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Abstract. 

In this study we examine the meteorological drivers resulting in concurrent high levels of ozone 15 

(O3) and particulate matter smaller than 2.5 µm in diameter (PM2.5) during two five-day air 

pollution episodes in 2006 (1st - 5th July and 18th – 22nd July) using an air quality model 

(AQUM) at 12 km horizontal resolution to simulate air pollutant concentrations. The resultant 

UK health burden associated with short-term exposure to simulated maximum daily 8-hour O3 

(MDA8 O3) and daily mean PM2.5 is estimated at the national and regional level.  20 

Both episodes were found to be driven by anticyclonic conditions with light easterly 

and south easterly winds and high temperatures that aided pollution build up in the UK. The 

estimated total mortality burden associated with short-term exposure to MDA8 O3 is similar 

during the chosen episodes with about 70 daily deaths brought forward (summed across the 

UK) during the first and second episode, respectively. The estimated health burden associated 25 

with short-term exposure to daily mean PM2.5 concentrations differs between the first and 

second episode resulting in about 43 and 36 daily deaths brought forward, respectively. The 

corresponding percentage of all-cause mortality due to short-term exposure to MDA8 O3 and 

daily mean PM2.5 during these two episodes and across the UK regions, ranges from 3.4% to 

5.2% and from 1.6% to 3.9%, respectively. The attributable percentage of all-cause mortality 30 

differs between the regions depending on the pollution levels in each episode, but the overall 

estimated health burdens are highest in regions with higher population totals. We estimate that 

during these episodes the short-term exposure to MDA8 O3 and daily mean PM2.5 is between 

36-38% and 39-56% higher, respectively, than if the pollution levels represented typical 
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seasonal-mean concentrations. This highlights the potential of air pollution episodes to have 35 

substantial short-term impacts on public health. 

Key Words. 

PM2.5; O3; Air pollution episode; Health impact assessment 

 

1. Introduction 40 

Air pollution has been identified as one of the top global mortality risk factors by the 2015 

Global Burden of Disease (GBD, 2016). Short-term exposure to ozone (O3) and particulate 

matter with an aerodynamic diameter less than 2.5 µm (PM2.5) has been linked to negative 

effects on lung function (Chen et al., 2015), increased hospital admissions and mortality 

(Atkinson et al., 2014; Bell et al., 2006, 2005; COMEAP, 2015; Di et al., 2017; Ito et al., 2005; 45 

Levy et al., 2005).  

Meteorology is a key factor in determining concentrations of O3 and PM2.5, through its 

impact on chemical reaction rates via temperature, deposition of pollutants, boundary layer 

depth, stagnation of air and long-range transport. In the northern mid-latitudes and over the 

UK, the highest O3 concentrations typically occur in spring and summer (e.g. Anderson et al., 50 

1996; Derwent et al., 1998; Monks, 2000), while the highest PM2.5 levels occur most often in 

spring, autumn and winter (e.g. AQEG, 2012; Harrison et al., 2012a; Harrison et al., 2012b). 

However, in anticyclonic weather conditions with low wind speeds, high levels of these two 

pollutants may occur concurrently (Fischer et al., 2004; Stedman, 2004) and in summer may 

also be associated with heatwaves (Schnell and Prather, 2017; Solberg et al., 2008; Tong et al., 55 

2010). Analysing the mechanisms responsible for the O3 build-up over South East England 

during the August 2003 heatwave using the Community Multiscale Air Quality (CMAQ) 

model, Francis et al. (2011) found that convergence of westerly and easterly flows over the UK 

led to trapping of transported O3 from mainland Europe, thus leading to increased O3 levels. 

Using surface and satellite observations, Pope et al. (2016) also found that in the summer period 60 

(April-September 2006), anticyclonic conditions with low wind speeds and easterly flows 

significantly enhanced O3 concentrations over the UK relative to summer-time average values 

and further show that the UK Met Office regional air quality model (AQUM) successfully 

reproduces UK increased O3 concentrations under such synoptic conditions for this period. 
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Several studies have examined the impact of short-term exposure to O3 and particulate 65 

matter (PM) on human health during air pollution episodes. Rooney et al. (1998) estimated that 

619 extra deaths occurred during the heatwave between July and August 1995 in England and 

Wales of which 62% of the excess mortality was attributable to concurrent increases in air 

pollution. During the first two weeks of August 2003, a major heatwave occurred across much 

of Europe with temperatures in the UK reaching a record of 38.5 °C associated with a persistent 70 

high pressure system over Europe (Johnson et al., 2005; Lee et al., 2006; Solberg et al., 2008; 

Vieno et al., 2010). For the first two weeks in August 2003 in England and Wales, an estimated 

83 and 29 deaths per day were associated with short-term exposure to daily maximum 8hr 

running mean (MDA8) O3 and 24 hour mean PM10 (particulate matter with an aerodynamic 

diameter less than 10 µm), respectively (Stedman, 2004). This represented an increase of 38 75 

(O3) and 13 (PM10) deaths per day compared with the previous year. In the Netherlands, Fischer 

et al. (2004) estimated that between June and August 2003, 15 and 16 daily deaths brought 

forward were associated with short-term exposure to O3 and PM10, respectively. Compared to 

the O3 and PM10-realted deaths brought forward between June and August 2000, approximately 

4 and 2 additional daily deaths were brought forward in 2003.  80 

In a recent study over the UK, a spring time air pollution episode in 2014 (totalling 10 

days) was associated with ~ 60 daily deaths brought forward from short-term exposure to PM2.5 

when assuming a 1.04% increase in mortality for a 10 µg m-3 increase in 24-hour mean PM2.5 

(Macintyre et al., 2016). Using observed PM2.5 levels from other years, it was estimated that 

the mortality burden was 2.0 to 2.7 times that associated with typical urban background levels 85 

of PM2.5 at this time of year (Macintyre et al., 2016). Differences in health estimates amongst 

these previous studies are mainly due to differences in the concentration response coefficients 

used, as well as the magnitude of pollutant concentrations and the baseline mortality estimates 

(which vary for each country and from year to year). The method for calculating the excess 

deaths is also not consistent between the studies and thus a direct comparison between the 90 

different studies is not possible.  

Under climate change, the risk of heatwaves in the future will likely increase (IPCC, 

2014). In the absence of air quality abatement measures, this could give rise to increases in the 

occurrence of air pollution episodes and UK health burdens associated with short-term 

exposure to O3 and PM2.5. However, the frequency of air pollution episodes will likely also be 95 

affected by climate change through changes in the frequency of large-scale blocking episodes 
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which have been shown to decrease in winter and summer over Europe in the 21st century 

(Masato et al., 2013). 

In this study, we focus on air pollution episodes during a heatwave in summer 2006 

during which stagnant weather conditions resulted in high O3 and PM2.5 concentrations 100 

occurring concurrently across the UK. Emissions have a major influence on air pollutant 

concentrations, however in this study we focus on how air pollution levels are linked to 

anticyclonic weather conditions. To identify these episodes, we used the Daily Air Quality 

Index (DAQI) which gives information on the air pollution levels in the UK and provides 

recommended actions and health advice (Defra, 2013). The index ranges from ‘low’ (1) to 105 

‘very high’ (10) and is divided into four bands (‘low’, ‘moderate’, ‘high’ and ‘very high’). The 

DAQI is determined by the highest concentrations of any of the following five pollutants: 

nitrogen dioxide (NO2), sulphur dioxide (SO2), O3, PM10 and PM2.5 (uk-air.defra.gov.uk). For 

this study, episodes were defined based on when the DAQI reached ‘moderate’ to ‘high’ values 

in the majority of the England regions, Scotland and Wales. 110 

Between the 16th and 28th of July 2006, there was a 4% increase in baseline all-cause 

mortality (~ 680 excess deaths, Office for National Statistics, 2006). The then UK Health 

Protection Agency (HPA) used measurements of pollution from fixed site monitors to estimate 

that between June and July 2006, 11 and 7 additional daily deaths brought forward in England 

and Wales were associated with increased O3 and PM10 concentrations compared to 2004 115 

(assuming a 0.3% and 0.75% increase in deaths brought forward for a 10 µg m-3 increase in O3 

and PM10, respectively) (HPA, 2006). Monitoring of PM2.5 concentrations only became routine 

in the UK since 2008/9 following the 2008 ambient air quality directive (EU, 2008) and thus 

due to lack of measurement data, the PM2.5 health burden has not previously been quantified 

for this period. This study presents new estimates of health burdens associated with short-term 120 

exposure to MDA8 O3 and daily mean PM2.5 occurring concurrently during two air pollution 

episodes in July 2006 using detailed spatio-temporal air pollution modelling for the UK and 

links to the underlying meteorology for the air pollution episodes in this period. Here, the short 

term health effects associated with O3 and PM2.5 air pollution episodes are examined rather 

than long term health impacts that would occur under future emission and climate change. 125 

Pollutant concentrations are simulated using the UK Met Office’s air quality model (AQUM) 

at 12 km horizontal grid resolution. The impact on all-cause mortality was calculated both at a 

national level, also for the nine Government Office Regions (GOR) in England, and for 

Scotland and Wales.  
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The paper is organised as follows: Section 2 describes the modelling framework used 130 

to simulate the O3 and PM2.5 pollutant concentrations and the methods used to calculate the 

health burdens associated with short-term exposure to MDA8 O3 and daily mean PM2.5 for each 

region. Section 3 presents the observed long-term daily time series of MDA8 O3 and daily 

mean PM2.5 concentrations for multiple years which are used to identify the air pollution 

episodes. For both July 2006 episodes we first analyse the temporal variability of simulated 135 

pollutant concentrations and meteorological drivers of the air pollution episodes in Section 4.1, 

then we analyse the spatial variability of MDA8 O3 and daily mean PM2.5 concentrations across 

the UK in Section 4.2. The health impact assessments for the July 2006 air pollution episodes 

are then presented in Section 5 followed by conclusions in Section 6.  

 140 

2. Methods  

2.1. Air Quality in the Unified Model - AQUM 

 

The model used in this study is the air quality model AQUM (Air Quality in the Unified Model) 

which is a limited–area model configuration based on the UK Met Office Unified Model 145 

(MetUM, Brown et al., 2012). AQUM has a horizontal resolution of 0.11° × 0.11° (~ 12 km, 

Savage et al., 2013) with a domain covering the UK and parts of Western Europe. The model 

has 38 vertical levels from the ground surface up to 39 km (with the lowest model level centred 

at 20 m). The model includes an interactive aerosol scheme CLASSIC (Coupled Large-scale 

Aerosol Simulator for Studies in Climate, (Bellouin et al., 2013, 2011; Jones et al., 2001)), 150 

which simulates ammonium sulphate and nitrate, fossil-fuel organic carbon (FFOC), mineral 

dust, soot and biomass burning (BB) aerosol interactively. Biogenic secondary organic aerosols 

are prescribed from a climatology (Bellouin et al., 2011) and sea salt is calculated over sea 

points only and does not contribute to PM concentrations over land. Gas-phase chemistry is 

simulated within AQUM by the United Kingdom Chemistry and Aerosol (UKCA) model 155 

(Morgenstern et al., 2009; O’Connor et al., 2014). The chemistry scheme used is the Regional 

Air Quality (RAQ) chemistry scheme, which has 58 chemical species, 116 gas phase reactions 

and 23 photolysis reactions. Photolysis rates are calculated with the on-line photolysis scheme 

Fast-JX (Neu et al., 2007). Lateral boundary conditions for chemistry and aerosols are derived 

from the GEMS (Global and regional Earth-system Monitoring using Satellite and in-situ data) 160 

and MACC (Monitoring Atmospheric Composition and Climate) global reanalyses fields 
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(Flemming et al., 2009) whilst meteorology is obtained from the UK Met Office Unified Model 

(MetUM). Further details on AQUM, including evaluation, can be found in Savage et al. 

(2013). 

Model simulations are performed for the year 2006 (allowing for model spin up) from 165 

which hourly pollutant concentrations during the chosen episodes are then extracted, and from 

which the MDA8 O3 and daily mean PM2.5 are calculated. A statistical post-processing bias 

correction technique (SPPO) (Neal et al., 2014) is applied to correct O3 and PM2.5 simulated 

concentrations. As outlined above, all simulated O3 and PM2.5 concentrations shown in this 

study are taken from the lowest model vertical level having a midpoint at 20 m. Bi-linear 170 

interpolation is used to extract simulated O3 and PM2.5 concentrations at measurement sites for 

observation-model comparison. The SPPO technique is applied to the pollutant concentrations 

quoted in Section 4.1 and in the health section of this study (Section 5) while pollutant 

concentrations shown in Section 4.2 are not bias corrected to enable comparison with the 

simulated meteorological fields.  175 

2.2. Measurement data 

 

Modelled MDA8 O3 and daily mean PM2.5 concentrations for 2006 are evaluated 

against measurements from the Automatic Urban and Rural Network (AURN). As monitoring 

of PM2.5 concentrations only became routine in the UK since 2008/9, measurements for PM2.5 180 

concentrations for this period are only available at three sites: London Bloomsbury (urban 

background), Rochester Stoke (south east UK, rural background) and Harwell (south east UK, 

rural background). However, an evaluation of AQUM against measurements from the AURN 

network presented in the model description paper by Savage et al (2013) demonstrates good 

model performance for later periods compared to a larger set of available measuring sites. 185 

Results between 1 May 2010 and 30 April 2011 suggest a positive bias in simulated O3 

concentrations (~ +8 μg m-3), whilst simulated PM2.5 concentrations exhibit a negative bias (~-

3 μg m-3) (Savage et al., 2013). In addition, Savage et al. (2013) evaluate the model 

representation of O3 concentrations for the period July 2006. Results show that for July 2006, 

the AQUM exhibits a small positive bias for simulated O3 concentrations (~ +1.99 μg m-3).  190 

Wind measurements for 2006 were only recorded at Rochester Stoke, therefore we use this site 

to show temporal variability in modelled and observed pollutant concentrations and 

meteorological variables in Sections 3 and 4.1. Surface temperatures are not recorded for any 

of the three AURN sites, therefore we use observed temperatures at the three closest sites to 
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these air pollution measurement sites from the Met Office Integrated Data Archive System 195 

(MIDAS) network (located at St James Park, London, East Malling and Upper Lambourn). Site 

locations from the AURN and MIDAS networks are illustrated in Fig. 4 and Fig. 6, 

respectively.  

 

2.3. Heath impact assessment  200 

 

Estimated health burdens attributable to short-term exposure to MDA8 O3 and daily mean 

PM2.5 are calculated as follows for each of the nine GOR for England, and for Scotland and 

Wales (shown in Fig. 1):  

 205 

𝑀𝑟 =  ∑ 𝐵𝑀𝑖𝑟  ×  𝐴𝐹𝑖𝑟
𝑁
𝑖=1      (1) 

where 

𝐴𝐹𝑖𝑟 =  
𝑅𝑅𝑖𝑟−1 

𝑅𝑅𝑖𝑟
      (2) 

and  

𝑅𝑅𝑖𝑟 = exp (𝐶𝑅𝐹 ×  𝑥𝑖𝑟)     (3) 210 

and  

𝑥𝑖𝑟 =  
∑ (𝑥𝑖𝑗 × 𝑝𝑗)𝑗 ∈ 𝑟𝑒𝑔𝑖𝑜𝑛   

∑           𝑝𝑗     𝑗 ∈ 𝑟𝑒𝑔𝑖𝑜𝑛
     (4) 

In equation 1, 𝑀𝑟  is the all-cause mortality associated with short-term exposure to MDA8 O3 

or daily mean PM2.5 for each region, 𝑟 (Figure 1) summed over each day of the air pollution 

episode, 𝑖; 𝑁 is the total number of days in the air pollution episode, 𝐵𝑀𝑖𝑟 is the total regional 215 

daily mortality (henceforth referred to as baseline mortality) and 𝐴𝐹𝑖𝑟 is the daily attributable 

fraction associated with short-term exposure to MDA8 O3 or daily mean PM2.5 that is calculated 

for each region using equation 2. Daily all-cause 𝐵𝑀𝑖𝑟 for each region was obtained from the 

Office of the National Statistics for England and Wales (ons.gov.uk) and from the National 

Records of Scotland (nrscotland.gov.uk). In equations 2 and 3, 𝑅𝑅𝑖𝑟 is the daily regional 220 

relative risk associated with short-term exposure to MDA8 O3 or daily mean PM2.5. In equation 

3, CRF is the concentration-response function coefficient and 𝑥𝑖𝑟 is the regional daily 

population-weighted pollutant concentration. The CRFs used in this study for short-term 

exposure to MDA8 O3 and daily mean PM2.5 are taken from COMEAP (2015) and from a meta-
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analysis of time series epidemiological studies (Atkinson et al., 2014), respectively. For short-225 

term exposure to O3-related health impacts, we use a CRF of 0.34 % (95% confidence interval 

(CI): 0.12%, 0.56%) per 10 µg m-3 increase in MDA8 O3, and for short-term exposure to PM2.5-

related health impacts we use a CRF of 1.04 % (CI: 0.52%, 1.56%) per 10 µg m-3 increase in 

24-hr mean PM2.5. As limited evidence is available for a threshold below which no adverse 

effects for short-term exposure to MDA8 O3 and daily mean PM2.5 exist, no threshold was 230 

applied to pollutant concentrations (Atkinson et al., 2014; COMEAP 2015).  

The daily regional population-weighted pollutant concentrations 𝑥𝑖𝑟 are calculated by 

first counting the total residential gridded population data (𝑝, at a resolution of 5 km (GWPv3), 

obtained from the Socioeconomic Data and Applications Centre (SEDAC) 

(sedac.ciesin.columbia.edu) within each model grid cell, 𝑗 (equation 4). This population total 235 

(𝑝𝑗) is then multiplied by the daily pollutant concentration within each grid cell 𝑥𝑖𝑗, summed 

over every grid cell within the region r, and divided by the total population of the region.  

To quantify the deaths brought forward associated with air pollution during the episodes 

we first calculate the ‘typical’ air pollution related daily deaths brought forward that would 

have occurred in the absence of an air pollution episode. This is done by replacing the modelled 240 

pollutant concentration which varies for each day of the air pollution episode (𝑥𝑖𝑗) with the 

mean pollutant concentration for June, July and August (summer mean) following the method 

in Macintyre et al. 2016), which we assume to be representative of air pollution levels when an 

episode does not occur. All other variables are left unchanged, therefore when calculating the 

‘typical’ daily deaths, the 𝐴𝐹𝑖𝑟 for each day is the same, with baseline mortality (𝐵𝑀) still 245 

varying daily. The excess deaths are then estimated by subtracting the ‘typical’ estimated 

deaths brought forward from the episode estimated deaths brought forward.  
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Figure 1: Government Office Regions (GOR) for England, Scotland and Wales used in this study 250 

3. Identification of air pollution episodes from observations 

 

Measured MDA8 O3 and daily mean PM2.5 concentrations from 2005 to 2007 (inclusive) 

at the Rochester Stoke site (rural background) are shown in Fig. 2. The seasonal profile of 

MDA8 O3 concentrations is similar for all three years, with the highest concentrations 255 

occurring in the summer months and the lowest in winter (Fig. 2a). Superimposed on this 

seasonal cycle are daily variations in MDA8 O3. A seasonal cycle is less evident for daily PM2.5 

concentrations between 2005 and 2007 (Fig. 2b), although a background level of 5-10 µg m-3 

is evident with substantial day-to-day variability. We focus our analysis on periods during 2006 

using two criteria to define air pollution episodes: a) high MDA8 O3 and daily mean PM2.5 260 

concentrations occurring concurrently and b) a DAQI reaching a ‘moderate’ or ‘high’ level 

over the majority of the regions across the UK. This resulted in the selection of two 5-day 

periods from the 1st -5th July 2006 and from the 18th -22nd July 2006, which are described below. 

We note that these selection criteria will not yield the peak PM2.5 concentrations in 2006 as 

these occurred in autumn 2006 (Figure 2). 265 

In July 2006, measured MDA8 O3 concentrations reached 150 µg m-3 on 2nd July 2006 at 

Rochester Stoke (Fig. 2a) which are higher compared to adjacent years. Daily mean PM2.5 

concentrations at the same station also show peaks occurring during July 2006 (up to 26 µg m-

3 on the 4th July, Fig. 2b). Similarly peaks for MDA8 O3 and daily mean PM2.5 concentrations 

during this same period were noted at the London Bloomsbury and Harwell stations (refer to 270 

Fig. S1 in the Supplement to this manuscript).  
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Between the 1st and 5th of July 2006 the DAQI reached a ‘moderate’ or ‘high’ level in 96% 

of the regions in England, Scotland and Wales and in 88% of the regions between the 18th and 

the 22nd of July 2006 (uk-air.defra.gov.uk). This suggests that overall, more extensive high 

pollutant concentrations occurred in the first episode compared to the second episode. In 275 

particular, in the south east region, the DAQI reached a ‘high’ level during most days of the 

first episode and a ‘moderate’ level during most of the second episode.  
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Figure 2: (a) Daily maximum 8-hr running mean (MDA8) O3 and (b) daily mean PM2.5 at the Rochester Stoke AURN 

rural background station from 2005 (dotted), 2006 (red for O3 and blue for PM2.5), and 2007 (dot-dashed). Black points 280 
mark the two 5-day air pollution episode days for July 2006 (1st-5th July and 18th-22nd July 2006). 
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4. Meteorological factors contributing to the air pollution episodes 

In this section, we discuss the temporal and spatial variability of simulated pollutant 

concentrations and meteorological variables; analysing the main meteorological factors 285 

contributing to high modelled concentrations of MDA8 O3 and daily mean PM2.5.  

4.1. Temporal variability of pollutants and meteorology during the pollution episodes 

 

Simulated (original and bias corrected - as described in Section 2.1) and observed MDA8 O3 

and daily mean PM2.5 concentrations for July 2006 are shown in Fig. 3a for the Rochester Stoke 290 

site (rural background). Using the raw model output for both episodes, MDA8 O3 

concentrations are underestimated (mean bias = -10.72 µg m-3 and r = 0.67; Table 1) while 

daily mean PM2.5 concentrations are overestimated (mean bias of 26.29 µg m-3 and r = 0.67; 

Table 1). When applying the SPPO bias correction technique (Section 2.1), the temporal 

variability of MDA8 O3 and daily mean PM2.5 concentrations is largely unaltered with peaks 295 

captured well during both episodes (Fig. 3a) and with mean bias errors reducing to -2.76 µg m-

3 (r = 0.89) and 12.03 µg m-3 (r = 0.81), respectively (Table 1).  

Table 1: Statistics comparing daily mean model and observed pollutant concentrations and meteorological variables 

for both original (Raw) and bias corrected (SPPO – Statistical Post-Processing technique) model output averaged over 

the period 1st -5th July and 18th to 22nd July at Rochester Stoke. 300 

  Bias R 

MDA8 O3 

(µg m-3) 
Raw -10.72 0.67 

 SPPO -2.76 0.89 

24-hr mean 

PM2.5 

(µg m-3) 

Raw 26.29 0.67 

 SPPO 12.03 0.81 

24-hr mean 

temperature 

(°C) 

Raw 0.85 0.69 

24-hr mean 

wind direction 

(°) 

Raw -7.59 0.95 

24-hr mean 

wind speed 

(m s-1) 

Raw -0.44 0.85 
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Figure 3b shows simulated and observed daily mean meteorological variables (surface 

temperature, wind speed and wind direction) during July 2006 at the Rochester Stoke site. 

Daily variations of temperature, wind direction and wind speed are well captured by the model 

during both episodes, with r values equal to 0.69, 0.95 and 0.85 respectively (N.B. measured 305 

temperatures are taken from St East Malling and not Rochester Stoke). However, the 

magnitudes of daily mean wind speed is generally underestimated (mean bias = -0.44 m s-1; 

Table 1), while temperature is generally overestimated (mean bias = 0.85 °C; Table 1). At 

Rochester Stoke, wind speeds during both air pollution episodes are generally low (between 

~2 and ~ 4 m s-1; Fig. 3b) compared to the rest of July, though wind speeds are fairly low 310 

throughout this month (not exceeding 7 m s-1; Fig. 3b). Compared to the rest of July, daily 

mean temperatures are higher during the two episodes as well as at the end of the month 

(ranging from ~20 °C to ~27 °C; Fig. 3b). During the first episode, measured and simulated 

daily mean wind directions ranged from ~ 60° (north east; Fig. 3b) to ~ 200° (south west; Fig. 

3b). In the later July episode wind directions ranged from north east to south west (Fig. 3b). 315 

However the prevailing wind during both episodes is from a north easterly and easterly 

direction.  
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Figure 3: Daily time series during July 2006 of modelled (solid lines) and observed (dashed lines) a) PM2.5 (blue) and 

MDA8 O3 (red) b) wind direction (degrees are taken clockwise starting from the north - yellow), wind speed (orange) 

and temperature (green) at the rural background AURN station in Rochester Stoke (observed temperatures were 

obtained from the nearest MIDAS station to Rochester Stoke which is at East Malling.) Black boxes represent the two 

5-day air pollution episodes in July 2006 (1st-5th July and 18th-22nd July)). Solid lines with dots indicated the original 

simulated concentrations while the solid lines with no dots show the bias-corrected concentrations using the SPPO 

technique. 

(a) 

(b) 

Rochester Stoke (Rural Background) 

Pollutant Concentrations 

Meteorological Variables 
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4.2. Spatial variability of O3 and PM2.5 concentrations and meteorology during the 355 

pollution episodes across the UK  

 

The spatial distributions of simulated surface MDA8 O3 and daily mean PM2.5 averaged for all 

of July, and for the two 5-day air pollution episodes are shown in Fig. 4 (concentrations shown 

here are not bias corrected to enable comparison with meteorology; however spatial patterns 360 

for bias-corrected pollutant concentration are similar (refer to Supplement Fig. S2)). Simulated 

MDA8 O3 concentrations during all three averaging periods generally compare well with 

observations (to within 15 µg m-3; Fig 4a-c). However, simulated MDA8 O3 concentrations at 

London Bloomsbury are higher than observed concentrations during the first episode (Fig. 4b). 

July mean MDA8 O3 concentrations range between ~ 80 µg m-3 in Scotland to ~ 120 µg m-3 in 365 

south eastern and eastern England (Fig. 4a). For the first episode, simulated MDA8 O3 

concentrations are highest in the west of England with concentrations reaching ~ 180 µg m-3 in 

Wales and up to ~ 210 µg m-3 in South West England (Fig. 4b). Simulated MDA8 O3 

concentrations during the second episode are lower reaching ~ 150 µg m-3 in the south of 

England and also less variable across the UK than for the first episode as noted for the DAQI 370 

in Section 4.1 (Fig. 4c). 

Simulated daily mean PM2.5 concentrations during July and the second episode are 

generally in agreement with observations at Harwell, but are overestimated over the London 

Bloomsbury and Rochester Stoke locations during the two episodes (Fig 4 d-f). Neal et al. 

(2017) also find an all year round small positive bias in simulated PM2.5 concentrations for a 5-375 

year period at two background observational sites. For all three periods shown, higher daily 

mean PM2.5 concentrations are simulated over England and Wales compared to Scotland with 

a stronger North-South spatial gradient occurring during the air pollution episodes compared 

to July (Fig. 4d-f). Simulated daily mean PM2.5 concentrations are highest during the first 

episode reaching ~ 45 µg m-3 in the west of England (Fig. 4e). The spatial pattern of simulated 380 

PM2.5 concentrations in the second episode differs from that found in the first episode. 

Simulated daily mean PM2.5 concentrations are higher in south east England compared to the 

west of England for this later episode (~ 45 µg m-3 compared to ~ 20 µg m-3, Fig. 4f). 

Simulated MDA8 O3 and PM2.5 concentrations during the two episodes are also 

compared to summer (JJA) mean concentrations. The spatial distribution of summer mean 385 

pollutant concentrations remains unaltered with low concentrations in Scotland and higher 

concentrations in the southern and eastern regions. Summer mean pollutant concentrations are 
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however lower than the July mean concentrations shown in Fig. 4a and 4d. MDA8 O3 

concentrations in summer range between ~75 µg m-3 in Scotland and ~97 µg m-3 in East 

England while PM2.5 concentrations range between ~7 µg m-3 in Scotland and ~15 µg m-3 in 390 

East Midlands and East of England (not shown). 

 

 

Figure 4: Simulated daily maximum 8-hr running mean O3 concentrations for (a) July mean, (b) 1-5 July mean and (c) 

18-22 July 2006 mean and simulated daily mean PM2.5 concentrations for the same time periods (d, e and f) (NB 395 
concentrations shown here are not bias corrected to enable comparison with meteorology; however spatial patterns are 

similar (refer to Supplement)). The circles in each plot are coloured with measured data of the respective pollutant at 

3 AURN sites - Rochester Stoke, Harwell and London Bloomsbury.  
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 400 

Many factors can contribute to high MDA8 O3 and daily mean PM2.5 concentrations 

during these two episode periods. We first focus on spatial variations in meteorology (surface 

wind direction, wind speed, pressure and temperature), following on from section 4.1 . Wind 

direction and wind speeds across the UK are illustrated in Fig 5. For July 2006, the simulated 

prevailing hourly wind direction is from the south west with a mean wind speed of 1.6 m s-1 405 

(Fig. 5a). Simulated mean wind speeds during the two episodes are of similar magnitude to the 

whole July period. However, the dominant wind direction varies between the two episodes. 

Over most of the UK easterly and south easterly winds occur during the first episode (Fig 5b), 

whilst for the later episode south easterly and southerly winds are more prevalent (Fig 5c). 

Thus light winds bringing air from continental Europe are characteristic of both the episodes 410 

in July 2006. Note that the general wind direction across the UK differs slightly from that at 

the Rochester Stoke location where the prevailing wind direction is north easterly and easterly 

during both episodes (Section 4.1). The different wind direction for Rochester Stoke (Section 

4.1) might be linked to the coastal location of this site.  

 415 
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Figure 5: Wind roses showing the frequency of hourly wind directions for each land grid box in the UK for (a) July 

2006, (b) 1st – 5th July, (c) 18th- 22nd July 2006. Colours indicate the wind speed.  

 

Simulated spatial variations in daily mean surface pressure, wind direction and 420 

temperature are shown in Fig. 6. In July light winds of a south to south-westerly direction over 

southern and central England are indicated by the widely spaced simulated pressure contours 

and wind vectors in Fig. 6a and 6d, respectively. During this same period, anticyclonic 

conditions are simulated over northern Europe (> 1020 hPa, Fig. 6a). As discussed above, 

during the first episode, a change in wind direction compared to the July mean can be noted 425 

with winds blowing from an easterly and south easterly direction over most of the UK (Fig. 6e, 

Fig 5b). Also, higher pressures over central and northern UK (>1019 hPa) occur compared to 

the July mean with the high pressure centred over Norway and Sweden (Fig. 6b). A high 

pressure system is also characteristic of the second air pollution episode, but in this case is 

centred over the North Sea (Fig. 6c, f.). The high pressure simulated during both episodes leads 430 

to light winds and hence favourable stagnant weather conditions for high pollutant 

concentrations as well as slow transport of pollution from the European continent. Other 

possible reasons for high pollutant concentrations may include lack of cloud and precipitation, 

enhancing photolysis as well as reducing wet deposition. Using the same model Pope et al. 

(2016) also found O3 concentrations to be high under anticyclonic and south-easterly 435 

conditions for the summer (Apr-Sept) 2006. High temperatures are also associated with 

anticyclonic conditions as discussed in Section 4.1. An increase in simulated daily mean 

surface temperatures during the two episodes compared to the July mean can be clearly seen 

(Figs. 6g-i). Measured daily mean surface temperatures from three MIDAS stations are also 

shown as coloured circles (Upper Lambourn, St James Park London and East Malling). Good 440 

agreement can be seen between modelled and observed July mean temperatures (to within 0.5 
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°C) at the St James Park station in Greater London. However, over the other two locations, 

July-mean temperatures are overestimated by the model by about 1°C for the Upper Lambourn 

and East Malling sites. Simulated July mean temperatures range from 15°C to 23°C and are 

highest in south east England (Fig. 6g). While the spatial distribution of simulated temperatures 445 

during the two episodes is similar to those in July (low temperatures in the north and high 

temperatures in the south), daily-mean values are generally between 16°C and 24°C  for the 

first episode and range between 19°C and 26°C  during the later episode (Fig. 6h and 6i). These 

higher temperatures in the central and south eastern England may partly explain the higher 

simulated MDA8 O3 concentrations towards the south east of England for the July mean and 450 

two episodes as temperature and sunlight promote photochemical formation of O3 (Fig. 4). 

PM2.5 concentrations may also be influenced by temperature (c.f. Fig. 4d-f; Fig 6g-i). Higher 

temperatures may lead to increased sulphate aerosol formation due to increased reaction rates; 

however levels of other secondary components of PM2.5 (e.g. nitrate aerosol) may be reduced 

due to increased partitioning from the aerosol phase into the gas phase (Doherty et al., 2017; 455 

Fiore et al., 2012).  
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Figure 6: Daily mean air pressure at mean sea level (top panel), wind vectors (middle panel) and surface temperature 

(bottom panel) averaged for all of July (left column), 1st to 5th July (middle column) and 18th to 22nd July (right column). 460 
Measured levels of daily mean temperature averaged for the same time periods from three MIDAS stations (St James 

Park, East Malling and Upper Lambourn) are shown in coloured circles (bottom panel)  
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5. Mortality from short term exposure to O3 and PM2.5 

In this section we present our estimates for the short-term exposure to MDA8 O3 and daily 465 

mean PM2.5 concentrations using bias-corrected population-weighted pollutant concentrations 

for the two episodes in July 2006 (refer to Fig. S1). For each region, the total population and 

the population-weighted MDA8 O3 concentrations for the summer (June-July-August, JJA) and 

for the two episode periods together with the percentage of all-cause mortality and the 

estimated number of deaths brought forward are shown in Table 2. In summer, population-470 

weighted simulated MDA8 O3 concentrations range from ~75 µg m-3 in Scotland to ~ 96 µg m-

3 in east England (Table 2). In contrast, MDA8 O3 concentrations range from ~ 98 µg m-3 to ~ 

155 µg m-3 in the first episode (for Scotland and South West England, respectively; Table 2) 

and from ~ 112 µg m-3 to ~ 147 µg m-3 in the second episode (for Scotland and East England, 

respectively; Table 2). These regions having the highest simulated population-weighted bias 475 

corrected MDA8 O3 concentrations are the same regions that have the highest uncorrected 

pollutant concentrations as discussed in Section 4.2. The south west and the east of England 

regions are also the regions with the highest percentage of all-cause mortality attributed to air 

pollution (AF) during the first and second episode, respectively (5.16% and 4.87%; refer to 

Table S1 for confidence intervals for all the regions) as this value only depends on the 480 

population-weighted pollutant concentration which is highest in these regions (refer to Eq. 2-4 

in Section 2.3). The AF due to short-term exposure to MDA8 O3 is higher for the first compared 

to second episode which again reflects the higher concentrations discussed in Section 4.2.  

 The total health burden associated with short-term exposure to MDA8 O3 summed over 

all the regions for the first and second episode is similar: 69 (CI: 25,111; based on the 95% 485 

confidence interval of the concentrations response coefficient) and 70 (CI: 25,113) daily deaths 

brought forward, respectively (Table 2; refer to Table S1 for confidence intervals for all the 

regions). However, as discussed in Section 4.2 higher MDA8 O3 concentrations are simulated 

during the first compared to the second episode. In this paper we only account for the 

uncertainty associated with the CRFs used (e.g. Heal et al. 2013, Macintyre et al. 2016). 490 

Furthermore Kushta et al. (2018) have shown that uncertainties in ambient PM2.5-related 

mortality estimates are dominated by the estimated CRFs derived from epidemiological studies 

which result in statistical uncertainties in the mortality estimates within about ±30% compared 

to uncertainties associated with horizontal and vertical model resolutions in their study which 

give rise to mortality rates that differ by 2.4% and 0.6%, respectively. Apart from uncertainties 495 

associated with model resolution Kushta et al. (2018) suggest that estimates based on PM2.5 
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concentrations derived from satellite data are within 10% of the model results. On the other 

hand, in a multi-model study, Silva et al. (2016) suggest the contribution to the overall 

uncertainty from modeled air pollution concentrations exceeds that from the CRFs. 

The calculation to determine the health burden does not depend solely on pollutant 500 

concentrations but also depends on the population of the region as well as the baseline 

mortality. For each region, the all-cause baseline mortality in the second episode is higher 

compared to that in the earlier episode (by up to 17 daily deaths in the West Midlands) which 

may be linked to higher temperatures over that period. Therefore differences in baseline 

mortality between the two episodes appear to balance differences in simulated MDA8 O3 505 

concentrations when calculating the mortality attributable to short-term exposure to MDA8 O3 

(as described in Eq. 1 Section 2.3). The regions with the highest health burden during both air 

pollution episodes are the North West and South East England (Table 2) which is due to a 

combination of high pollutant concentrations and a larger total population in these two regions 

(Table 2).  510 
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Table 2:  GOR regions for England, Scotland and Wales and their populations together with the regional bias corrected 

population-weighted daily maximum 8-hour O3 concentrations for summer (JJA) and averaged between the 1st-5th July 

and the 18th-22nd July 2006. For each of the episodes the percentage of all-cause mortality and the daily deaths brought 515 
forward are also included.  

 

  JJA 2006  1-5 July 2006  18-22 July 2006 

     Daily deaths  

brought  

forward 

  Daily deaths 

 brought  

forward 

Region 
Pop. 

(1000s) 

MDA8 O3 

(µg m-3) 
 

MDA8 O3 

(µg m-3) 

Percent 

of 
all-cause Number  

MDA8 O3 

(µg m-3) 

Percent 

of 
all-cause Number 

East Midlands 4356 86.2  137.0 4.57% 5  135.6 4.51% 5 

East England 5591 96.3  148.3 4.94% 7  147.1 4.87% 7 

London 7237 89.7  136.8 4.58% 7  139.6 4.65% 7 

North East 2433 77.4  123.0 4.05% 3  119.6 3.95% 3 

North West 6637 77.8  146.6 4.80% 9  125.6 4.26% 9 

Scotland 4802 74.7  98.0 3.35% 4  112.1 3.74% 5 

South East 8084 94.1  146.5 4.86% 10  144.5 4.81% 10 

South West 4930 90.3  155.4 5.16% 7  134.0 4.56% 7 

Wales 2811 86.2  152.4 5.09% 4  138.1 4.63% 4 

West Midlands 5323 84.0  148.0 4.91% 7  137.2 4.59% 7 

Yorkshire and 

The Humber 
4967 78.7  126.5 4.20% 5  119.9 4.03% 5 

Total      69    70 

 

The population-weighted daily mean PM2.5 concentrations during summer range from 

9.4 µg m-3 in Scotland to 14.7 µg m-3 in east midlands and east England. Higher concentrations 520 

occur during the first and second episode with concentrations range from 17 µg m-3 to 38 µg 

m-3 (in Scotland and North West; Table 3) and from 15.4 µg m-3 to 28.5 µg m-3 (in Scotland 

and East England; Table 3), for the first and second episodes, respectively. The percentage of 

attributable all-cause mortality is highest in the North West and East England regions for the 

first (3.9%) and second episode (2.9%), respectively, again reflecting high PM2.5 concentrations 525 

in these regions (Table 3; refer to Table S2 for confidence intervals in mortality estimates for 

all the regions). Due to higher population-weighted PM2.5 concentrations during the first 

episode compared to the later episode, the percentage of attributable all-cause mortality is 

overall also higher during the first episode. The total number of deaths brought forward 

attributable to short-term exposure to PM2.5 during the first and second episodes are 43 (CI: 22, 530 

64) and 36 (CI: 18, 54) daily deaths brought forward, respectively (Table 3). In this case 
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differences in PM2.5 concentrations between the two episodes outweigh differences in baseline 

mortality when calculating the mortality attributable to short-term exposure to PM2.5 thus 

resulting in a higher number of estimated deaths brought forward in the first compared to the 

second episode (as described in Eq. 1 Section 2.3). The regions having the highest number of 535 

deaths brought forward during the first and second episode are again the North West and South 

East regions, respectively as high PM2.5 concentrations and a large population density coincide.  

Table 3: GOR regions for England, Scotland and Wales and their populations together with the regional bias corrected 

population-weighted daily mean PM2.5 concentrations for summer (JJA) and averaged between the 1st-5th July and the 

18th-22nd July 2006. For each of the episodes the percentage of all-cause mortality and the daily deaths brought forward 540 
are also included.  

  JJA 2006  1-5 July 2006  18-22 July 2006 

     

Daily deaths 

brought 

forward 

  

Daily deaths 

brought 

forward 

Region 

Pop. 

(1000s) 

Mean Daily 

PM2.5 

(µg m-3) 
 

Mean Daily 

PM2.5 

(µg m-3) 

Percent 

of 

all-cause Number  

Mean 

Daily 

PM2.5 

(µg m-3) 

Percent 

of 

all-cause Number 

East Midlands 4356 14.7  27.5 2.88% 3  21.9 2.27% 3 

East England 5591 14.7  23.2 2.39% 3  28.5 2.92% 4 

London 7237 14.6  22.5 2.25% 3  26.8 2.72% 4 

North East 2433 13.3  28.2 2.81% 2  19.1 2.02% 1 

North West 6637 14.2  38.0 3.91% 7  20.5 2.13% 4 

Scotland 4802 9.4  17.0 1.72% 2  15.4 1.63% 2 

South East 8084 14.3  24.8 2.50% 5  24.9 2.54% 5 

South West 4930 14.3  33.8 3.43% 5  24.9 2.62% 4 

Wales 2811 13.3  36.1 3.72% 3  23.2 2.42% 2 

West Midlands 5323 14.1  32.4 3.28% 4  20.0 2.04% 3 

Yorkshire and 
The Humber 

4967 14.6  30.0 3.11% 4  21.3 2.16% 3 

Total      43    36 

 

Using the summer mean (JJA) pollutant concentrations discussed above as ‘typical’ 

concentrations that would occur in the absence of an air pollution episode, we estimate that the 

mortality burden associated with short-term exposure to MDA8 O3 in the first and second 545 

episode is 38 % and 36 % higher than the ‘typical’ summer mean estimate, respectively (Table 

4; refer to Section 2.3). Similarly, we find that the mortality burden associated with short-term 

exposure to daily mean PM2.5 during the first and second episode is 56 % and 39% higher than 

if the concentrations were more similar to those occurring in the absence of an air pollution 

episode (Table 4; regional estimates for ‘typical’ concentrations can be found in Tables S1 and 550 

S2).  
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Table 4: Estimated deaths brought forward from short-term exposure to ‘typical’ summer time population-weighted 

MDA8 O3 and daily mean PM2.5 concentrations compared to the population-weighted pollutant concentrations 

simulated between the 1st-5th July and the 18th-22nd July 2006. Excess deaths brought forward from short-term exposure 555 
to MDA8 O3 and daily mean PM2.5 are calculated as a percentage using (((Episode Estimate – Typical Estimate)/Episode 

Estimate) * 100) 

    Daily Deaths Brought Forward  

  Pollutant Concentrations            

(µg m-3) 

 

Number 

Percentage 

of  all-cause Excess (%) 

1-5 July 

2006 

MDA8 O3 Episode  138.0  69 

(25,111) 

4.59 

(1.65,7.45) 

 

  Typical * 85.0  43 

(15,69) 

2.85 

(1.02,4.65) 

38 

 PM2.5 Episode  28.5  43 

(22,64) 

2.91 

(1.47,4.33) 

 

  Typical * 13.8  19 

(15,25) 

1.28 

(1.00,1.70) 

56 

18-22 July 

2006 

MDA8 O3 Episode  132.1  70 

(25,113) 

4.42 

(1.58,7.17) 

 

  Typical * 85.0  45 

(16,73) 

2.85 

(1.02,4.65) 

36 

 PM2.5 Episode  22.4  36 

(18,54) 

2.32 

(1.17,3.45) 

 

  Typical * 13.8  22 

(11,33) 

1.42 

(0.71,2.13) 

39 

* Simulated population-weighted summer mean (JJA) concentrations for 2006 for each region are used as ‘typical’ 

concentrations. This is kept constant for each day of the episode. 

 560 

Estimated health burdens attributable to exposure to MDA8 O3 during both episodes 

are lower than estimates for the first two weeks of August 2003 derived by Stedman (2004) 

(~70 compared with 88 daily deaths). This difference is due primarily to the use of a 

concentration response coefficient by Stedman (2004) that is about double that used in this 

study (0.6% compared with 0.34% for a 10 µg m-3 increase in MDA8 O3) as well as different 565 

baseline mortality rates as discussed in Section 1. Our PM2.5-related estimates differ from 

estimates of Macintyre et al. (2016) of approximately 59 daily deaths brought forward from 

short-term exposure to PM2.5 during a total of 10 days across the UK in spring 2014 (compared 

to 43 and 36 daily deaths brought forward during the first and second episode in this study). 

The PM2.5-related concentration response coefficient used in our study and that of Macintyre 570 

et al. (2016) is the same, however population-weighted daily mean PM2.5 concentrations during 

the air pollution episode studied in Macintyre et al. (2016) reach a mean concentration of 50 
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µg m-3, which is approximately 12 µg m-3 higher than the highest mean daily population-

weighted PM2.5 concentrations we observe during the first episode in North West England in 

this study (38 µg m-3, Table 3). PM2.5 concentrations for both July episodes in this study are 575 

unusually high compared to other years (Figure 2b for 2005 and 2007) and although slightly 

lower, are of similar magnitude to those reported in spring 2014 by Macintyre et al. (2016). 

Hence the health burden we estimate for the July 2006 episodes is somewhat comparable to 

the PM2.5-related health burden found by Macintyre et al. (2016) in spring 2014.  

In this paper the CRFs used are derived from single-pollutant studies that do not take 580 

into account any potential overlap or interaction in relationships between O3 and PM2.5 

concentrations in terms of joint or interactive health effects. This can lead to an underestimation 

of the true impact of the pollution mixture, especially if other pollutants also affect the same 

health outcome (COMEAP, 2015). On the other hand, the effects of O3 and PM have been 

shown to be relatively independent (WHO, 2006) and for this reason we have not added the 585 

burdens estimated for each pollutant to avoid any double counting.  The uncertainties presented 

in this paper are related to the CRFs used however, other uncertainties are associated with 

health impact assessments. These include uncertainties associated with the simulated air 

pollutant concentrations, baseline mortality and population data. In addition, uncertainties may 

arise from the different air quality models used which are typically addressed in multi-model 590 

studies and cannot be accounted for in this paper. Also, in our calculation to estimate the excess 

deaths during the chosen episodes compared to ‘typical’ conditions we only take into account 

‘typical’ pollutant concentrations but not a ‘typical’ baseline mortality which changes both 

daily and annually. Therefore our estimates of the impact of the air pollution episode are 

conservative. 595 

6. Conclusions 

Air pollution episodes are typically driven by stagnant weather conditions. Between the 1st - 5th 

July and the 18th - 22nd July 2006,  the driving meteorology which included persistent 

anticyclonic conditions  and prevailing winds from the East and South East led to high MDA8 

O3 and daily mean PM2.5 levels occurring simultaneously, likely emanating from both local 600 

emissions trapping and processing, and slow transport of pollution from continental Europe. 

Over the two episodes in July 2006, the estimated total mortality burden associated with 

short-term exposure to MDA8 O3 is around 70 daily deaths brought forward summed across 
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the UK. By using summer 2006 (JJA) population-weighted simulated MDA8 O3 concentrations 

as ‘typical’ concentrations during this time of year, we estimate the health burden to be 38% 605 

and 36% higher during the first and second episode, respectively compared to the summer 

average. The estimated health burden associated with short-term exposure to PM2.5 varies 

between the two episodes resulting in 43 and 36 daily deaths brought forward during the first 

and second episode, respectively. Using PM2.5 concentrations representative of the summer 

average, we estimate the health burden to be 56% and 39% higher than if the pollution levels 610 

represented typical season-mean concentrations.  

  The regions with the highest percentage of all-cause mortality (AF) associated with 

short-term exposure to MDA8 O3 and daily mean PM2.5 varied between the episodes, as this 

depends on population-weighted pollutant concentrations. During the first episode in July 2006 

the regions with the highest simulated population-weighted MDA8 O3 and daily mean PM2.5 615 

concentrations and thus the highest AF due to exposure to MDA8 O3 and daily mean PM2.5 

were the South West and North West regions. During the second air pollution episode, MDA8 

O3 and daily mean PM2.5 concentrations were highest in the East of England resulting in the 

highest AF in this region.  In contrast, the estimate mortality also depends on the baseline 

mortality and thus for all episodes, regions with the greatest total population which coincided 620 

with relatively high pollutant concentrations had the highest mortality estimates (e.g. North 

West and South East regions).  

Our results show that episodes of high MDA8 O3 and daily mean PM2.5 such as those 

presented in this study can lead to an increase in deaths brought forward up to double that 

expected from typical concentrations over the same period. These conservative results are of 625 

importance for future policy making as they provide an estimate of the scale of the health 

impacts associated with such air pollution episodes in different UK regions, which can help 

raise public and political awareness of the issue and strengthen public health preparedness.  

This study provides insights into the health effects of short-term exposure to MDA8 O3 

and daily mean PM2.5 which occur together during air pollution episodes in July 2006 in the 630 

UK as well as the meteorological drivers. Using modelled pollutant concentrations at a 12 km 

resolution, this study also provides an indication of the regional variability of such impacts 

which is difficult to achieve with the paucity of observational data.  
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