to produce a detectable
forcing consistently across all datasets if estimating the
GHG and AA fingerprints separately or the ANT and
NAT forcings separately. However, anthropogenic forc-
ing is detected separately from natural forcing, and
greenhouse gas forcing is detected separately from an-
thropogenic aerosol forcing for the Zhang dataset. For
anthropogenic forcing, the magnitude of the scaling fac-
tor is inconsistent with “1”” indicating that the model
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response needs to be enhanced to reproduce the ob-
servations, as was found in Zhang et al. (2007) for annual
data. Overall results of the detection and attribution for
global land precipitation using fingerprints from the
CMIP5 models are consistent with older work using the
CMIP3 models. The results confirm that external forcing
had a detectable influence on seasonal land precipitation
in MAM, DIJF, and annual land precipitation and sug-
gests, with uncertainties, that the externally forced
changes are largely the result of human influence, par-
ticularly greenhouse gas forcing of the climate.
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