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ABSTRACT

Historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) archive are

used to calculate the zonal-mean change in seasonal land precipitation for the second half of the twentieth

century in response to a range of external forcings, including anthropogenic and natural forcings combined

(ALL), greenhouse gas forcing, anthropogenic aerosol forcing, anthropogenic forcings combined, and natural

forcing. These simulated patterns of change are used as fingerprints in a detection and attribution study

applied to four different gridded observational datasets of global land precipitation from 1951 to 2005. There

are large differences in the spatial and temporal coverage in the observational datasets. Yet despite these

differences, the zonal-mean patterns of change are mostly consistent except at latitudes where spatial cov-

erage is limited. The results show some differences between datasets, but the influence of external forcings is

robustly detected in March–May, December–February, and for annual changes for the three datasets more

suitable for studying changes. For June–August and September–November, external forcing is only detected

for the dataset that includes only long-term stations. Fingerprints for combinations of forcings that include the

effect of greenhouse gases are similarly detectable to those for ALL forcings, suggesting that greenhouse gas

influence drives the detectable features of the ALL forcing fingerprint. Fingerprints of only natural or only

anthropogenic aerosol forcing are not detected. This, together with two-fingerprint results, suggests that at

least some of the detected change in zonal land precipitation can be attributed to human influences.

1. Introduction

Increased temperatures over the twentieth century

have led to an increase in the moisture content of the

atmosphere (Santer et al. 2007; Willett et al. 2007), and

changes to global (Zhang et al. 2007; Huffman et al.

2009; Smith et al. 2010) and regional precipitation

patterns have been observed (e.g., Hoerling et al. 2006;

Min et al. 2008; Kang et al. 2011) that follow expecta-

tions based on physics and modeling (Held and Soden

2006). Global and regional precipitation changesmay be

influenced by a complex range of factors including the

direct response to greenhouse gas forcing and to the

warming of the atmosphere (Allen and Ingram 2002;

Lambert and Allen 2009), changes in atmospheric cir-

culation (e.g., Ineson and Scaife 2009; Kenyon and

Hegerl 2010), sea surface temperature changes (e.g.,

Hoerling et al. 2012; Yoshioka et al. 2007; Lyon and

DeWitt 2012; Hoerling et al. 2012), and regional changes

in vegetation (e.g., Wang et al. 2004) and stratospheric

aerosols (e.g., Gillett et al. 2004).

One of the predicted responses of the hydrological

cycle to increasing greenhouse gas concentrations is

the intensification of the water cycle (Allen and Ingram
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2002; Held and Soden 2006; Wentz et al. 2007; Chou

et al. 2009; Seager et al. 2010). As the atmosphere

warms, water vapor increases in line with the Clausius–

Clapeyron relation and as the horizontal transport of

water vapor increases, the existing pattern of precipi-

tation minus evaporation (P 2 E) is enhanced. Thus,

areas that export moisture get drier and areas that

import water get wetter (Held and Soden 2006). How-

ever, the increase in global precipitation is constrained by

tropospheric radiative cooling with precipitation in-

creasing at a slower rate than column water vapor (Allen

and Ingram 2002; Lambert and Allen 2009). There must

therefore be a corresponding decrease in the convective

mass flux, implying weakening atmospheric circulation in

the tropics, where most moist convection occurs (Vecchi

et al. 2006; Lu et al. 2007). Changes in the mean circula-

tion in response to warming will also affect precipitation.

In particular, warming is expected to lead to a poleward

expansion of the Hadley cells with an associated pole-

ward expansion of the subtropical dry regions and pole-

ward shift of the midlatitude storm tracks (Yin 2005;

Lorenz and DeWeaver 2007; Seidel et al. 2008; Lu

et al. 2007; Seager et al. 2010; Scheff and Frierson 2012),

though the exact mechanisms are still to be understood.

Held and Soden (2006) show that the zonal-mean

changes in P 2 E are robust in response to warming

associated with greenhouse gas forcing and that the

structure of these changes is dominated by changes in

precipitation. Consequently, Zhang et al. (2007) and

Noake et al. (2012) used zonal means to show the global

patterns of land precipitation change, for which long-

term records of precipitation are available, and to derive

fingerprints of forcing that can be used for detection and

attribution. This enhancement of the P2 E pattern is less

clear over land than oceans, where evaporation can be

limited in arid regions. Model-simulated future pre-

cipitation change broadly follows a similar zonal pattern of

moistening and drying over ocean as over land (Meehl et al.

2007), and significant changes in precipitation over land

due to human influence are expected to have already

occurred (Balan Sarojini et al. 2012).

The observed changes in precipitation are a combi-

nation of external forcing and internal variability (to-

gether with errors and biases arising from limitations of

the observational system). Internal variations can cause

regional changes in precipitation on multidecadal time

scales (Dai 2013), making it difficult to distinguish the

influence of external forcing. The spatial scale of these

decadal features tends to be regional (Cayan et al. 1998),

so by averaging over large areas, such as zonal means,

the influence of internal variability on the observed pre-

cipitation changes can be reduced. The internal variations

in the model simulations will be unique to each simulation.

By averaging over many simulations, the influence of

internal variability is reduced in the patterns of precip-

itation change (Zhang et al. 2007; Knutti et al. 2010).

Fingerprint detection and attribution methods (Allen

and Stott 2003) have been used to attribute observed

changes in precipitation over the latter twentieth cen-

tury to anthropogenic forcing for annual global zonal

land precipitation (Zhang et al. 2007) and for the Arctic

(Min et al. 2008) and to attribute changes in seasonal

global zonal land precipitation to external forcing

(Noake et al. 2012) using phase 3 of the Coupled Model

Intercomparison Project (CMIP3) archive. Estimates of

the mean zonal changes in annual precipitation found

the multimodel mean and individual model simulations

from the CMIP3 archive tended to underestimate the

magnitude of the observed precipitation change (Zhang

et al. 2007). However, using seasonal zonal-mean land

changes expressed as percentages from three different

datasets of near-global coverage, Noake et al. (2012)

found that observed precipitation changes were signifi-

cantly underestimated by the models for all the datasets

only during March–May (MAM). For other seasons,

models and observations were consistent given data

uncertainty and internal variability, though the dataset

used in Zhang et al. (2007) also showed the models un-

derestimating the changes in December–February

(DJF) and annual precipitation. The precipitation changes

for three observational datasets and models were found

to be quite similar to each other where the observations

and models were masked to include only grid boxes

where gauge data were available. External forcing was

detectable in DJF, MAM, and September–November

(SON) for all observational datasets and in June–August

(JJA) for one dataset at the 5% level of significance;

however, the authors did not separate the response of

anthropogenic forcing from natural forcing and could not

therefore demonstrate that anthropogenic forcing had

contributed significantly to seasonal patterns of change

as it had been shown to for annual changes (Zhang et al.

2007).

Here, we apply the methodology of Noake et al. (2012)

to themodels from the newphase 5 of theCoupledModel

Intercomparison Project (CMIP5) archive (Taylor et al.

2012) and four observational datasets to compare the

performance of the latest generation of models to that of

the previous generation. In addition to applying total

least squares detection to a fingerprint of all external

forcings (ALL)1 forcings, the analysis is extended to

1Here, ‘‘ALL’’ external forcings refers to the full set of forcings

prescribed in the CMIP5 protocol as implemented by each par-

ticipating modeling center.

6680 JOURNAL OF CL IMATE VOLUME 26



include fingerprints of greenhouse gas–only (GHG)

forcing, anthropogenic-only (ANT) forcing, natural-only

(NAT) forcing, and anthropogenic aerosol–only (AA)

forcing in order to separate the contribution of different

forcings to the observed pattern of change.

The paper is organized as follows: section 2 briefly

introduces the detection and attribution method and

section 3 introduces the data. In section 4, robust and

less robust changes in zonal precipitation are discussed

across observational data and model simulations. Sec-

tion 5 gives detection and attribution results that are

discussed in section 6.

2. Total least squares detection

The goal of detection and attribution is to determine if

observations show evidence of forced changes expected

from physical reasoning (e.g., as captured in climate

models). In climate change detection and attribution, F

is an l 3 p matrix of fingerprints that define response

patterns (rank-l vectors, such as zonal-mean precipitation

changes) to p external climate forcings. It is scaled to the

rank-l vector of observations y to estimate the magnitude

of each pattern in the observed climate, using total least

squares (tls) regression (Allen and Stott 2003):

y5 (F1 efinger) � b1 enoise , (1)

where b is a vector of scaling factors with p entries for

each forcing fingerprint, enoise is the residual associated

with internal climate variability, and efinger is the vari-

ability superimposed on the fingerprint. As signal-to-

noise ratio is low for precipitation, efinger will be non-

negligible even for a multimodel mean. If the scaling

factor exceeds zero at a particular significance level,

then the fingerprint response pattern is detected in the

observations (see Hegerl et al. 2007).

Detailed theoretical discussion of the tls method can

be found in Allen and Stott (2003); here, we describe the

practical implementation. We define the l 3 p0 matrix

Z[ [F, y], where p0 5 p1 1, and take the singular value

decomposition Z 5 ULVT. After sorting eigenvalues

into descending order, the p0th element of the p0th col-

umn of V, the p0-rank vector ~v corresponds to the best-

fit scaling parameter. The scaling factor for fingerprint

i is then bi 5 2 ~vi/~vp0 (Allen and Stott 2003).

Internal climate variability leads to uncertainty in the

fingerprint and observed response patterns and hence to

uncertainty in the scaling factor. This uncertainty must

be taken into account when applying detection and at-

tribution. Only when the probability that b is consistent

with zero is small (e.g., 5%) can it be stated with con-

fidence that the fingerprint response pattern has been

detected in the observations. The uncertainty in the

scaling factor can be calculated by superimposing mul-

tiple samples of noise onto both the fingerprint and

observations and recalculating the scaling factor. Each

noise sample is a rank-l vector, meaning that the vari-

ance does not have to be the same for all the elements

(so the strength of internal variability can vary with

latitude; see the supplemental material available at the

JournalsOnlinewebsite: http://dx.doi.org/10.1175/ JCLI-D-

12-00474.s1) and that the covariance pattern of pre-

cipitation variability is preserved. Where 95% of the b

values exceed zero, it is concluded that there is a sig-

nificant (p , 5%) relationship between the observed

and multimodel changes that cannot be explained by

internal climate variability.

For the tls method, noise-reduced observation and

model fingerprints are calculated using

~Z5Z2Z~v~vT (2)

to produce a ‘‘best fit’’ of both. It is onto these that the

sample of noise is added for evaluating b. The regres-

sion residual enoise is compared to samples of model

variability using the F test of Allen and Tett (1999).

We experimented with using optimal fingerprints but

found that the benefit was small (i.e., the results were

similar) compared to the level of complexity introduced

by having to truncate to a low-dimensional space, so the

results shown here are for nonoptimized fingerprints

(e.g., Zhang et al. 2007).

3. Data: Observations and models

Four gridded observational datasets for monthly pre-

cipitation were used in this analysis. The datasets are an

updated version of data from Zhang et al. (2007): the

Climate Research Unit (CRU) monthly precipitation

dataset [updated from CRU TS3.1 of Harris et al.

(2013)] and two datasets from the Global Precipitation

Climatology Centre (GPCC), the Variability Analysis of

Surface Climate Observations (VASClimO) dataset

(Beck et al. 2005) and Full Reanalysis dataset

(Schneider et al. 2013). While each gridded dataset is

constructed independently, they use overlapping sets of

the same raw station data. Although the stations do not

provide complete spatial and temporal coverage, Wan

et al. (2013) showed that they are likely to be sufficient

for estimating the magnitude of changes and variability

in regional land area mean precipitation.

The GPCC dataset is spatially interpolated covering

the period 1901–2010. It is used with caution as inho-

mogeneities such as the variable number of stations per

grid square over time can cause artifacts when calculating

1 SEPTEMBER 2013 POL SON ET AL . 6681



changes (Beck et al. 2005) but is included as it uses the

largest number of stations of the four datasets consid-

ered here. The VASClimO dataset is a homogenized

GPCC product adjusted to support climate variability

and change analyses; however, data are only available

until 2000 with an update in preparation (A. Becker

2012, personal communication). For completeness, both

the datasets are included in the analysis; however, the

results for the VASClimOmay bemore reliable because

of the homogenization work. The VASClimO dataset

consists of 2.58 3 2.58 data from 1951 to 2000 and is based

on quality-controlled and homogenized time series from

9343 stations. The data in Zhang et al. (2007) are on a

58 3 58 grid based on long-term stations in the Global

Historical Climatology Network (GHCN) monthly

precipitation dataset (Vose et al. 1992). The authors

selected stations with at least 25 yr of data during 1961–

90 and at least 5 yr of data in every decade during 1950–

99. The updated version covers the period 1900–2009

and replaces Canadian stations in the GHCN with

homogeneity-adjusted Canadian data (Mekis and Vincent

2011). The CRU dataset, updated from CRU TS3.1,

covers the period from 1901 to 2010 and uses station data

collated from various sources (see Harris et al. 2013)

similar to those used by GHCN. No homogenization or

bias corrections are applied by CRU beyond those al-

ready implemented by the data sources. The station data

are interpolated to provide precipitation estimates at

each 0.58 3 0.58 grid box. Here, grid box values that lie

within 450 km of an observed monthly value are aggre-

gated to a 58 3 58 grid and only grid boxes containing

stations in at least two of the aggregated 0.58 3 0.58 grid
boxes (or one if at least 50% of the 58 3 58 grid box is

ocean) are included in this analysis.

Together the four datasets cover a range of methods

used to construct gridded observations. The Zhang

dataset provides robust long-term homogenized records,

but poor spatial coverage in some regions. While the

GPCC includes both long- and short-term station data

and extensive interpolation and provides complete

spatial coverage over land, it introduces significant un-

certainty in changes of precipitation over time that will

be more affected by changing station coverage than the

Zhang dataset. The VASClimO dataset addresses some

of the homogeneity issues of the GPCC but still includes

significant interpolation and infilling of grid boxes. The

CRU dataset has been restricted, in this analysis, to only

grid boxes where some station data exist and provide

more spatial coverage than theZhang dataset butwithout

the same consistency in the station records over time.

All datasets are gridded to the same 58 3 58 grid but

are not masked to be spatially consistent with each other

and therefore spatial coverage varies between datasets,

as seen in Fig. 1. This illustrates the value of usingmultiple

datasets—for example, the CRU dataset has poorer cov-

erage than the Zhang dataset in Canada but better cov-

erage across much of northern Asia. Temporal coverage

also varies between datasets with data only available

from 1951 to 2000 for the VASClimO data; therefore,

the calculation of changes is limited to 1952–2000 for

this dataset. For the CRU, Zhang, and GPCC datasets,

changes were calculated for 1951–2005. Grid boxes were

excluded where data were available in less than 95% of

the years to minimize the impact of changes in the spa-

tial coverage of the data over time.

The CMIP5 archive, accessed in December 2012, in-

cluded 98 simulations from 33 models forced with anthro-

pogenic and natural external forcing to derive a fingerprint

of ALL-forced change, 45 simulations from 15 mod-

els for GHG-forced change, 38 simulations from 15

models for NAT-forced change, 18 simulations from

6 models for ANT-forced change, and 16 simulations

from 7 models for AA-forced change. For each obser-

vation dataset, the simulations are transferred to the ob-

servational grid and masked to match the spatial and

temporal data availability of that dataset on a grid-

box basis. The models used in this analysis are listed

in Table 1.

4. Zonal patterns of precipitation change

Zonal-mean change in precipitation is calculated by

applying a linear least squares regression to precipita-

tion averaged across each zonal band and is expressed as

the percentage change in precipitation relative to the

climatologically averaged precipitation of each 58 zonal
band between 458S and 758N giving spatial dimension

l 5 24. Expressing changes as percentages rather than

anomalies has been shown to improve agreement be-

tween models and between models and observations

(Noake et al. 2012) and better represents the changes

that may be small but important in relatively dry regions

(e.g., Jones and Hulme 1996). For each 3-month season,

the absolute precipitation in each 58 latitude band is

averaged and a linear least squares fit is applied over all

the years to calculate the change in precipitation. This

absolute change is then divided by the mean precipita-

tion over the same period, spatial coverage, and latitude

band, and is then converted to a percentage. This zonal

percentage change is more robust than percentage change

for individual grid boxes, as otherwise very high values can

result for climatologically extremely dry grid boxes.

The simulated zonal-precipitation change pattern is

used to derive the fingerprints of forcing where F is the

multimodel-mean fingerprint from the ensembles of

ALL-forced simulations, GHG-forced simulations,
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NAT-forced simulations, ANT-forced simulations,

and AA-forced simulations. One-signal detection (i.e.,

p5 1) is applied to the seasonal and annual ALL, GHG,

NAT, ANT, and AA fingerprints to fit each fingerprint

individually to the observed zonal-mean patterns of

change y calculated from each observation dataset. A

two-signal detection (p 5 2) was also applied to annual-

change pattern fingerprints (considering two combina-

tions: first GHG and AA forcing and second ANT and

NAT forcing) to determine if the observed change can be

attributed to a combination of external forcings by dis-

tinguishing the role of individual forcings in observed

precipitation patterns.

Samples of seasonal and annual zonal-mean precip-

itation changes associated with internal climate variability

were derived by subtracting the multimodel mean from

each individual simulation’s zonal-mean pattern of

change from the ALL forcing simulations and multi-

plying by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n/n2 1
p

, where n is the number of simula-

tions in the ensemble to avoid bias in the variance

(Von Storch and Zwiers 2001). Similarly, the samples

of noise on the fingerprint for each of the individual

forcings were calculated by subtracting the multi-

model mean from each individual simulation. To

account for possible underestimation of the precipi-

tation variability in some latitude bands by models

[see Zhang et al. (2007) and Fig. S1 in the supple-

mental material], the scaling factors were also calcu-

lated using double the model variance for the samples

of noise.

FIG. 1. Percentage change in precipitation per decade for the CRU (1951–2005), Zhang (1951–2005), VASClimO (1952–2000), andGPCC

(1951–2005) datasets for MAM.
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5. Results

a. Role of external forcing

Figure 2 shows the changes in precipitation in the four

observed datasets, using each dataset’s full coverage

except for the removal of grid boxes with coverage in

fewer than 95% of the years. Blue shading shows where

zonal changes for all observed changes are positive

(13%, 29%, 33%, and 42% of zonal bands for JJA, DJF,

MAM, and SON, respectively) and the orange shading

shows where they are all negative (25%, 25%, 29%, and

17% of zonal bands for JJA, DJF, MAM, and SON,

respectively), yielding the most consistent changes in

MAM (62%) and the least in JJA (38%). Despite some

differences in the spatial and temporal coverage of the

four observational datasets, the observational zonal-

change patterns are similar with correlation coefficients

between 0.4 and 0.9 for most datasets and seasons (i.e.,

correlation is significant with p value , 0.05), though

they are not statistically significant for the Zhang and

CRU and Zhang and GPCC datasets in some seasons.

All observational datasets show increased precipitation

in the Northern Hemisphere mid- to high latitudes in all

seasons, drying of the Northern Hemisphere subtropics

in DJF and tropics in all seasons, and drying in the

SouthernHemisphere subtropics inDJF, JJA, andMAM.

Where the different observational datasets disagree on

the sign of the change is typically in latitude bands where

the change is small. The largest disagreement between

observations occurs in the Southern Hemisphere tropics,

where data are spatially limited and hence changes are

sensitive to evenminor variations in the spatial coverage of

the datasets. Themagnitude of the observed changes tends

to be larger inMAMandDJF, particularly in theNorthern

Hemisphere. To determine the influence of recent years

on change patterns, changes were calculated for 1951–99

for the CRU, Zhang, and GPCC datasets and were found

to be very similar with changes for 1951–2005, with cor-

relation coefficients between 0.83 and 0.97 (see Fig. 2).

Figure 3 shows theALL-forcedmultimodelmeanwhere

the models have been masked to each observational

dataset for space and time. Blue shading shows where

FIG. 2. Observed and multimodel-simulated seasonal zonal-mean land precipitation changes (% decade21) for the four observational

datasets: CRU for 1951–2005 [Obs(C)] and 1951–99 [Obs(C99)], Zhang for 1951–2005 [Obs(Z)] and 1951–99 [Obs(Z99)], VASClimO

[(Obs(V)] for 1952–2000, andGPCC for 1951–2005 [Obs(G)] and 1951–99 [Obs(G99)].Multimodel means of theALL-forced simulations

are shown in black, the gray area is model 90% confidence interval, and blue (orange) areas show where observed changes are all positive

(negative).
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changes for all multimodel means are positive irre-

spective of coverage (21%, 58%, 46%, and 29%of zonal

bands for JJA, DJF, MAM, and SON, respectively) and

the orange shading shows where they are all negative

(38%, 29%, 33%, and 25% of zonal bands for JJA, DJF,

MAM, and SON, respectively), yielding the most con-

sistency in MAM (87%) and the least in SON (54%).

The zonal bands where the sign of the changes for the

four observational datasets is different and not close

to zero largely coincide with areas where the different

masking of the same multimodel fingerprint notably

modifies the outcome, suggesting that the sign differ-

ences, as well as some variations in the magnitude of the

changes between observational datasets (e.g., the negative

tropical change inDJF), appear to be at least partly related

to data coverage. Also changes in the Southern Hemi-

sphere tropics tend not to be the same sign for all datasets,

reflecting the poorer data availability in this region.

Figure 4 shows the ALL-forced simulated changes

for the individual models where the models have been

masked to match the spatial and temporal coverage of

the GPCC dataset, which has the largest spatial and

temporal coverage. The observational changes tend to

be largely within the range of simulated changes from

the individual model simulations. Blue shading shows

where changes for 75% of the models are positive and

the orange shading shows where 75% of the models are

negative. The models tend to show larger consistent

changes in DJF than in other seasons and more so in the

Northern Hemisphere. The most consistent response

across models is an increase in precipitation in the North-

ern Hemisphere mid- to high latitudes in all seasons,

which is also seen in the observations, particularly in

DJF and MAM. The models also tend to produce a

consistent pattern of decreasing precipitation at around

308N in DJF and around 208N in MAM, while the

FIG. 3. Multimodel-mean zonal-mean land precipitation changes for ALL forcing (% decade21), where model data have been masked

to match the different spatial and temporal coverage of the four observational datasets: CRU (1951–2005), Zhang (1951–2005),

VASClimO (1952–2000), and GPCC (1951–2005) for DJF, MAM, JJA, and SON. Blue areas show where all changes are positive

irrespective of masking and orange areas show where all changes are negative.
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observations consistently show moistening in these

latitude bands across all datasets.

Figure 1 shows the spatial precipitation change pat-

tern for all four observational datasets for MAM, high-

lighting the different spatial coverage. Figure 5 shows

the spatial change patterns for the GPCC dataset for all

four seasons, where the hatched areas show where all

available observational datasets agree on the sign of the

change. The sign of the observed changes agrees over

large areas, though not all four datasets have data in

these regions, but disagree in all the seasons in parts of

South America and eastern and northern Asia. Figure 6

shows where all observations agree with the sign of

the multimodel-mean change. The multimodel-mean

change tends to be the same sign as the observations in all

seasons over Europe, northern parts of North America,

parts of southern Africa and South America, and

Western Australia but is not the same in large parts of

Asia, South America, Africa, and the United States

where the observed changes are consistent across all

four datasets. In most cases, for example the western

United States, parts of central Africa, and eastern Brazil

in DJF, the model changes are not consistently positive–

negative (i.e.,,75% of models give changes of the same

sign) in these regions indicating that climate variability

may be responsible for the discrepancies between the

multimodel mean and the observations.

b. Role of individual external forcings

Figure 7 shows the ALL, GHG, ANT, NAT, and AA

multimodel simulated changes masked to the GPCC

dataset. The magnitude of the changes for the NAT-

forced multimodel mean tends to be smaller than that

for the other forcings, and the ensemble encompasses

zero for all latitude bands. The blue areas show where

ALL-, GHG-, and ANT-forced changes are all positive,

orange shows where they are all negative, and the 3
symbols show where over 75% of the simulations give

a change of the same sign. The changes are the same sign

for the different forcings in the mid- and high latitudes,

particularly in the Northern Hemisphere where all show

increased precipitation. It is also at these latitudes that

FIG. 4. Individual-model-mean and multimodel-mean (black) zonal-mean land precipitation changes for ALL forcing (% decade21),

where model data have been masked to match the spatial and temporal coverage of the GPCC dataset (1951–2005) for DJF, MAM, JJA,

and SON (in blue). Gray areas reflect the individual simulations’ 90% confidence interval, blue areas show where 75% of models give

positive changes, and orange areas show where 75% of models give negative changes.
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the changes of the individual simulations tend to bemost

consistent (.75% give changes of the same sign). These

three different forcings tend to produce changes with

different signs in the tropics and subtropics. Across

much of this region the precipitation change from the

ALL-forced multimodel mean is negative while the

change from the GHG- and ANT-forced simulations is

more structured. The changes for the NAT-forced sim-

ulations tend to be less consistent overall than for the

other forcings, with only a few zonal bands with over

75% of simulations giving a change of the same sign and

none at all in MAM or SON. Natural forcing over that

period is limited to very small changes in solar forcing

and a few volcanic eruptions whose effect, particularly

on land precipitation, should not lead to long-term trends.

Figures S2–S6 in the supplemental material show the

zonal-mean changes from observations plotted against

the multimodel-mean changes for each latitude for

ALL, GHG, NAT,ANT, andAA forcings, respectively.

The observations show the least agreement with only

NAT or only AA forcings and show the most agreement

for the ALL-forced multimodel mean.

Figure 8 shows the spatial precipitation patterns of

change of the multimodel means for MAM for each of

the different forcings, ALL, GHG, NAT, ANT, and AA.

The patterns of change are largely consistent for the

multimodel means of ALL-, GHG-, and ANT-forced

simulations. This is consistent with GHG being the larg-

est forcing over the past 50 yr. In contrast, the NAT- and

AA-forced simulations have distinctly different patterns

FIG. 5. Percentage change in precipitation per decade for the GPCC dataset for 1951–2005 for DJF, MAM, JJA, and SON. Hatched grid

boxes show where the sign of the change is consistent across all observation datasets with data available for that grid box.
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of moistening and drying; for example, the NAT and

AA changes show moistening over southern Europe,

while the ALL, GHG, and ANT changes all show dry-

ing. Conversely, in large parts of Asia the NAT and AA

forcing, according to the models, should have caused

drying while theALL, GHG, andANT changes show an

increase in precipitation. Figure 8 also shows the mul-

timodel mean of the ALL-forced simulations from

CMIP3. The sign of the changes is largely the same for

large parts of the globe for CMIP3 and CMIP5 multi-

model means; however, there are some differences over

parts of Africa, SouthAmerica, andAsiawith the CMIP5

changes tending to show an increase in precipitation

compared to a decrease from CMIP3. However, these

differences tend to be small and in regions where there

is no consistency between the sign of the changes in the

CMIP5 models (i.e., sign of change is the same in,75%

of models); therefore, the differences are likely to be

explained, at least in part, by the different composition

of models in the CMIP3 and CMIP5 ensembles.

c. Results of detection and attribution

We will now discuss the results of a detection and at-

tribution method aiming to attribute causes to the ob-

served changes. Figure 9 shows the scaling factors and

90% confidence intervals for all four datasets for the

ALL-forced simulations, GHG-forced simulations, NAT-

forced simulations, and ANT- and AA-forced simula-

tions, and Table 2 shows the scaling factors and 90%

confidence interval for the ALL-forced simulations. For

FIG. 6. Percentage change in precipitation per decade for the ALL-forced multimodel mean for 1951–2005 for DJF, MAM, JJA, and

SON. Hatched grid boxes show where the sign of the change is consistent across all four observation datasets and the multimodel mean.

Note the smaller scale of change patterns as multimodel-mean changes show a much reduced influence of internal climate variability.
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theALL andANTfingerprints, a detectable result at the

5% significant level for double the variance is found for

three datasets in MAM, DJF, and annual (ANN). (By

doubling the variance of the model-based estimates of

internal variability, we allow for the possible underes-

timation of precipitation variability by the models and

obtain a more conservative—i.e., wider—confidence in-

terval.) Only GPCC (shown in gray), which has not been

homogenized for trend analysis, does not show a de-

tectable signal of external forcing; however, changes

are detectable for the VASClimO dataset, a homoge-

nized subset of the GPCC dataset. In that case, the 90%

confidence interval is very close to 0 for DJF for double

the variance, so the forcing signal may only just be

emerging from the climate noise for VASClimO in this

season. Only the Zhang dataset shows detectable

changes for all four seasons, even if the variance of noise

is doubled. GHG forcing is detected for the same data-

sets and seasons as ALL forcings, except for VASClimO

in DJF and ANN and CRU in ANN. Neither NAT nor

AA forcing are detected consistently across any dataset

or season; however, the 90% confidence intervals are

negative for three datasets in MAM (i.e., the pattern of

change for AA forcing is opposite that observed). This

is consistent with GHG forcing being primarily re-

sponsible for the forced changes in the ALL and ANT

fingerprints detected in the observations.

For ALL forcing, the scaling factor is not consistently

greater than 1 for any season or for annual changes,

and the best-guess scaling factors are largely in the range

FIG. 7. Multimodel-mean zonal-mean land precipitation changes for ALL, GHG, ANT, NAT, and AA forcings (% decade21), where

model data have been masked to matched the spatial and temporal coverage of the GPCC dataset (1951–2005) for DJF, MAM, JJA, and

SON. The blue areas showwhere the changes of themultimodel mean of theALL,GHG, andANT forcings are all positive and the orange

areas show where they are all negative. The 3 symbols show where over 75% of the simulations give changes of the same sign.
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0–2. Thus, the magnitude of the precipitation changes is

largely captured by the models when expressed as per-

centage change relative to the internal climatology of

the model or observational dataset. The results for the

ANT-forced fingerprint are mostly similar to those of

the ALL forcing, as are those for GHG-only forcing.

Scaling factors for the two-signal analysis are shown in

Fig. 10, which determines if the response to individual

forcing can be distinguished from each other. For the

two-signal analysis, no forcing is detected consistently

across all datasets at the 5% level of significance for

double the variance. However, GHG forcing is detectable

for the Zhang dataset at the 5% level of significance when

AA forcing is included separately into the analysis and for

ANT forcing when including NAT forcing separately.

The residuals after tls fitting are compared to the

variance in the simulations using an F test to ensure that

the residuals are not significantly different from those

expected from control simulations (Allen and Stott

2003). Where the F test fails either the regression does

not contain all relevant and realistic response finger-

prints to external forcings or the model variability is

erroneous. The residual consistency test is passed for

all forcings and seasons when the model variance is

doubled.

6. Discussion and conclusions

In Noake et al. (2012), the datasets and models were

masked to have the same spatial and temporal coverage

as each other. Here, the observational datasets have not

been masked except to remove grid boxes with poor

temporal coverage, and the simulations have been

masked to each dataset individually to derive fingerprints.

FIG. 8. Percentage change in precipitation per decade for 1951–2005 for MAM for the multimodel mean of ALL (98), GHG (45), ANT

(18), NAT (38), and AA-forced (16) simulations, and the multimodel mean of the ALL-forced (54) simulations from CMIP3.
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Nevertheless, the resulting change patterns are similar

for all observational datasets, despite differences in data

coverage. The Southern Hemisphere tropics are an ex-

ception, as spatial coverage is particularly poor because

of the limited availability of land station data (see, e.g.,

Becker et al. 2013). In these regions, ocean data are

required to improve the calculation of zonal-mean pre-

cipitation changes, but the relatively short satellite data

coverage means that the signal-to-noise ratio of these

data may be too low to allow for the detection of forcing

using this approach. However, there is evidence from

satellite and model data that land and ocean precipita-

tion in the tropics and globally are negatively correlated

(Gu et al. 2007; Liu et al. 2012), while analysis of salinity

data suggests that an enhanced P2E signal may also be

emerging there (Durack et al. 2012). We find that dif-

ferences in spatial coverage play an important role in

differences in zonal-mean changes between datasets.

The zonal patterns of change are similar for the ALL,

ANT, and GHG forcing at latitude bands where over

FIG. 9. Detection results for individual fingerprints. Scaling factors [see Eq. (1)] are given for (a)–(e) seasonal and (f) annual changes for

CRU (Oc) for 1951–2005, Zhang (Oz) for 1951–2005, VASClimO (Ov) for 1952–2000, and GPCC (Og) for 1951–2005 observations.

(a) ALL-, (b) GHG-, (c) ANT-, (d) NAT-, and (e) AA-forced simulation-based fingerprints. (f) Scaling factors for annual changes for all

five fingerprints. The3 symbols show the ‘‘best-guess’’ scaling factor for the multimodel mean, thick lines are the 90% confidence interval

for the raw variance added as noise, and thin lines are the 90% confidence interval for double the variance.

TABLE 2. Scaling factors for tls detection and attribution for ALL forcing. Table shows best-fit scaling factor and 90% confidence interval

in square brackets for double the variance. Values in bold show where forcing is detected.

Obs dataset DJF MAM JJA SON Annual

CRU 1.40 [0.39–2.83] 1.88 [0.50–3.66] 1.00 [20.58–2.76] 0.16 [21.95–2.04] 1.32 [0.41–2.60]

Zhang 1.75 [0.75–3.31] 2.94 [1.72–5.16] 1.80 [0.18–3.79] 1.86 [0.84–3.32] 2.46 [1.56–3.66]

VASClimO 1.22 [0.007–2.79] 1.74 [0.08–3.76] 1.42 [20.62–4.26] 0.57 [21.35–2.57] 1.37 [0.16–2.59]

GPCC 0.38 [20.78–1.51] 0.76 [20.78–2.26] 1.04 [20.77–3.323] 0.57 [20.87–1.96] 0.40 [20.49–1.30]
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75% of the simulations give changes of the same sign. In

particular in the Northern Hemisphere mid- and high

latitudes, where land coverage and hence spatial cov-

erage is greatest, the changes for ALL, GHG, and ANT

are all positive while the changes for AA are negative.

The smaller positive changes for ALL and ANT forc-

ing compared to the GHG forcing are consistent with

the negative influence of AA forcing on the changes in

precipitation at these latitude bands. Aerosols affect the

climate by direct absorption of radiation and indirectly

by changing cloud properties. Emissions of aerosols are

greater in the Northern Hemisphere. Hence, because of

their relatively short lifetimes in the atmosphere, aero-

sols have a stronger cooling effect on in the Northern

Hemisphere. The spatial pattern of AA-induced changes

shows a decrease in precipitation over much of the

United States, Europe, and Asia. Anthropogenic aero-

sol emissions have been shown to suppress monsoon

circulation and cause a reduction in precipitation over

South and East Asia (Randles and Ramaswamy 2008;

Bollasina et al. 2011; Guo et al. 2012) and to change ex-

tratropical circulation with associated changes in pat-

terns of precipitation (Ming et al. 2011).

Understanding the physical mechanisms responsible

for the patterns of change in the zonal-mean precip-

itation is difficult because of a number of complicating

factors such as poor spatial coverage in some zonal

bands, the influence of natural variability (which will

have a greater impact where spatial coverage is limited),

and the fact that we are average over different circulation

regimes. As a first step we consider the P2 E patterns of

change from Held and Soden (2006). These are domi-

nated by changes in precipitation so we might expect

that the zonal patterns of precipitation change would

match those of P 2 E at least qualitatively in terms of

the sign of the change; however, enhanced P2 E will not

apply as well for the land-only zonal means used here,

so some disagreement is expected. The ALL-forced

multimodel-mean changes in precipitation are the same

sign as the P 2 E patterns in the Northern Hemisphere

subtropics and mid- and high latitudes but not the

tropics or Southern Hemisphere. The GHG- and ANT-

forced multimodel mean are similar, except that small

(,1% decade21) positive changes occur in Northern

Hemisphere subtropical precipitation in JJA and SON.

The increase in observed precipitation in the Northern

Hemisphere high latitudes is consistent with increasing

moisture transport into these regions (Seager et al. 2010;

Bengtsson et al. 2011), while the decrease in precip-

itation in the Northern Hemisphere subtropics is con-

sistent with the expected expansion of the subtropical

dry regions as a result of the expansion of theHadley cell

(Lu et al. 2007; Seager et al. 2010; Scheff and Frierson

2012) and poleward shift of themidlatitude storm tracks,

which transport moisture poleward from the subtropics

(Yin 2005; Lorenz and DeWeaver 2007; Seidel et al.

2008).

The zonal-mean patterns do not show the enhance-

ment of precipitation predicted in the zonal tropics by

Held and Soden (2006). In the tropics, precipitation is

FIG. 10. Scaling factors two-signal fingerprint detection for (top) GHG(Ox1) and AA(Ox2)

and (bottom) ANT(Ox1) and NAT(Ox2) forced simulation-based fingerprints for CRU (Oc)

for 1951–2005, Zhang (Oz) for 1951–2005, VASClimO (Ov) for 1952–2000, andGPCC (Og) for

1951–2005 observations for annual changes. The3 symbols show the best-guess scaling factor

for the multimodel mean, thick lines are the 90% confidence interval for the raw variance

added as noise, and thin lines are the 90% confidence interval for double the variance.
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enhanced over convergence regions and decreases in

subsidence regions (due to increased moisture trans-

port), though dynamical feedbacks can produce changes

of the opposite sign within these regions (Chou and

Neelin 2004; Neelin et al. 2006; Chou et al. 2009). Seager

et al. (2010) show from modeling studies of the twenty-

first century that while changes in P 2 E are positive in

the tropics overall, changes over land are mostly nega-

tive in April–September and a mixture of positive and

negative in October–March. These patterns are largely

due to the increase of the advection of water vapor by

the mean flow, but changes to the mean circulation dy-

namics are also important. Neelin et al. (2006) also show

drying over tropical land in JJA in the twenty-first cen-

tury and Liu et al. (2012) show that precipitation de-

creases with temperature over tropical land in CMIP5

models and satellite data. In the Southern Hemisphere,

the lack of ocean data is particularly problematic when

calculating the zonal-mean changes due to poor data

coverage compared to the Northern Hemisphere, par-

ticularly in the tropics. In the subtropics, the expected

drying is only seen in JJA, with increasing precipitation

in DJF and SON mostly due to changes over Australia,

which matches the increase in P 2 E seen in October–

March in Seager et al. (2010).

The spatial change patterns are similar for the differ-

ent observational datasets in terms of the sign of change.

In many regions, and in many areas where the sign of

change of the multimodel mean is not the same as ob-

servations, the individual model simulations do not pro-

duce consistent moistening or drying either, emphasizing

large variability in precipitation. However, in some re-

gions observed changes are the same sign across all

datasets but are different for modeled changes that are

consistent across the simulations; for example, northeast

Asia in DJF. Internal climate variability may explain

some of the discrepancies. Dai (2013) showed how in-

ternal variability could produce apparent trends in re-

gional precipitation on multidecadal time scales in the

southwest United States while Kelley et al. (2012) show

that the winter drying seen in the Mediterranean ob-

servations may be due to multidecadal variability with

the radiatively forced signal only beginning to emerge

from the natural variability. Regional precipitation

changes will also be affected by even subtle shifts in

atmospheric circulation. For example, Noake et al. (2012)

investigated whether the North Atlantic Oscillation

(NAO) could explain aspects of the observed changes

but reveal only a small effect on the observed zonal-

mean changes. In contrast, the NAO affects changes in

Europe at decadal time scales (Sutton and Dong 2012).

Noake et al. (2012) showed that using percentage change

rather than absolute changes themodel simulations tended

to capture the magnitude of change for ALL-forced

simulations with only MAM being consistently under-

estimated by the models and that the external forcing

was detectable for DJF, MAM, and SON using the

CMIP3 models. Here, we find a similar result using the

CMIP5 models and extending the time period to 2005

for the CRU, Zhang, and the GPCC (not used in Noake

et al. 2012) datasets, with the only major change being

that the ALL forcing is no longer detected for the CRU

and VASClimO datasets for SON and that the magni-

tude of change is no longer consistently underestimated

in MAM for all observational datasets. In Noake et al.

(2012), all datasets weremasked to limit coverage to grid

boxes where station data were available. However, here

we include grid boxes where data have been inter-

polated, introducing more uncertainty but allowing for

greater spatial and more consistent temporal coverage.

Applying tls detection to a number of datasets and for

different seasons increases the likelihood that we will

obtain false positive detection results simply by chance.

Only when forcing is detected for multiple datasets in

the same seasons or across seasons do we have confi-

dence that detection of forcing is robust. Robust de-

tection results were found for MAM, DJF, and annual,

whereALL forcing is detected for all datasets except the

GPCC dataset, which has not been homogenized for use

in change analysis. It is also worth noting that for the

Zhang dataset, which is restricted to only grid boxes that

contain long-term station data, we detect ALL forcing

across all seasons and for annual changes as was the case

in Zhang et al. (2007) for annual data.

The present study further extends the work of Noake

et al. (2012) by obtaining results for individual forcings.

We find that fingerprints that include the effects of

greenhouse gas increases (ALL, ANT, and GHG) are

similarly detectable, with changes in DJF and MAM

detectable in at least two datasets even when the model-

based estimate of internal-variability variance is doubled.

Neither NAT forcing nor AA forcing are detectable. AA

shows negative detectable signals in MAM in three data-

sets, which are possibly due to aerosol forcing partly

counteracting greenhouse gas forcing, possibly by pre-

cipitation response to aerosol-induced cooling (see Allen

and Ingram 2002).

The two-signal detection fails to produce a detectable

forcing consistently across all datasets if estimating the

GHG and AA fingerprints separately or the ANT and

NAT forcings separately. However, anthropogenic forc-

ing is detected separately from natural forcing, and

greenhouse gas forcing is detected separately from an-

thropogenic aerosol forcing for the Zhang dataset. For

anthropogenic forcing, the magnitude of the scaling fac-

tor is inconsistent with ‘‘1’’ indicating that the model
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response needs to be enhanced to reproduce the ob-

servations, as was found in Zhang et al. (2007) for annual

data. Overall results of the detection and attribution for

global land precipitation using fingerprints from the

CMIP5 models are consistent with older work using the

CMIP3models. The results confirm that external forcing

had a detectable influence on seasonal land precipitation

in MAM, DJF, and annual land precipitation and sug-

gests, with uncertainties, that the externally forced

changes are largely the result of human influence, par-

ticularly greenhouse gas forcing of the climate.
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